[go: up one dir, main page]

Skip to main content
Log in

Estimation of tropical cyclone parameters and wind fields from SAR images

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The traditional method of Synthetic Aperture Radar (SAR) wind field retrieval is based on an empirical relation between the near surface winds and the normalized radar backscatter cross section to estimate wind speeds, where this relation is called the geophysical model function (GMF). However, the accuracy rapidly decreases due to the impact of rainfall on the measurement of SAR and the saturation of backscattered intensity under the condition of tropical cyclone. Because of no available instrument synchronously monitoring rain rate on the satellite platform of SAR, we have to derive the precipitation of the SAR observation time from non-simultaneous passive microwave observations of rain in combination with geostationary IR images, and then use the model of rain correction to remove the impact of rain on SAR wind field measurements. For the saturation of radar backscatter cross section in high wind speed conditions, we develop an approach to estimate tropical cyclone parameters and wind fields based on the improved Holland model and the SAR image features of tropical cyclone. To retrieve the low-to-moderate wind speed, the wind direction of tropical cyclone is estimated from the SAR image using wavelet analysis. And then the maximum wind speed and the central pressure of tropical cyclone are calculated by a least square minimization of the difference between the improved Holland model and the low-to-moderate wind speed retrieved from SAR. In addition, wind fields are estimated from the improved Holland model using the above-mentioned parameters of tropical cyclone as input. To evaluate the accuracy of our approach, the SAR images of typhoon Aere, typhoon Khanun, and hurricane Ophelia are used to estimate tropical cyclone parameters and wind fields, which are compared with the best track data and reanalyzed wind fields of the Joint Typhoon Warning Center (JTWC) and the Hurricane Research Division (HRD). The results indicate that the tropical cyclone center, maximum wind speed, and central pressure are generally consistent with the best track data, and wind fields agree well with reanalyzed data from HRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers W, Brummer B. 2012. Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 SAR satellite. J Geophys Res, 99: 12613–12621

    Article  Google Scholar 

  • Battan L J. 1973. Radar Observation of the Atmosphere. Chicago, IL: Univ. Chicago Press

    Google Scholar 

  • Depperman R C. 1947. Notes on the origin and structures of Philippine typhoons. Bull Amer Meteor Soc, 28: 399–404

    Google Scholar 

  • Donelan M A, Haus B K, Reul N, et al. 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys Res Lett, 31: L18306, doi: 10.1029/2004GL019460

    Article  Google Scholar 

  • Du Y, Vachon P W, Wolfe J. 2002. Wind direction estimation from SAR images of the ocean using wavelet analysis. Can J Remote Sens, 28: 498–509

    Article  Google Scholar 

  • Du Y, Vachon P W. 2003. Characterization of hurricane eyes in RADARSAT-1 images with wavelet analysis. Can J Remote Sens, 29: 491–498

    Article  Google Scholar 

  • Fernandez D E, Carswell J R, Frasier S, et al. 2006. Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds. J Geophy Res, 111: C08013, doi: 10.1029/2005JC003048

    Article  Google Scholar 

  • Fore A, Haddad Z S, Krishnamurti T N, et al. 2010. Improving scatterometry retrievals of wind in hurricanes using non-simultaneous passive microwave estimates of precipitation and a split-step advection/convection model. Pure Appl Geophys, 169: 415–424, doi: 10.1007/s00024-011-0378-z

    Article  Google Scholar 

  • Hersbach H, Stoffelen A, Haan S D. 2007. An improved C-band scatterometer ocean geophysical model function: CMOD5. J Geophys Res, 112: C03006, doi: 10.1029/2006JC003743

    Article  Google Scholar 

  • Holland G J. 1980. An analytical model of the wind and pressure profiles in hurricanes. Mon Weather Rev, 108: 1212–1218

    Article  Google Scholar 

  • Horstmann J, Koch W, Lehner S, et al. 2000. Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans Geosci Remote Sens, 38: 2122–2131

    Article  Google Scholar 

  • Horstmann J, Koch W, Lehner S, et al. 2002. Ocean winds from RADARSAT-1 ScanSAR. Can J Remote Sens, 28: 524–533

    Article  Google Scholar 

  • Horstmann J. Wackerman C, Forster R, et al. 2012. Estimating winds from synthetic aperture radar in typhoon conditions. IEEE Geosci Remote Sens Soc. Munich, German. 3

    Google Scholar 

  • Katsaros K B, Vachon P W, Liu W T, et al. 2002. Microwave remote sensing of tropical cyclones from space. J Oceanogr, 58: 137–157

    Article  Google Scholar 

  • Nie C L, Long D G. 2008. A C-band scatterometer simultaneous wind/rain retrieval method. IEEE Trans Geosci Remote Sens, 46: 3618–3631

    Article  Google Scholar 

  • Nie C L, Long D G. 2007. A C-band wind/rain backscatter model. IEEE Trans Geosci Remote Sens, 45: 621–631

    Article  Google Scholar 

  • Pichel W G, Li X F, Monaldo F, et al. 2007. ENVISAT ASAR applications demonstrations: Alaska SAR demonstration and Gulf of Mexico hurricane studies. In: Proceedings of Envisat Symposium 2007, April 23–27, Montreux, Switzerland

    Google Scholar 

  • Powell M D, Vickery P J, Reinhold T A, et al. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422: 279–283, doi: 10.1038/nature01481

    Article  Google Scholar 

  • Reppucci A, Lehner S, Schulz-Stellenfleth J, et al. 2008. Extreme wind conditions observed by satellite synthetic aperture radar in the North West Pacific. Int J Remote Sens, 29: 21, 6129–6144

    Article  Google Scholar 

  • Reppucci A, Lehner S, Schulz-Stellenfleth J, et al. 2010. Tropical cyclone intensity estimated from wide-swath sar images. IEEE Trans Geosci Remote Sens, 48: 1639, 1649, doi: 10.1109/TGRS.2009.2037143

    Article  Google Scholar 

  • Schloemer R W. 1954. Analysis and synthesis of hurricane wind patterns over Lake Okeechobee. NOAA Hydromet Rep, 31: 49

    Google Scholar 

  • Srivastava S K, Cote S, Le Dantec P, et al. 2007. RADARSAT-1 calibration and image quality evolution to the extended mission. Adv Space Res, 39: 7–12

    Article  Google Scholar 

  • Thompson D R, Elfouhaily T M, Chapron B. 1998. Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. IEEE Proceeding of IGARSS’98, 3: 1671–1673

    Google Scholar 

  • Ulaby F T, Moore R K, Fung A K. 1982. Microwave Remote Sensing: Active and Passive, vol. II. Reading, MA: Artech House

    Google Scholar 

  • Unal C M H, Snooji P, Swart P J F. 1991. The ploarization-dependent relation between radar backscatter from the ocean surface and surface wind vector at frequencies between 1 and 18 GHz. IEEE Trans Geosci Remote Sens, 29: 621–626

    Article  Google Scholar 

  • Valenzuela G R. 1971. Theories for interaction of electromagnetic and oceanic waves—A review. Bound-lay Meteorol, 13: 61–85

    Article  Google Scholar 

  • Wang J Q, Zhou H Y, Wu Y. 2007. The theory of data fusion based on state optimal estimation. Math Appl, 20: 392–399

    Google Scholar 

  • Willoughby H E, Rahn M E. 2004. Parametric representation of the primary hurricane vortex. Part I: Observations and evaluation of the Holland (1980) model. Mon Weather Rev, 132: 3033–3045

    Article  Google Scholar 

  • Xie L, Bao S W, Pietrafesa L J, et al. 2006. A real-time hurricane surface wind forecasting model: Formulation and verification. Mon Weather Rev, 134: 1355–1370

    Article  Google Scholar 

  • Young I R. 1993. An estimate of the Geosat altimeter wind speed algorithm at high wind speeds. J Geophy Res, 98: 20275–20285

    Article  Google Scholar 

  • Zhang Q H, Wei Q, Chen L S. 2010. Impact of landfalling tropical cyclones in mainland China. Sci China Ser D-Earth Sci, 53: 1559–1564

    Article  Google Scholar 

  • Zhou X, Yang X F, Li Z W, et al. 2012. Rain effect on C-band scatterometer wind measurement and its correction. Acta Phys Sin, 61: 149202

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Yang, X., Li, Z. et al. Estimation of tropical cyclone parameters and wind fields from SAR images. Sci. China Earth Sci. 56, 1977–1987 (2013). https://doi.org/10.1007/s11430-013-4633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-013-4633-2

Keywords