[go: up one dir, main page]

Skip to main content

Tropical Cyclone Multiscale Wind Features from Spaceborne Synthetic Aperture Radar

  • Chapter
  • First Online:
Hurricane Monitoring With Spaceborne Synthetic Aperture Radar

Part of the book series: Springer Natural Hazards ((SPRINGERNAT))

Abstract

This study presents multi-scale wind features observed in space-borne synthetic aperture radar (SAR) images in tropical cyclones. Examples of eyewall mesovotices, spiral rainbands, fine-scale-band features, arc clouds, and boundary layer rolls are documented. Although these wind features are strongly tied to tropical cyclone dynamics and intensity based on previous numerical studies, they are not well-observed due to high rainfall and cloudiness that limits remote sensing instrument and severe environment for in-situ observations to survive. Since SAR images view the actual ocean surface responses to the storm-forced winds, they provide clear evidence for the presence of these wind features below clouds and their interaction with the sea surface. Analyses of the characteristics of boundary layer rolls based on SAR images show good agreement with in-situ aircraft observations, suggesting that a SAR image has a great potential to be utilized to study tropical cyclone low-level structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pielke Jr., R.A., and C.W. Landsea. 1998. Normalized hurricane damages in the United States: 1925–1995. Weather and Forecasting 13 (3): 621–631.

    Article  Google Scholar 

  2. Marks Jr., F.D., and R.A. Houze Jr. 1984. Airborne doppler radar observations in Hurricane Debby. Bulletin of the American Meteorological Society 65 (6): 569–582.

    Article  Google Scholar 

  3. Kossin, J.P., and W.H. Schubert. 2004. Mesovortices in Hurricane Isabel. Bulletin of the American Meteorological Society 85 (2): 151–153.

    Article  Google Scholar 

  4. Reasor, P.D., M.D. Eastin, and J.F. Gamache. 2009. Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Monthly Weather Review 137 (2): 603–631.

    Article  Google Scholar 

  5. Braun, S.A., M.T. Montgomery, and Z. Pu. 2006. High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. Journal of the Atmospheric Sciences 63 (1): 19–42.

    Article  Google Scholar 

  6. Nolan, D.S., J.A. Zhang, and D.P. Stern. 2009. Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Monthly Weather Review 137 (11): 3651–3674.

    Article  Google Scholar 

  7. Schubert, W.H., M.T. Montgomery, R.K. Taft, T.A. Guinn, S.R. Fulton, J.P. Kossin, and J.P. Edwards. 1999. Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. Journal of the Atmospheric Sciences 56 (9): 1197–1223.

    Article  Google Scholar 

  8. Kossin, J.P., and W.H. Schubert. 2001. Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. Journal of the Atmospheric Sciences 58 (15): 2196–2209.

    Article  Google Scholar 

  9. Gall, R., J. Tuttle, and P. Hildebrand. 1998. Small-scale spiral bands observed in Hurricanes Andrew, Hugo, and Erin. Monthly Weather Review 126 (7): 1749–1766.

    Article  Google Scholar 

  10. Chen, Y., and M. Yau. 2001. Spiral bands in a simulated hurricane. Part I: Vortex Rossby wave verification. Journal of the Atmospheric Sciences 58 (15): 2128–2145.

    Article  Google Scholar 

  11. Wang, Y. 2002a. Vortex Rossby waves in a numerically simulated tropical cyclone. Part I: Overall structure, potential vorticity, and kinetic energy budgets. Journal of the Atmospheric Sciences 59 (7): 1213–1238.

    Article  Google Scholar 

  12. Wang, Y. 2002b. Vortex Rossby waves in a numerically simulated tropical cyclone. Part II: The role in tropical cyclone structure and intensity changes. Journal of the Atmospheric Sciences 59 (7): 1239–1262.

    Article  Google Scholar 

  13. Katsaros, K.B., P.W. Vachon, W.T. Liu, and P.G. Black. 2002. Microwave remote sensing of tropical cyclones from space. Journal of Oceanography 58 (1): 137–151.

    Article  Google Scholar 

  14. Nolan, D.S. 2005. Instabilities in hurricane-like boundary layers. Dynamics of Atmospheres and Oceans 40 (3): 209–236.

    Article  Google Scholar 

  15. Wurman, J., and J. Winslow. 1998. Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science 280 (5363): 555–557.

    Article  Google Scholar 

  16. Morrison, I., S. Businger, F. Marks, P. Dodge, and J.A. Businger. 2005. An observational case for the prevalence of roll vortices in the hurricane boundary layer. Journal of the Atmospheric Sciences 62 (8): 2662–2673.

    Article  Google Scholar 

  17. Lorsolo, S., J.L. Schroeder, P. Dodge, and F. Marks Jr. 2008. An observational study of hurricane boundary layer small-scale coherent structures. Monthly Weather Review 136 (8): 2871–2893.

    Article  Google Scholar 

  18. R. Ellis, and S. Businger. Helical circulations in the typhoon boundary layer. Journal of Geophysical Research: Atmospheres, 115(D6), 2010.

    Google Scholar 

  19. Foster, R.C. 2005. Why rolls are prevalent in the hurricane boundary layer. Journal of the Atmospheric Sciences 62 (8): 2647–2661.

    Article  Google Scholar 

  20. Fu, L.L., and B. Holt. 1982. Seasat views oceans and sea ice with synthetic aperture radar. JPL Publication 81: 120.

    Google Scholar 

  21. Zhang, J.A., K.B. Katsaros, P.G. Black, S. Lehner, J.R. French, and W.M. Drennan. 2008. Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Boundary-Layer Meteorology 128 (2): 173–189.

    Article  Google Scholar 

  22. Kossin, J.P., B.D. McNoldy, and W.H. Schubert. 2002. Vortical swirls in hurricane eye clouds. Monthly Weather Review 130 (12): 3144–3149.

    Article  Google Scholar 

  23. Montgomery, M.T., V.A. Vladimirov, and P.V. Denissenko. 2002. An experimental study on hurricane mesovortices. Journal of Fluid Mechanics 471: 1–32.

    Article  Google Scholar 

  24. Wakimoto, R.M., and P.G. Black. 1994. Damage survey of Hurricane Andrew and its relationship to the eyewall. Bulletin of the American Meteorological Society 75 (2): 189–200.

    Article  Google Scholar 

  25. Marks, F.D., P.G. Black, M.T. Montgomery, and R.W. Burpee. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Monthly Weather Review 136 (4): 1237–1259.

    Article  Google Scholar 

  26. Montgomery, M.T., M.M. Bell, M.L. Black, and S.D. Aberson. 2006. Hurricane Isabel (2003): New insights into the physics of intense storms, Part I: Mean vortex structure and maximum intensity estimates.

    Google Scholar 

  27. Emanuel, K.A. 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of the Atmospheric Sciences 43 (6): 585–605.

    Article  Google Scholar 

  28. Aberson, S.D., M.T. Montgomery, M. Bell, and M. Black. 2006. Hurricane Isabel (2003): New insights into the physics of intense storms. Part II. Bulletin of the American Meteorological Society 87 (10): 1349.

    Article  Google Scholar 

  29. Zhang, J.A., F.D. Marks, M.T. Montgomery, and S. Lorsolo. 2011. An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Monthly Weather Review 139 (5): 1447–1462.

    Article  Google Scholar 

  30. Li, X., J.A. Zhang, X. Yang, W.G. Pichel, M. DeMaria, D. Long, and Z. Li. 2013. Tropical cyclone morphology from spaceborne synthetic aperture radar. Bulletin of the American Meteorological Society 94 (2): 215–230.

    Article  Google Scholar 

  31. Bliven, L.F., and J.P. Giovanangeli. 1993. An experimental study of microwave scattering from rain-and wind-roughened seas. International Journal of Remote Sensing 14 (5): 855–869.

    Article  Google Scholar 

  32. Lin, I.I., W. Alpers, V. Khoo, H. Lim, T.K. Lim, and D. Kasilingam. 2001. An ERS-1 synthetic aperture radar image of a tropical squall line compared with weather radar data. IEEE Transactions on Geoscience and Remote Sensing 39 (5): 937–945.

    Article  Google Scholar 

  33. Willoughby, H. 1978. A possible mechanism for the formation of hurricane rainbands. Journal of the Atmospheric Sciences 35 (5): 838–848.

    Article  Google Scholar 

  34. Willoughby. H. 1988. The dynamics of the tropical cyclone core. Australian Meteorological Magazine 36 (3).

    Google Scholar 

  35. Barnes, G., E.J. Zipser, D. Jorgensen, and F. Marks Jr. 1983. Mesoscale and convective structure of a hurricane rainband. Journal of the Atmospheric Sciences 40 (9): 2125–2137.

    Article  Google Scholar 

  36. Barnes, G., J. Gamache, M. LeMone, and G. Stossmeister. 1991. A convective cell in a hurricane rainband. Monthly Weather Review 119 (3): 776–794.

    Article  Google Scholar 

  37. Houze Jr., R.A., S.S. Chen, L. Wen-Chau, R.F. Rogers, et al. 2006. The hurricane rainband and intensity change experiment: Observations and modeling of Hurricanes Katrina, Ophelia, and Rita. Bulletin of the American Meteorological Society 87 (11): 1503.

    Article  Google Scholar 

  38. Powell, M.D. 1990a. Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Monthly Weather Review 118 (4): 891–917.

    Article  Google Scholar 

  39. Powell, M.D. 1990b. Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Monthly Weather Review 118 (4): 918–938.

    Article  Google Scholar 

  40. Dunion, J., M. Eastin, D. Nolan, J. Hawkins, and C. Velden. 2010. Arc clouds in the tropical cyclone environment: Implications for TC intensity change. In Preprints, 29th conference on hurricanes and tropical meteorology, Tucson, AZ, American Meteorological Society C, Vol. 6.

    Google Scholar 

  41. Lehner, S., J. Schulz-Stellenfleth, B. Schattler, H. Breit, and J. Horstmann. 2000. Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Transactions on Geoscience and Remote Sensing 38 (5): 2246–2257.

    Article  Google Scholar 

  42. Zhang, B., W. Perrie, J.A. Zhang, E.W. Uhlhorn, and Y. He. 2014. High-resolution hurricane vector winds from C-band dual-polarization SAR observations. Journal of Atmospheric and Oceanic Technology 31 (2): 272–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun A. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, J.A., Li, X. (2017). Tropical Cyclone Multiscale Wind Features from Spaceborne Synthetic Aperture Radar. In: Li, X. (eds) Hurricane Monitoring With Spaceborne Synthetic Aperture Radar. Springer Natural Hazards. Springer, Singapore. https://doi.org/10.1007/978-981-10-2893-9_2

Download citation

Publish with us

Policies and ethics