Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification
<p>An illustration of the receptive field for one dilated convolution with different dilation factors. A 3×3 convolution kernel is used in the example.</p> "> Figure 2
<p>The gridding problem resulting from dilated convolution. (<b>a</b>) True-color image of Pavia University. (<b>b</b>) Classification results with dilated convolution. (<b>c</b>) Enlarged classification results for (<b>b</b>).</p> "> Figure 3
<p>The image and feature pyramid. (<b>a</b>) The image pyramid independently computes features for each image scale. (<b>b</b>) The feature pyramid creates features with strong semantics at all scales.</p> "> Figure 4
<p>An illustration of patch-based classification for hyperspectral image (HSI).</p> "> Figure 5
<p>An illustration of image-based classification for HSI. The model is similar to the segmentation model used in computer vision which takes an input of an arbitrary size and produces an output with a corresponding size. Additionally, the predicted labels should be selected in the output according to the training pixel position during training.</p> "> Figure 6
<p>An illustration of the residual block.</p> "> Figure 7
<p>A schematic of the residual multiple receptive field fusion block (ResMRFF). The basic strategy of the multiple receptive field fusion block is represented as Reduce-Transform-Merge.</p> "> Figure 8
<p>An illustration of the receptive field for the merged features in one MRFF block.</p> "> Figure 9
<p>An illustration of two ResMRFF blocks with different strides, where <span class="html-italic">s</span> refers to the convolution stride and <span class="html-italic">d</span> refers to the dilation factor. (<b>a</b>) refers to the ResMRFF block designed with <span class="html-italic">stride</span>=1, (<b>b</b>) refers to the ResMRFF block designed with <span class="html-italic">stride</span>=2.</p> "> Figure 10
<p>An illustration of the proposed two networks, (<b>a</b>) HyMSCN-A and (<b>b</b>) HyMSCN-B.</p> "> Figure 11
<p>Indian Pines imagery with (<b>a</b>) color composite, (<b>b</b>) reference data, and (<b>c</b>) class names.</p> "> Figure 12
<p>Pavia University data: (<b>a</b>) color composite, (<b>b</b>) reference data, and (<b>c</b>) class names.</p> "> Figure 13
<p>Salinas data: (<b>a</b>) color composite, (<b>b</b>) reference data, and (<b>c</b>) class names.</p> "> Figure 14
<p>Classification maps for Indian Pines data with 30 samples per class: (<b>a</b>) training samples, (<b>b</b>) ground truth, and classification maps produced by different methods, including (<b>c</b>) SVM (67.46%), (<b>d</b>) SSRN (78.66%), (<b>e</b>) 3DCNN (86.16%), (<b>f</b>) DCCNN (89.73%), (<b>g</b>) UNet (89.50%), (<b>h</b>) ESPNet (91.80%), (<b>i</b>) HyMSCN-A-128 (92.68%), and (<b>j</b>) HyMSCN-B-128 (93.73%).</p> "> Figure 15
<p>Classification map for Pavia University data with 30 samples per class: (<b>a</b>) training samples, (<b>b</b>) ground truth, and classification maps produced by different methods, including (<b>c</b>) SVM (81.40%), (<b>d</b>) SSRN (81.51%), (<b>e</b>) 3DCNN (72.79%), (<b>f</b>) DCCNN (82.19%), (<b>g</b>) UNet (90.64%), (<b>h</b>) ESPNet (91.71%), (<b>i</b>) HyMSCN-A-128 (92.86%), and (<b>j</b>) HyMSCN-B-128 (96.45%).</p> "> Figure 16
<p>Classification maps for Salina data with 30 samples per class: (<b>a</b>) training samples, (<b>b</b>) ground truth, and classification maps produced by different methods, including (<b>c</b>) SVM (88.48%), (<b>d</b>) SSRN (68.55%), (<b>e</b>) 3DCNN (80.99%), (<b>f</b>) DCCNN (82.42%), (<b>g</b>) UNet (84.38%), (<b>h</b>) ESPNet (87.85%), (<b>i</b>) HyMSCN-A-128 (97.05%), and (<b>j</b>) HyMSCN-B-128 (97.31%).</p> "> Figure 17
<p>An evaluation of the overall accuracy for multiple receptive field fusion (MRFF): (<b>a</b>) Indian Pines, (<b>b</b>) Pavia University, and (<b>c</b>) Salinas.</p> "> Figure 18
<p>Test accuracy for the different number of dilation factors in MRFF block. (<b>a</b>) Indian Pines data, (<b>b</b>) Pavia University data, (<b>c</b>) Salina data</p> "> Figure 19
<p>The overall accuracy for different networks (A-64, A-128, B-64, and B-128 refer to HyMSCN-A-64, HyMSCN-A-128, HyMSCN-B-64, and HyMSCN-B-128, respectively). (<b>a</b>) Indian Pines, (<b>b</b>) Pavia University, and (<b>c</b>) Salinas.</p> ">
Abstract
:1. Introduction
- (1)
- A novel image-based classification framework is proposed for hyperspectral image classification. The proposed framework is more universal, efficient, and straightforward for training and testing processes compared to the traditional patch-based framework.
- (2)
- Local neighbor spatial information is exploited using a residual multiple receptive field fusion block (ReMRFF). This block integrates residual learning and multiple dilated convolutions featured as lightweight and efficient feature extraction.
- (3)
- Multiscale spatial-spectral features are exploited using the proposed HyMSCN method. The method is based on the feature pyramid structure and considers both multiple receptive field fused features and multiscale spatial features at different levels. This approach allows for comprehensive feature representation.
2. Related Works
2.1. Dilated Convolution
2.2. Feature Pyramid
3. Proposed Methods
3.1. Patch-Based Classification and Image-Based Classification for HSI
3.2. Residual Multiple Receptive Field Fusion Block
3.3. Multiscale Spatial-Spectral Convolutional Network
4. Experiment Results
4.1. Experiment Setup
4.2. Experiments using the Indian Pines Dataset
4.3. Experiments Using the Pavia University Dataset
4.4. Experiments Using the Salina Dataset
5. Discussion
5.1. Comparing Time Consumed by Patch-Based Classification and Image-Based Classification
5.2. Evaluating the Multiple Receptive Field Fusion Block
5.3. Evaluating the Feature Pyramid
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HSI | Hyperspectral image |
HSIC | Hyperspectral image classification |
HyMSCN | Multiscale spatial-spectral convolutional network for hyperspectral image |
MRFF | Multiple receptive field feature block |
ResMRFF | Residual multiple receptive field fusion block |
CNN | Convolution neural network |
RNN | Recurrent neural network |
GAN | Generative adversarial networks |
ASPP | Atrous spatial pyramid pooling |
HDC | Hybrid dilated convolution |
GSD | Ground sample distance |
CPU | Central processing unit |
GPU | Graphics processing unit |
SVM | Support vector machine |
OA | Overall accuracy |
AA | Average accuracy |
References
- Pelta, R.; Ben-Dor, E. Assessing the detection limit of petroleum hydrocarbon in soils using hyperspectral remote-sensing. Remote Sens. Environ. 2019, 224, 145–153. [Google Scholar] [CrossRef]
- Berger, K.; Atzberger, C.; Danner, M.; D’Urso, G.; Mauser, W.; Vuolo, F.; Hank, T. Evaluation of the PROSAIL Model Capabilities for Future Hyperspectral Model Environments: A Review Study. Remote Sens. 2018, 10, 85. [Google Scholar] [CrossRef]
- Xu, Y.; Wu, Z.; Chanussot, J.; Wei, Z. Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution. IEEE Trans. Image Process. 2019, 28, 3034–3047. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Shi, L.; Li, J.; Wang, Q.; Sun, L.; Wei, Z.; Plaza, J.; Plaza, A. GPU Parallel Implementation of Spatially Adaptive Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1131–1143. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent Advances on Spectral-Spatial Hyperspectral Image Classification: An Overview and New Guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Yu, H.; Gao, L.; Liao, W.; Zhang, B.; Pižurica, A.; Philips, W. Multiscale Superpixel-Level Subspace-Based Support Vector Machines for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2142–2146. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Fu, W.; Fang, L. Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification. Remote Sens. 2017, 9, 139. [Google Scholar] [CrossRef]
- Dundar, T.; Ince, T. Sparse Representation-Based Hyperspectral Image Classification Using Multiscale Superpixels and Guided Filter. IEEE Geosci. Remote Sens. Lett. 2019, 16, 246–250. [Google Scholar] [CrossRef]
- Chen, J.; Xia, J.; Du, P.; Chanussot, J. Combining Rotation Forest and Multiscale Segmentation for the Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4060–4072. [Google Scholar] [CrossRef] [Green Version]
- Adelson, E.H.; Anderson, C.H.; Bergen, J.R.; Burt, P.J.; Ogden, J.M. Pyramid methods in image processing. RCA Eng. 1984, 29, 33–41. [Google Scholar]
- Li, S.; Hao, Q.; Kang, X.; Benediktsson, J.A. Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3312–3324. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7738–7749. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Z.; Li, J.; Xiao, L.; Plaza, A.; Benediktsson, J.A. Spatial–Spectral Hyperspectral Image Classification Using Random Multiscale Representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4129–4141. [Google Scholar] [CrossRef]
- Yang, J.; Qian, J. Hyperspectral Image Classification via Multiscale Joint Collaborative Representation with Locally Adaptive Dictionary. IEEE Geosci. Remote Sens. Lett. 2018, 15, 112–116. [Google Scholar] [CrossRef]
- He, N.; Paoletti, M.E.; Haut, J.M.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Feature Extraction with Multiscale Covariance Maps for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 755–769. [Google Scholar] [CrossRef]
- Tu, B.; Li, N.; Fang, L.; He, D.; Ghamisi, P. Hyperspectral Image Classification with Multi-Scale Feature Extraction. Remote Sens. 2019, 11, 534. [Google Scholar] [CrossRef]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, J.; Zhang, L.; Tian, C.; Zhang, Y. Deep Cube-Pair Network for Hyperspectral Imagery Classification. Remote Sens. 2018, 10, 783. [Google Scholar] [CrossRef]
- Du, B.; Xiong, W.; Wu, J.; Zhang, L.; Zhang, L.; Tao, D. Stacked Convolutional Denoising Auto-Encoders for Feature Representation. IEEE Trans. Cybern. 2017, 47, 1017–1027. [Google Scholar] [CrossRef] [PubMed]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef]
- Kemker, R.; Kanan, C. Self-Taught Feature Learning for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2693–2705. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going Deeper with Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- He, Z.; Liu, H.; Wang, Y.; Hu, J. Generative adversarial networks-based semi-supervised learning for hyperspectral image classification. Remote Sens. 2017, 9. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. MugNet: Deep learning for hyperspectral image classification using limited samples. ISPRS J. Photogramm. Remote Sens. 2018, 145, 108–119. [Google Scholar] [CrossRef]
- Zhan, Y.; Hu, D.; Wang, Y.; Yu, X. Semisupervised Hyperspectral Image Classification Based on Generative Adversarial Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 212–216. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.M.; Hussain, R. Graph-based spatial–spectral feature learning for hyperspectral image classification. IET Image Process. 2017, 11, 1310–1316. [Google Scholar] [CrossRef]
- Jiao, L.; Liang, M.; Chen, H.; Yang, S.; Liu, H.; Cao, X. Deep Fully Convolutional Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5585–5599. [Google Scholar] [CrossRef]
- Liang, M.; Jiao, L.; Yang, S.; Liu, F.; Hou, B.; Chen, H. Deep Multiscale Spectral-Spatial Feature Fusion for Hyperspectral Images Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2911–2924. [Google Scholar] [CrossRef]
- Gong, Z.; Zhong, P.; Yu, Y.; Hu, W.; Li, S. A CNN With Multiscale Convolution and Diversified Metric for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3599–3618. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, P.; Benediktsson, J.A. Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 1–19. [Google Scholar] [CrossRef]
- Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.-W. Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism. Remote Sens. 2019, 11, 159. [Google Scholar] [CrossRef]
- Wang, L.; Peng, J.; Sun, W. Spatial-Spectral Squeeze-and-Excitation Residual Network for Hyperspectral Image Classification. Remote Sens. 2019, 11, 884. [Google Scholar] [CrossRef]
- Mei, X.; Pan, E.; Ma, Y.; Dai, X.; Huang, J.; Fan, F.; Du, Q.; Zheng, H.; Ma, J. Spectral-Spatial Attention Networks for Hyperspectral Image Classification. Remote Sens. 2019, 11, 963. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Jiang, Y.; Wang, P.; Shen, Q.; Shen, C. Hyperspectral Classification Based on Lightweight 3-D-CNN With Transfer Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5813–5828. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Ji, J.; Geng, Y.; Zhang, Z.; Li, X.; Du, Q. Unsupervised Spatial-Spectral Feature Learning by 3D Convolutional Autoencoder for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2019. [Google Scholar] [CrossRef]
- Li, Z.; Huang, L.; He, J. A Multiscale Deep Middle-level Feature Fusion Network for Hyperspectral Classification. Remote Sens. 2019, 11, 695. [Google Scholar] [CrossRef]
- Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-Assisted CapsNet for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 1–14. [Google Scholar] [CrossRef]
- Pan, B.; Shi, Z.; Xu, X. R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1975–1986. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, Y.; Ghamisi, P.; Jia, X.; Benediktsson, J.A. Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification. Remote Sens. 2019, 11, 223. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Gu, Y.; He, X.; Ghamisi, P.; Jia, X. Deep Learning Ensemble for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 1882–1897. [Google Scholar] [CrossRef]
- Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Xue, Z.; Du, P. Semisupervised Stacked Autoencoder With Cotraining for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3813–3826. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the International Conference on Learning Representations (ICLR), San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. arXiv 2016, arXiv:1606.00915. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, P.; Yuan, Y.; Liu, D.; Huang, Z.; Hou, X.; Cottrell, G. Understanding Convolution for Semantic Segmentation. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1451–1460. [Google Scholar]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar]
- Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Computer Vision—ECCV 2016; Springer: Berlin, Germany, 2016; pp. 630–645. [Google Scholar] [Green Version]
- Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 552–568. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. arXiv 2016, arXiv:1602.07261. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: Amethod for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic Differentiation in PyTorch, In Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017), 4–9 December 2017, Long Beach, CA, USA.
- Ben Hamida, A.; Benoit, A.; Lambert, P.; Ben Amar, C. 3-D Deep Learning Approach for Remote Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4420–4434. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Ahmad, M.; Khan, A.; Khan, A.M.; Mazzara, M.; Distefano, S.; Sohaib, A.; Nibouche, O. Spatial Prior Fuzziness Pool-Based Interactive Classification of Hyperspectral Images. Remote Sens. 2019, 11, 1136. [Google Scholar] [CrossRef]
- Ahmad, M.; Protasov, S.; Khan, A.M.; Hussain, R.; Khattak, A.M.; Khan, W.A. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers. PLoS ONE 2018, 13, e0188996. [Google Scholar] [CrossRef]
- Pasolli, E.; Melgani, F.; Tuia, D.; Pacifici, F.; Emery, W.J. SVM Active Learning Approach for Image Classification Using Spatial Information. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2217–2233. [Google Scholar] [CrossRef]
Layer | HyMSCN-A | HyMSCN-B | ||||||
---|---|---|---|---|---|---|---|---|
Output1 | Stride | A-64 Feature | A-128 Feature | Output1 | Stride | B-64 Feature | B-128 Feature | |
CNR23 | 145 × 145 | 1 | 64 | 64 | 14545 | 1 | 64 | 64 |
ResMRFF | 145145 | 1 | 64 | 64 | 7373 | 2 | 64 | 64 |
ResMRFF | 145145 | 1 | 64 | 64 | 7373 | 1 | 64 | 64 |
ResMRFF | 145145 | 1 | 64 | 64 | 3737 | 2 | 64 | 64 |
ResMRFF | 145145 | 1 | 64 | 64 | 3737 | 1 | 64 | 64 |
ResMRFF | 145145 | 1 | 64 | 128 | 1919 | 2 | 64 | 128 |
ResMRFF | 145145 | 1 | 64 | 128 | 1919 | 1 | 64 | 128 |
ResMRFF | 145145 | 1 | 64 | 128 | 1010 | 2 | 64 | 128 |
ResMRFF | 145145 | 1 | 64 | 128 | 1010 | 1 | 64 | 128 |
CNR | - | - | - | - | 1010 | 1 | 64 | 64 |
CNR | - | - | - | - | 1919 | 1 | 64 | 64 |
CNR | - | - | - | - | 3737 | 1 | 64 | 64 |
CNR | - | - | - | - | 7373 | 1 | 64 | 64 |
CNR | - | - | - | - | 145145 | 1 | 64 | 64 |
Class | Train (Test) | SVM | SSRN | 3DCNN | DCCNN | UNet | ESPNet | HyMSC-A1 | HyMSCN-B1 |
---|---|---|---|---|---|---|---|---|---|
Alfalfa | 30(46) | 40.17% | 75.41% | 92.00% | 83.64% | 95.83% | 97.87% | 88.46% | 92.00% |
Corn-no till | 30(1428) | 60.45% | 68.50% | 82.28% | 90.08% | 83.68% | 95.65% | 91.10% | 90.85% |
Corn-min till | 30(830) | 54.72% | 75.95% | 72.50% | 77.05% | 88.11% | 86.10% | 86.37% | 84.57% |
Corn | 30(237) | 31.33% | 67.16% | 77.63% | 85.25% | 86.05% | 89.39% | 86.76% | 94.42% |
Grass-pasture | 30(483) | 78.95% | 77.45% | 91.07% | 91.52% | 94.22% | 99.52% | 94.29% | 95.01% |
Grass-trees | 30(730) | 90.45% | 81.98% | 97.10% | 93.02% | 96.92% | 98.04% | 94.31% | 96.93% |
Grass-pasture-m | 14(28) | 76.67% | 96.55% | 37.84% | 30.43% | 40.00% | 47.46% | 29.47% | 62.22% |
Hay-windrowed | 30(478) | 99.53% | 92.02% | 97.54% | 97.15% | 100.00% | 95.98% | 99.38% | 99.17% |
Oats | 10(20) | 45.45% | 48.78% | 80.00% | 64.52% | 80.00% | 90.91% | 71.43% | 86.96% |
Soybean-no till | 30(972) | 51.41% | 68.28% | 73.24% | 79.98% | 73.24% | 80.21% | 81.48% | 88.14% |
Soybean-min till | 30(2455) | 78.39% | 88.54% | 90.08% | 93.58% | 93.88% | 88.24% | 97.37% | 97.06% |
Soybean-clean | 30(593) | 62.85% | 64.63% | 94.89% | 91.48% | 88.80% | 100.00% | 97.44% | 86.82% |
Wheat | 30(205) | 92.61% | 89.04% | 97.10% | 93.58% | 90.71% | 99.03% | 99.51% | 99.03% |
Woods | 30(1265) | 92.20% | 94.34% | 95.57% | 97.72% | 99.39% | 98.96% | 98.13% | 99.68% |
Buildings/Grass | 30(386) | 41.78% | 75.08% | 76.56% | 98.21% | 88.40% | 93.90% | 98.44% | 97.72% |
Stone-Steel-Towers | 30(93) | 98.89% | 68.38% | 92.00% | 76.03% | 93.94% | 89.42% | 96.84% | 97.89% |
Overall accuracy | 67.46% | 78.66% | 86.16% | 89.73% | 89.50% | 91.80% | 92.68% | 93.73% | |
Average accuracy | 68.49% | 77.01% | 84.21% | 83.95% | 87.07% | 90.67% | 88.17% | 91.78% | |
k statistic | 0.6362 | 0.7596 | 0.8429 | 0.8833 | 0.881 | 0.9065 | 0.9171 | 0.9287 |
Sample | Classification Method | |||||||
---|---|---|---|---|---|---|---|---|
(Per Class) | SVM | SSRN | 3DCNN | DCCNN | UNet | ESPNet | HyMSCN-A-128 | HyMSCN-B-128 |
160(10) | 58.42% | 68.79% | 67.58% | 71.84% | 74.03% | 78.95% | 76.22% | 82.29% |
320(20) | 63.13% | 73.57% | 79.32% | 86.76% | 85.89% | 86.82% | 87.03% | 87.07% |
444(30) | 67.46% | 78.66% | 86.16% | 89.73% | 89.50% | 91.80% | 92.68% | 93.73% |
584(40) | 71.95% | 85.35% | 88.79% | 91.53% | 91.69% | 94.40% | 94.13% | 94.59% |
697(50) | 72.54% | 89.26% | 90.49% | 94.06% | 94.83% | 95.78% | 95.26% | 96.37% |
Class | Train (Test) | SVM | SSRN | 3DCNN | DCCNN | UNet | ESPNet | HyMSCN-A1 | HyMSCN-B1 |
---|---|---|---|---|---|---|---|---|---|
Asphalt | 30(6631) | 93.78% | 89.53% | 98.77% | 98.45% | 94.25% | 98.64% | 99.44% | 99.55% |
Meadows | 30(18649) | 91.07% | 98.54% | 99.66% | 99.36% | 99.85% | 99.51% | 99.99% | 99.67% |
Gravel | 30(2099) | 71.87% | 56.11% | 39.76% | 57.16% | 56.08% | 68.90% | 89.53% | 95.41% |
Trees | 30(3064) | 81.36% | 87.17% | 76.80% | 75.25% | 95.50% | 93.22% | 88.55% | 95.86% |
Painted metal sheets | 30(1345) | 97.38% | 71.01% | 97.39% | 92.00% | 97.96% | 97.25% | 98.75% | 99.78% |
Bare Soil | 30(5029) | 57.18% | 70.53% | 44.09% | 55.26% | 78.26% | 79.04% | 70.29% | 92.82% |
Bitumen | 30(1330) | 47.34% | 59.75% | 73.55% | 82.47% | 73.20% | 71.70% | 95.82% | 99.70% |
Self-Blocking Bricks | 30(3682) | 81.47% | 71.76% | 78.24% | 87.67% | 97.95% | 86.22% | 95.17% | 81.71% |
Shadows | 30(947) | 99.89% | 77.71% | 97.83% | 98.85% | 93.20% | 96.53% | 100.00% | 99.68% |
Overall accuracy (OA) | 81.40% | 81.51% | 72.79% | 82.19% | 90.64% | 91.71% | 92.86% | 96.45% | |
Average accuracy (AA) | 80.15% | 75.79% | 78.45% | 82.94% | 87.36% | 87.89% | 93.06% | 96.02% | |
k statistic | 0.7590 | 0.7716 | 0.6722 | 0.7792 | 0.8798 | 0.892 | 0.9078 | 0.9535 |
Sample | Classification Method | |||||||
---|---|---|---|---|---|---|---|---|
(Per Class) | SVM | SSRN | 3DCNN | DCCNN | UNet | ESPNet | HyMSCN-A-128 | HyMSCN-B-128 |
90(10) | 72.78% | 75.00% | 67.32% | 69.39% | 79.03% | 81.28% | 82.33% | 84.65% |
180(20) | 78.33% | 79.81% | 68.91% | 74.62% | 80.75% | 87.11% | 88.90% | 95.80% |
270(30) | 81.40% | 81.51% | 72.79% | 82.19% | 90.64% | 91.71% | 92.86% | 96.45% |
360(40) | 83.28% | 85.87% | 80.07% | 83.45% | 91.52% | 95.14% | 96.54% | 98.23% |
450(50) | 85.64% | 91.73% | 86.57% | 90.44% | 96.36% | 96.77% | 98.46% | 99.50% |
Class | Train (Test) | SVM | SSRN | 3DCNN | DCCNN | UNet | ESPNet | HyMSCN-A-128 | HyMSCN-B-128 |
---|---|---|---|---|---|---|---|---|---|
Weeds_1 | 30(2009) | 100.0% | 96.08% | 81.75% | 86.04% | 100.00% | 99.95% | 100.00% | 100.00% |
Weeds_2 | 30(3726) | 98.31% | 84.44% | 63.46% | 66.73% | 99.76% | 100.00% | 100.00% | 99.97% |
Fallow | 30(1976) | 96.84% | 87.23% | 69.81% | 78.31% | 88.68% | 98.91% | 99.31% | 99.90% |
Fallow_P | 30(1394) | 94.62% | 93.80% | 96.08% | 96.66% | 48.96% | 61.11% | 90.23% | 96.07% |
Fallow_S | 30(2678) | 98.82% | 83.29% | 85.24% | 93.72% | 77.14% | 72.03% | 99.69% | 99.47% |
Stubble | 30(3959) | 99.92% | 84.01% | 90.32% | 94.94% | 99.22% | 99.42% | 100.00% | 99.92% |
Celery | 30(3579) | 97.86% | 90.24% | 95.48% | 84.94% | 96.94% | 99.62% | 99.69% | 99.11% |
Grapes | 30(11271) | 77.29% | 74.69% | 85.05% | 88.18% | 87.45% | 87.53% | 99.29% | 98.64% |
Soil | 30(6203) | 98.79% | 96.89% | 81.87% | 95.62% | 94.74% | 99.73% | 99.92% | 99.53% |
Corn | 30(3278) | 85.24% | 51.88% | 76.55% | 78.78% | 88.78% | 94.01% | 92.74% | 88.40% |
Lettuce_4wk | 30(1068) | 79.75% | 28.17% | 62.67% | 63.40% | 93.97% | 91.98% | 87.41% | 86.40% |
Lettuce_5wk | 30(1927) | 95.71% | 95.09% | 91.82% | 78.29% | 66.33% | 69.13% | 99.64% | 99.84% |
Lettuce_6wk | 30(916) | 95.75% | 44.04% | 59.17% | 49.56% | 95.31% | 81.21% | 99.46% | 93.27% |
Lettuce_7wk | 30(1070) | 83.80% | 19.30% | 77.90% | 77.25% | 98.97% | 89.70% | 98.70% | 97.03% |
Vinyard_u | 30(7268) | 68.96% | 62.33% | 77.70% | 76.61% | 63.16% | 75.37% | 88.83% | 93.62% |
Vinyard_vertical | 30(1807) | 99.35% | 64.61% | 97.36% | 93.81% | 100.00% | 92.32% | 99.94% | 99.94% |
Overall accuracy | 88.48% | 68.55% | 80.99% | 82.42% | 84.38% | 87.85% | 97.05% | 97.31% | |
Average accuracy | 91.94% | 72.26% | 80.76% | 81.43% | 87.46% | 88.25% | 97.18% | 97.31% | |
k statistic | 0.8718 | 0.6566 | 0.7892 | 0.8065 | 0.8261 | 0.8649 | 0.9672 | 0.9701 |
Sample | Classification Method | |||||||
---|---|---|---|---|---|---|---|---|
(Per Class) | SVM | SSRN | 3DCNN | DCCNN | UNet | ESPNet | HyMSCN-A-128 | HyMSCN-B-128 |
160(10) | 83.14% | 62.64% | 76.34% | 78.99% | 74.58% | 76.01% | 94.71% | 94.49% |
320(20) | 87.11% | 66.16% | 79.05% | 80.12% | 83.63% | 85.15% | 94.82% | 96.51% |
480(30) | 88.48% | 68.55% | 80.99% | 82.42% | 84.38% | 87.85% | 97.05% | 97.31% |
640(40) | 90.71% | 77.80% | 86.50% | 87.37% | 91.84% | 93.03% | 98.15% | 99.38% |
800(50) | 91.23% | 86.05% | 87.41% | 89.96% | 92.79% | 95.48% | 98.38% | 99.45% |
Indian Pines | Pavia University | Salinas | |||||||
---|---|---|---|---|---|---|---|---|---|
SSRN | SSRN | HyMSCN | SSRN | SSRN | HyMSCN | SSRN | SSRN | HyMSCN | |
Patch Size | 7 | 9 | - | 7 | 9 | - | 7 | 9 | - |
Train Maximum Batch Size | 510 | 420 | 1 | 450 | 450 | 1 | 620 | 460 | 1 |
Train Time of One Epoch (s) | 2.76 | 3.13 | 0.34 | 1.35 | 1.36 | 0.62 | 3.12 | 3.28 | 0.56 |
Test Maximum Batch Size | 680 | 530 | 1 | 2150 | 1580 | 1 | 2150 | 1620 | 1 |
Test Time of One Epoch (s) | 25.65 | 35.40 | 0.11 | 109.43 | 339.67 | 0.42 | 64.18 | 115.69 | 0.41 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Zheng, K.; Gao, L.; Zhang, B.; Yang, D.; Ren, J. Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification. Remote Sens. 2019, 11, 2220. https://doi.org/10.3390/rs11192220
Cui X, Zheng K, Gao L, Zhang B, Yang D, Ren J. Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification. Remote Sensing. 2019; 11(19):2220. https://doi.org/10.3390/rs11192220
Chicago/Turabian StyleCui, Ximin, Ke Zheng, Lianru Gao, Bing Zhang, Dong Yang, and Jinchang Ren. 2019. "Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification" Remote Sensing 11, no. 19: 2220. https://doi.org/10.3390/rs11192220
APA StyleCui, X., Zheng, K., Gao, L., Zhang, B., Yang, D., & Ren, J. (2019). Multiscale Spatial-Spectral Convolutional Network with Image-Based Framework for Hyperspectral Imagery Classification. Remote Sensing, 11(19), 2220. https://doi.org/10.3390/rs11192220