Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range
"> Figure 1
<p>Traceability scheme of the LCE-2 for validation of indoor measurement uncertainties as specific to the present study.</p> "> Figure 2
<p>Instruments participating in the LCE-2 intercomparison.</p> "> Figure 3
<p>Indoor irradiance comparison. 1—FEL lamp; 2—baffles; 3—main optical axis; 4—alignment jig; 5—alignment laser; 6—distance probe; 7—radiometer on the support; 8—optical table; 9—optical rail.</p> "> Figure 4
<p>Indoor radiance comparison. 1—quartz tungsten halogen lamp; 2—variable slit; 3—optical fiber; 4—integrating sphere; 5—output port; 6—FOV of the radiometer; 7—radiometer on the support; 8—optical table; 9—main optical axis.</p> "> Figure 5
<p>Low intensity radiance; agreement just after receiving data from participants (left), and after reviewing data by pilot, corrections submitted by participants and/or unified data handling by pilot (right). Blue dashed lines—expanded uncertainty covering 95% of all data points on the right graph. Solid lines—RAMSES sensors; dashed lines—HyperOCR sensors; double line—SR-3500; dotted lines —WISP-3 sensors.</p> "> Figure 6
<p>High intensity radiance; agreement just after receiving data from participants (left), and after reviewing data by pilot, corrections submitted by participants and/or unified data handling by pilot (right).</p> "> Figure 7
<p>Irradiance sensors; agreement just after receiving data from participants (left), and after reviewing data by pilot, corrections submitted by participants and/or unified data handling by pilot (right).</p> "> Figure 8
<p>Irradiance sensors; agreement with reference values of the filter radiometer. Blue dashed lines—expanded uncertainty covering 95% of all data points. Uncertainty of radiometric calibration is included.</p> "> Figure 9
<p>Relative variability of calibration coefficients of radiance (<span class="html-italic">L</span>) and irradiance (<span class="html-italic">E</span>) sensors with two different lamps used for calibration before LCE-2 and a year later before FICE-AAOT.</p> "> Figure 10
<p>Relative variability of calibration coefficients of radiance (<span class="html-italic">L</span>) and irradiance (<span class="html-italic">E</span>) sensors: former—difference of previous known calibrations and results of LCE-2 calibration; 1 yr after— changes during one year after LCE-2 calibrations, some extra-large changes excluded.</p> "> Figure 11
<p>Relative change of responsivity of the SAM 8329. Year of the radiometric calibration is shown with color: 2010 black, 2016 red, 2017, blue, 2018 green.</p> "> Figure 12
<p>Relative variability of calibration coefficients due to temperature deviations from the reference temperature 21.5 °C.</p> "> Figure 13
<p>Maximum relative nonlinearity effect determined for 14 RAMSES sensors (both radiance and irradiance) from calibration spectra with FEL lamps 399 and 401.</p> "> Figure 14
<p>Non-linearity errors of different radiance sensors scaled to full-range value. Dashed lines are fitted model with uncertainty.</p> "> Figure 15
<p>Stray light effects for indoor radiance measurements. Two RAMSES radiance sensors at high and low sphere radiance.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants of the LCE-2
2.2. Calibration of Irradiance Sensors
2.3. Calibration of Radiance Sensors
2.4. Indoor Experiment of the LCE-2
2.4.1. Irradiance Comparison Setup of the LCE-2
2.4.2. Radiance Comparison Setup
3. Results
3.1. Data Handling
- separation of the raw datafiles based on the scene (e.g. low/high radiance, distance), integration time, shutter measurements;
- pairing the raw data with corresponding shutter measurement;
- dark signal subtraction;
- linearity correction whenever applicable;
- division by radiometric responsivity;
- recalculation for the OLCI spectral bands;
- averaging;
- evaluation of the uncertainty.
3.2. Device-Specific Issues
3.3. Calculation of Sentinel-3/OLCI Band Values
3.4. Consensus and Reference Values Used for the Analysis
3.5. Results of Indoor Experiment
4. Measurement Uncertainty
4.1. Effects Causing Variability of the Results
4.1.1. State of Radiometric Calibration
4.1.2. Abrupt Changes of Responsivity
4.1.3. Temperature Effects
4.1.4. Nonlinearity Due to the Integration Time
4.1.5. Spectral Stray Light Effects
4.2. Uncertainty Budgets for Indoor Comparisons
4.3. Uncertainty Components in Table 3 and Table 4
4.3.1. Calibration Certificate
4.3.2. Interpolation
4.3.3. Temporal Instability of Radiometer
4.3.4. Back-Reflection
4.3.5. Polarization
4.3.6. Alignment
4.3.7. Nonlinearity
4.3.8. Spectral Stray Light
4.3.9. Temperature
4.3.10. Temporal Instability of Radiation Source
4.3.11. Stray Light in Laboratory
4.3.12. Type A Uncertainty of Repeated Measurements
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zibordi, G.; Ruddick, K.; Ansko, I.; Gerald, M.; Kratzer, S.; Icely, J.; Reinart, A. In situ determination of the remote sensing reflectance: An inter-comparison. Ocean Sci. 2012, 8, 567–586. [Google Scholar] [CrossRef]
- Antoine, D.; Schroeder, T.; Slivkoff, M.; Klonowski, W.; Doblin, M.; Lovell, J.; Boadle, D.; Baker, B.; Botha, E.; Robinson, C.; et al. IMOS Radiometry Task Team. 2017. Available online: http://imos.org.au/fileadmin/user_upload/shared/IMOS%20General/documents/Task_Teams/IMOS-RTT-final-report-submission-30June2017.pdf (accessed on 7 May 2019).
- Vabson, V.; Kuusk, J.; Ansko, I.; Vendt, R.; Alikas, K.; Ruddick, K.; Ansper, A.; Bresciani, M.; Burmester, H.; Costa, M.; D’Alimonte, D.; et al. Field intercomparison of radiometers used for satellite validation in the 400–900 nm range. Remote Sens. 2019, in press. [Google Scholar]
- Kuusk, J.; Ansko, I.; Vabson, V.; Ligi, M.; Vendt, R. Protocols and Procedures to Verify the Performance of Fiducial Reference Measurement (FRM) Field Ocean Colour Radiometers (OCR) Used for Satellite Validation; Tartu Observatory: Tõravere, Estonia, 2017; Available online: https://frm4soc.org/wp-content/uploads/filebase/FRM4SOC-D130_TR5_v1.2_TO_signed.pdf (accessed on 7 May 2019).
- International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), JCGM 200:2008, 3rd Edition, 2008 Version with Minor Corrections, JCGM, 2012. Available online: https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf (accessed on 7 May 2019).
- Johnson, B.C.; Yoon, H.; Rice, J.P.; Parr, A.C. Chapter 1.2—Principles of Optical Radiometry and Measurement Uncertainty. In Experimental Methods in the Physical Sciences; Zibordi, G., Donlon, C.J., Parr, A.C., Eds.; Optical Radiometry for Ocean Climate Measurements; Academic Press: Cambridge, MA, USA, 2014; Volume 47, pp. 13–67. [Google Scholar]
- Ocean Optics Protocols for Satellite Ocean Color Sensor Validation: Instrument Specifications, Characterization, and Calibration. 2003. Available online: https://www.oceanbestpractices.net/bitstream/handle/11329/479/protocols_ver4_volii.pdf?sequence=1&isAllowed=y (accessed on 7 May 2019).
- Salim, S.G.R.; Fox, N.P.; Hartree, W.S.; Woolliams, E.R.; Sun, T.; Grattan, K.T.V. Stray light correction for diode-array-based spectrometers using a monochromator. Appl. Opt. 2011, 50, 5130–5138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hooker, S.B.; Firestone, E.R.; McLean, S.; Sherman, J.; Small, M.; Lazin, G.; Zibordi, G.; Brown, J.W.; McClain, C.R. The Seventh SeaWiFS Intercalibration Round-Robin Experiment (SIRREX-7); TM-2003-206892; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2002; Volume 17.
- Salim, S.G.R.; Woolliams, E.R.; Fox, N.P. Calibration of a Photodiode Array Spectrometer Against the Copper Point. Int. J. Thermophys. 2014, 35, 504–515. [Google Scholar] [CrossRef]
- Ylianttila, L.; Visuri, R.; Huurto, L.; Jokela, K. Evaluation of a Single-monochromator Diode Array Spectroradiometer for Sunbed UV-radiation Measurements. Photochem. Photobiol. 2005, 81, 333–341. [Google Scholar] [CrossRef]
- Seckmeyer, G. Instruments to Measure Solar Ultraviolet Radiation Part 4: Array Spectroradiometers; WMO/TD No. 1538; World Meteorological Organization: Geneva, Switzerland, 2010; 44p. [Google Scholar]
- Zibordi, G.; Talone, M.; Jankowski, L. Response to Temperature of a Class of In Situ Hyperspectral Radiometers. J. Atmos. Ocean. Technol. 2017, 34, 1795–1805. [Google Scholar] [CrossRef]
- Kuusk, J. Dark Signal Temperature Dependence Correction Method for Miniature Spectrometer Modules. J. Sensors 2011, 1–9. [Google Scholar] [CrossRef]
- Salim, S.G.R.; Fox, N.P.; Theocharous, E.; Sun, T.; Grattan, K.T.V. Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field. Appl. Opt. 2011, 50, 866–875. [Google Scholar] [CrossRef]
- Price, L.L.A.; Hooke, R.J.; Khazova, M. Effects of ambient temperature on the performance of CCD array spectroradiometers and practical implications for field measurements. J. Radiol. Prot. 2014, 34, 655. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dai, C.; Wu, Z.; Wang, Y. Temperature and nonlinearity correction methods for commercial CCD array spectrometers used in field. In Proceedings of the AOPC 2017: Space Optics and Earth Imaging and Space Navigation, Beijing, China, 4–6 June 2017; Volume 10463, p. 104631K. [Google Scholar]
- Kostkowski, H. Reliable Spectroradiometry; Spectroradiometry Consulting: La Plata, MD, USA, 1997. [Google Scholar]
- Zong, Y.; Brown, S.W.; Johnson, B.C.; Lykke, K.R.; Ohno, Y. Simple spectral stray light correction method for array spectroradiometers. Appl. Opt. 2006, 45, 1111–1119. [Google Scholar] [CrossRef]
- Zong, Y.; Brown, S.W.; Meister, G.; Barnes, R.A.; Lykke, K.R. Characterization and correction of stray light in optical instruments. SPIE Remote Sens. 2007, 6744, 1–11. [Google Scholar] [CrossRef]
- Nevas, S.; Wübbeler, G.; Sperling, A.; Elster, C.; Teuber, A. Simultaneous correction of bandpass and stray-light effects in array spectroradiometer data. Metrologia 2012, 49, S43. [Google Scholar] [CrossRef]
- Talone, M.; Zibordi, G.; Ansko, I.; Banks, A.C.; Kuusk, J. Stray light effects in above-water remote-sensing reflectance from hyperspectral radiometers. Appl. Opt. 2016, 55, 3966–3977. [Google Scholar] [CrossRef]
- Talone, M.; Zibordi, G. Non-linear response of a class of hyper-spectral radiometers. Metrologia 2018, 55, 747. [Google Scholar] [CrossRef]
- Talone, M.; Zibordi, G. Polarimetric characteristics of a class of hyperspectral radiometers. Appl. Opt. 2016, 55, 10092–10104. [Google Scholar] [CrossRef] [PubMed]
- Mekaoui, S.; Zibordi, G. Cosine error for a class of hyperspectral irradiance sensors. Metrologia 2013, 50, 187. [Google Scholar] [CrossRef]
- Cordero, R.R.; Seckmeyer, G.; Labbe, F. Cosine error influence on ground-based spectral UV irradiance measurements. Metrologia 2008, 45, 406. [Google Scholar] [CrossRef]
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Zibordi, G.; Voss, K.J. Chapter 3.1—In situ Optical Radiometry in the Visible and Near Infrared. In Optical Radiometry for Ocean Climate Measurements; Zibordi, G., Donlon, C.J., Parr, A.C., Eds.; Experimental Methods in the Physical Sciences; Academic Press: Cambridge, MA, USA, 2014; Volume 47, pp. 247–304. [Google Scholar]
- Spectral Response Function Data. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/olci-instrument/spectral-response-function-data (accessed on 3 September 2018).
- Müller, J.W. Possible Advantages of a Robust Evaluation of Comparisons. J. Res. Natl. Inst. Stand. Technol. 2000, 105, 551–555. [Google Scholar] [CrossRef]
- Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM), JCGM 100, First Edition, September 2008. Available online: http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (accessed on 7 May 2019).
- Vabson, V.; Ansko, I.; Alikas, K.; Kuusk, J.; Vendt, R.; Reinat, A. Improving Comparability of Radiometric In Situ Measurements with Sentinel-3A/OLCI Data; EUMETSAT: Darmstadt, Germany, 2017. [Google Scholar]
- Gergely, M.; Zibordi, G. Assessment of AERONET-OC L WN uncertainties. Metrologia 2014, 51, 40. [Google Scholar] [CrossRef]
- IOCCG, International Network for Sensor Inter-comparison and Uncertainty Assessment for Ocean Color Radiometry (INSITU-OCR) White Paper. 2012. Available online: http://www.ioccg.org/groups/INSITU-OCR_White-Paper.pdf (accessed on 7 February 2017).
- Ruddick, K.G.; De Cauwer, V.; Park, Y.-J.; Moore, G. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Alikas, K.; Ansko, I.; Vabson, V.; Ansper, A.; Kangro, K.; Randla, M.; Uudenberg, K.; Ligi, M.; Kuusk, J.; Randoja, R.; et al. Validation of Sentinel-3A/OLCI Data over Estonian Inland Waters; Plymouth, UK, 2017. Available online: https://www.researchgate.net/publication/321275461_Validation_of_Sentinel-3AOLCI_data_over_Estonian_inland_waters (accessed on 7 May 2019).
- Ruddick, K. Technical Report TR-2 “A Review of Commonly Used Fiducial Reference Measurement (FRM) Ocean Colour Radiometers (OCR) Used for Satellite OCR Validation”. 2018. Available online: https://frm4soc.org/wp-content/uploads/filebase/FRM4SOC-TR2_TO_signedESA.pdf (accessed on 7 May 2019).
- Voss, K.J.; da Costa, L.B. Polarization properties of FEL lamps as applied to radiometric calibration. Appl. Opt. 2016, 55, 8829–8832. [Google Scholar] [CrossRef]
- Bernhard, G.; Seckmeyer, G. Uncertainty of measurements of spectral solar UV irradiance. J. Geophys. Res. Atmos. 1999, 104, 14321–14345. [Google Scholar] [CrossRef] [Green Version]
- Santer, B.D.; Wigley, T.M.L.; Boyle, J.S.; Gaffen, D.J.; Hnilo, J.J.; Nychka, D.; Parker, D.E.; Taylor, K.E. Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res. Atmos. 2000, 105, 7337–7356. [Google Scholar] [CrossRef] [Green Version]
Participant | Country | L—Radiance; E—Irradiance Sensor |
---|---|---|
Tartu Observatory (pilot) | Estonia | RAMSES (2 L, 1 E) WISP-3 (2 L, 1 E) |
Alfred Wegener Institute | Germany | RAMSES (2 L, 2 E) |
Royal Belgian Institute of Natural Sciences | Belgium | RAMSES (7 L, 4 E) |
National Research Council of Italy | Italy | SR-3500 (1 L, 1 E) WISP-3 (2 L, 1 E) |
University of Algarve | Portugal | RAMSES (2 L, 1 E) |
University of Victoria | Canada | OCR-3000 (OCR-3000 is the predecessor of HyperOCR) (2 L, 1 E) |
Satlantic; Sea Bird Scientific | Canada | HyperOCR (2 L, 1 E) |
Plymouth Marine Laboratory | UK | HyperOCR (2 L, 1 E) |
Helmholtz-Zentrum Geesthacht | Germany | RAMSES (2 L, 1 E) |
University of Tartu | Estonia | RAMSES (1 L, 1 E) |
Cimel Electronique S.A.S | France | SeaPRISM (1 L) |
Parameter | RAMSES | HyperOCR | WISP-3 | SR-3500 | SeaPRISM |
---|---|---|---|---|---|
Field of View (L/E) | 7°/cos | 6° (According to the manufacturer, the HyperOCR radiance sensors 444 and 445 have 6° FOV.) or 23°/cos | 3°/cos | 5°/cos | 1.2°/NA |
Manual integration time | yes | yes | no | yes | no |
Adaptive integration time | yes | yes | yes | yes | yes |
Min. integration time, ms | 4 | 4 | 0.1 | 7.5 | NA |
Max. integration time, ms | 4096 | 4096 | NA | 1000 | NA |
Min. sampling interval, s | 5 | 5 | 10 | 2 | NA |
Internal shutter | no | yes | no | yes | yes |
Number of channels | 256 | 256 | 2048 | 1024 | 12 |
Wavelength range, nm | 320...1050 | 320…1050 | 200…880 | 350…2500 | 400…1020 |
Wavelength step, nm | 3.3 | 3.3 | 0.4 | 1.2/3.8/2.4 | NA |
Spectral resolution, nm | 10 | 10 | 3 | 3/8/6 | 10 |
400 nm | 442.5 nm | 490 nm | 560 nm | 665 nm | 778.8 nm | 865 nm | |
---|---|---|---|---|---|---|---|
Certificate | 0.88 | 0.68 | 0.65 | 0.62 | 0.59 | 0.62 | 0.56 |
Interpolation | 0.5 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 |
Instability (sensor) | 0.05 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.02 |
Alignment | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Nonlinearity | 0.2 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.2 |
Stray light (sensor) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Temperature | 0.02 | 0.01 | 0.01 | 0.03 | 0.09 | 0.2 | 0.38 |
Instability (source) | 0.14 | 0.14 | 0.12 | 0.11 | 0.1 | 0.09 | 0.08 |
Uniformity | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Stray light (source) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Signal, type A | 0.11 | 0.04 | 0.02 | 0.02 | 0.01 | 0.02 | 0.04 |
Combined (k=1) | 0.63 | 0.39 | 0.45 | 0.38 | 0.39 | 0.39 | 0.52 |
Expanded (k=2) | 1.3 | 0.8 | 0.9 | 0.8 | 0.8 | 0.8 | 1.0 |
400 nm | 442.5 nm | 490 nm | 560 nm | 665 nm | 778.8 nm | 865 nm | |
---|---|---|---|---|---|---|---|
Certificate | 1.2 | 0.78 | 0.76 | 0.73 | 0.71 | 0.73 | 1.35 |
Interpolation | 0.5 | 0.2 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 |
Instability (sensor) | 0.04 | 0.03 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 |
Back-reflection | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Alignment | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Nonlinearity | 0.2 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.2 |
Stray light (sensor) | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Temperature | 0.02 | 0.01 | 0.01 | 0.03 | 0.09 | 0.2 | 0.38 |
Instability (source) | 0.14 | 0.14 | 0.12 | 0.11 | 0.1 | 0.09 | 0.08 |
Uniformity | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Stray light (source) | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Signal, type A | 0.12 | 0.07 | 0.04 | 0.02 | 0.03 | 0.03 | 0.06 |
Combined (k=1) | 0.64 | 0.41 | 0.46 | 0.39 | 0.40 | 0.40 | 0.53 |
Expanded (k=2) | 1.3 | 0.8 | 0.9 | 0.8 | 0.8 | 0.8 | 1.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vabson, V.; Kuusk, J.; Ansko, I.; Vendt, R.; Alikas, K.; Ruddick, K.; Ansper, A.; Bresciani, M.; Burmester, H.; Costa, M.; et al. Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range. Remote Sens. 2019, 11, 1101. https://doi.org/10.3390/rs11091101
Vabson V, Kuusk J, Ansko I, Vendt R, Alikas K, Ruddick K, Ansper A, Bresciani M, Burmester H, Costa M, et al. Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range. Remote Sensing. 2019; 11(9):1101. https://doi.org/10.3390/rs11091101
Chicago/Turabian StyleVabson, Viktor, Joel Kuusk, Ilmar Ansko, Riho Vendt, Krista Alikas, Kevin Ruddick, Ave Ansper, Mariano Bresciani, Henning Burmester, Maycira Costa, and et al. 2019. "Laboratory Intercomparison of Radiometers Used for Satellite Validation in the 400–900 nm Range" Remote Sensing 11, no. 9: 1101. https://doi.org/10.3390/rs11091101