Correction for the Impact of the Surface Characteristics on the Estimation of the Effective Emissivity at Fine Resolution in Urban Areas
"> Figure 1
<p>Scheme of the different radiative fluxes contributing to the total downwelling TIR radiation: atmospheric radiation (thick arrow), scene radiations divided between emission (thin arrow) and multiple reflections (dash arrow).</p> "> Figure 2
<p>Processing steps to estimate corrected and non-corrected land surface temperature (<math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math>) and emissivity (<math display="inline"><semantics> <mi>ε</mi> </semantics></math>) from ASTER data (TOC = top of canopy, DSM = digital surface model).</p> "> Figure 3
<p>Strasbourg urban area (<b>top</b>) and the three districts used for land surface emissivity and temperature estimation (<b>bottom</b>).</p> "> Figure 4
<p>3D datasets of the three districts derived from the BD Topo (IGN).</p> "> Figure 5
<p>The different canyon configurations used to set and validate <math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mi>T</mi> <mo>↓</mo> </msubsup> </mrow> </semantics></math> estimation.</p> "> Figure 6
<p>Comparison of estimated and reference total (black circles), atmospheric (dark grey dots) and scene (light grey dots) downwelling TIR radiation for nine canyon configurations (orientation 0°). The Root Mean Square Error (RMSE) is provided for the estimation of the total downwelling TIR radiation.</p> "> Figure 7
<p>Top-of-canopy (TOC) downwelling TIR radiation and total downwelling TIR radiation for nine canyon configurations (orientation 0°) for the four time periods (H = building height (m), L = street length (m)).</p> "> Figure 8
<p>Differences in <math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mi>T</mi> <mo>↓</mo> </msubsup> </mrow> </semantics></math> with LST varying from −5 to +5 °C around the reference LST value, expressed as percentage of reference value.</p> "> Figure 9
<p>Hourly estimates of <math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mi>m</mi> </mrow> <mo>↓</mo> </msubsup> </mrow> </semantics></math> for four clear days: one in March (blue), one in June (green), one in September (red) and one in December (yellow) and for the nine canyon configurations. The dots represent <math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>e</mi> <mi>m</mi> </mrow> <mo>↓</mo> </msubsup> </mrow> </semantics></math> estimated using the proposed method and the error areas are computed using the minimum and maximum LST values observed over the scene.</p> "> Figure 10
<p>Distribution of the differences between hourly scene emitted radiation estimated integrating the 3D geometry and assuming a flat surface, by month (<b>a</b>) and by canyon configuration (<b>b</b>). The red line being the median value, the upper and lower limits of the box the upper and lower quartile respectively and the whiskers representing the minimum and maximum values.</p> "> Figure 11
<p>Google maps image and 3D geometry of the scene extracted from the BD Topo to extend the validation tests.</p> "> Figure 12
<p>Comparison of estimated and reference total (black circles), atmospheric (dark grey dots) and scene (light grey dots) downwelling TIR radiation for a whole district.</p> "> Figure 13
<p>Emissivity maps derived from ASTER band 12 for each district using total downwelling TIR radiation (<math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mi>T</mi> <mo>↓</mo> </msubsup> </mrow> </semantics></math>, 1st line), the top of canopy downwelling TIR radiation (TOC <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mo>↓</mo> </msup> </mrow> </semantics></math>, 2nd line) and the difference between both (3rd line).</p> "> Figure 14
<p>LST maps derived from ASTER for each district using total downwelling TIR radiation (<math display="inline"><semantics> <mrow> <msubsup> <mi>R</mi> <mi>T</mi> <mo>↓</mo> </msubsup> </mrow> </semantics></math>, 1st row), top-of-canopy-downwelling TIR radiation (TOC <math display="inline"><semantics> <mrow> <msup> <mi>R</mi> <mo>↓</mo> </msup> </mrow> </semantics></math>, 2nd row), the difference between both (3rd row) and difference between both + building footprints (4th row).</p> "> Figure 15
<p>Difference between emissivity maps band 12 (9.1 µm) derived using the proposed method and extracted from the ASTER Global Emissivity Dataset v3.</p> ">
Abstract
:1. Introduction
- Validation of the estimation of the total downwelling TIR radiation based on the geometric characteristics of the surface and the 3D model simulations.
- Production of effective LSE and LST maps using the TES accounting for the surface geometry and comparison with equivalent maps computed with the original method.
2. Method
2.1. Atmospheric TIR Radiation
2.2. Scene Emitted Radiation
2.3. Multiple Reflections
3. Study Area
4. Data and 3D Thermo-Radiative Models
4.1. 3D Surface Geometry
4.2. ASTER Products
4.2.1. TES Inputs
4.2.2. ASTER Global Emissivity Dataset
4.3. 3D Thermo-Radiative Models
5. Results
5.1. Validation of at Canyon Scale
5.1.1. Atmospheric TIR Radiation ()
5.1.2. Scene-Emitted Radiation and Multiple Reflections
5.1.3. Validation Over a District
5.2. Effective Emissivity and LST Derived from ASTER TIR Surface-Leaving Radiance
5.2.1. Land Surface Emissivity
5.2.2. Land Surface Temperature
5.2.3. Comparison with ASTER Global Emissivity Dataset v3
6. Discussion and Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Case Study | March (4 Days) | June (6 Days) | September (5 Days) | December (3 Days) | ||||
---|---|---|---|---|---|---|---|---|
Time (min) | CPU Time (min) | Time (min) | CPU Time (min) | Time | CPU Time (min) | Time | CPU Time (min) | |
H10_L5 | 4 | 32 | 7 | 56 | 5 | 40 | 3 | 24 |
H10_L25 | 4 | 32 | 7 | 56 | 6 | 48 | 3 | 24 |
H10_L50 | 5 | 40 | 9 | 72 | 7 | 56 | 3 | 24 |
H30_L5 | 9 | 72 | 19 | 152 | 13 | 104 | 7 | 56 |
H30_L25 | 11 | 88 | 19 | 152 | 15 | 120 | 7 | 56 |
H30_L50 | 13 | 104 | 22 | 176 | 17 | 136 | 9 | 72 |
H50_L5 | 16 | 128 | 25 | 200 | 22 | 176 | 11 | 88 |
H50_L25 | 17 | 136 | 33 | 264 | 25 | 200 | 12 | 96 |
H50_L50 | 21 | 168 | 35 | 280 | 26 | 208 | 13 | 104 |
References
- McMichael, A.J. The urban environment and health in a world of increasing globalization: Issues for developing countries. Bull. World Health Organ. 2000, 78, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Sigman, R.; Hilderink, H.; Delrue, N.; Braathen, N.A.; Leflaive, X. OECD Environmental Outlook to 2050. OECD Environ. Outlook 2012. [Google Scholar] [CrossRef]
- Alexander, R.H.; Bowden, L.W.; Marble, D.F.; Moore, E.G. Remote sensing of urban environments. Remote Sens. Environ. 1999, 117, 1–2. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Seto, K.C.; Christensen, P. Remote sensing science to inform urban climate change mitigation strategies. Urban Clim. 2013, 3, 1–6. [Google Scholar] [CrossRef]
- Briottet, X.; Chehata, N.; Oltra-Carrio, R.; Le Bris, A.; Weber, C. Optical Remote Sensing in Urban Environments. In Land Surface Remote Sensing in Urban and Coastal Areas; Elsevier: New York, NY, USA, 2016; ISBN 9780081017678. [Google Scholar]
- Rasul, A.; Balzter, H.; Smith, C.; Remedios, J.; Adamu, B.; Sobrino, J.; Srivanit, M.; Weng, Q. A Review on Remote Sensing of Urban Heat and Cool Islands. Land 2017, 6, 38. [Google Scholar] [CrossRef]
- Nichol, J.E. High-resolution surface temperature patterns related to urban morphology in a tropical city: A satellite-based study. J. Appl. Meteorol. 1996, 35, 135–146. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Complete urban surface temperatures. J. Appl. Meteorol. 1997, 36, 1117–1132. [Google Scholar] [CrossRef]
- Coret, L.; Briottet, X.; Kerr, Y.H.; Chehbouni, G. Directional effect on change of spatial scale over heterogeneous surface in thermal infrared remote sensing. In Proceedings of the Remote Sensing For Agriculture, Ecosystems, And Hydrology III (SPIE), Toulouse, France, 28 January 2002; Owe, M., DUrso, G., Eds.; SPIE: Florence, Italy, 2002; Volume 4542, pp. 141–151. [Google Scholar]
- Danilina, I.; Gillespie, A.; Balick, L.; Mushkin, A.; Smith, M.; Neal, M. Subpixel roughness effects in spectral thermal infrared emissivity images. In Proceedings of the First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; INFONA: Grenoble, France, 2009; pp. 1–4. [Google Scholar]
- Lagouarde, J.; Hénon, A.; Kurz, B.; Moreau, P.; Irvine, M.; Voogt, J.; Mestayer, P. Modelling daytime thermal infrared directional anisotropy over Toulouse city centre. Remote Sens. Environ. 2010, 114, 87–105. [Google Scholar] [CrossRef]
- Lagouarde, J.-P.; Hénon, A.; Irvine, M.; Voogt, J.; Pigeon, G.; Moreau, P.; Masson, V.; Mestayer, P. Experimental characterization and modelling of the nighttime directional anisotropy of thermal infrared measurements over an urban area: Case study of Toulouse (France). Remote Sens. Environ. 2012, 117, 19–33. [Google Scholar] [CrossRef]
- Yang, J.; Sing, M.; Menenti, M.; Nichol, J. Study of the geometry effect on land surface temperature retrieval in urban environment. ISPRS J. Photogramm. Remote Sens. 2015, 109, 77–87. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Cothern, J.S.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Sabol, D.E.; Gillespie, A.R.; Abbott, E.; Yamada, G. Field validation of the ASTER Temperature-Emissivity Separation algorithm. Remote Sens. Environ. 2009, 113, 2328–2344. [Google Scholar] [CrossRef]
- Oltra-carrió, R.; Cubero-castan, M.; Briottet, X.; Sobrino, J.A. Analysis of the Performance of the TES Algorithm Over Urban Areas. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6989–6998. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Bernstein, L.S.; Robertson, D.C. MODTRAN: A Moderate Resolution Model for LOWTRAN 7; Spectral Sciences Inc.: Burlington MA, USA, 1989. [Google Scholar]
- Gastellu-Etchegorry, J.-P.; Yin, T.; Lauret, N.; Cajgfinger, T.; Gregoire, T.; Grau, E.; Feret, J.-B.; Lopes, M.; Guilleux, J.; Dedieu, G.; et al. Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes. Remote Sens. 2015, 7, 1667–1701. [Google Scholar] [CrossRef] [Green Version]
- Krayenhoff, E.S.; Voogt, J.A. A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound. Layer Meteorol. 2007, 123, 433–461. [Google Scholar] [CrossRef]
- Kastendeuch, P.P.; Najjar, G. Simulation and validation of radiative transfers in urbanised areas. Sol. Energy 2009, 83, 333–341. [Google Scholar] [CrossRef]
- Musy, M.; Malys, L.; Morille, B.; Inard, C. The use of SOLENE-microclimat model to assess adaptation strategies at the district scale. Urban Clim. 2015, 14, 213–223. [Google Scholar] [CrossRef]
- Bruse, M. ENVI-met 3.0: Updated Model Overview. 2004. Available online: http://www.envi-met.net/documents/papers/overview30.pdf (accessed on 27 February 2018).
- Martin, E.; Gastellu-Etchegorry, J.-P.; Dhalluin, R. Model intercomparison for validating the 2003 DART Model. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; Volume 5, pp. 3272–3274. [Google Scholar] [CrossRef]
- Yaghoobian, N.; Kleissl, J.; Krayenhoff, E.S. Modeling the thermal effects of artificial turf on the urban environment. J. Appl. Meteorol. Climatol. 2010, 49, 332–345. [Google Scholar] [CrossRef]
- Gros, A.; Bozonnet, E.; Inard, C. Modelling the radiative exchanges in urban areas: A review. Adv. Build. Energy Res. 2011, 5, 163–206. [Google Scholar] [CrossRef]
- Maggiotto, G.; Buccolieri, R.; Santo, M.A.; Leo, L.S.; Di Sabatino, S. Validation of temperature-perturbation and CFD-based modelling for the prediction of the thermal urban environment: The Lecce (IT) case study. Environ. Model. Softw. 2014, 60, 69–83. [Google Scholar] [CrossRef]
- Azam, M.-H.; Morille, B.; Bernard, J.; Musy, M.; Rodriguez, F. A new urban soil model for SOLENE-microclimat: Review, sensitivity analysis and validation on a car park. Urban Clim. 2017. [Google Scholar] [CrossRef]
- Kastendeuch, P.P.; Najjar, G.; Colin, J. Thermo-radiative simulation of an urban district with LASER/F. Urban Clim. 2017, 21, 43–65. [Google Scholar] [CrossRef]
- JPL. ASTER Higher-Level Product User Guide, Version 2.0, JPL D-20062; JPL: Pasadena, CA, USA, 2001. [Google Scholar]
- Groleau, D.; Mestayer, P.G. Urban Morphology Influence on Urban Albedo: A Revisit with the Solene Model. Bound. Layer Meteorol. 2013, 147, 301–327. [Google Scholar] [CrossRef]
- Bernabé, A.; Bernard, J.; Musy, M.; Andrieu, H.; Bocher, E.; Calmet, I.; Kéravec, P.; Rosant, J.M. Radiative and heat storage properties of the urban fabric derived from analysis of surface forms. Urban Clim. 2015, 12, 205–218. [Google Scholar] [CrossRef]
- Institut Geographique National. BD TOPO® Version 2.1, Descriptif de Contenu; Institut Geographique National: Saint Mande, France, 2014. [Google Scholar]
- Hulley, G.C.; Hook, S.J.; Abbott, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hook, S.J. Intercomparison of versions 4, 4.1 and 5 of the MODIS Land Surface Temperature and Emissivity products and validation with laboratory measurements of sand samples from the Namib desert, Namibia. Remote Sens. Environ. 2009, 113, 1313–1318. [Google Scholar] [CrossRef]
- Malys, L.; Musy, M.; Inard, C. A hydrothermal model to assess the impact of green walls on urban microclimate and building energy consumption. Build. Environ. 2014, 73, 187–197. [Google Scholar] [CrossRef]
- Roupioz, L.; Kastendeuch, P.; Najjar, G.; Landes, T.; Nerry, F.; Colin, J.; Luhahe, R. Validation du Modèle Laser/F par des Images Thermiques Dans le cadre de la Campagne Bio-Climatologique sur Strasbourg. In Proceedings of the Actes du 29ème Colloque de l’Association Internationale de Climatologie (AIC), Besançon, France, 4–7 July 2016. [Google Scholar]
- Masson, V. A physically-based scheme for the urban energy budget in atmospheric models. Bound. Layer Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound. Layer Meteorol. 2001, 101, 329–358. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Bou-Zeid, E.; Smith, J.A. A coupled energy transport and hydrological model for urban canopies evaluated using a wireless sensor network. Q. J. R. Meteorol. Soc. 2013, 139, 1643–1657. [Google Scholar] [CrossRef]
- Najjar, G.; Colin, J.; Kastendeuch, P.; Ngao, J.; Saudreau, M.; Landes, T.; Ameglio, T.; Luhahe, R.; Guillemin, S.; Schreiner, G.; et al. A three years long fieldwork experiment to monitor the role of vegetation on the urban climate of the city of Strasbourg, France. In Proceedings of the ICUC9, 9th International Conference on Urban Climate Jointly with 12th Symposium on the Urban Environment, Toulouse, France, 15 May 2015; p. 6. [Google Scholar]
- Ringenbach, N. Bilan Radiatif et Flux de Chaleur en Climatologie Urbaine: Mesures, Modélisation et Validation sur STRASBOURG. Ph.D. Thesis, Louis Pasteur University, Strasbourg, France, 2004. [Google Scholar]
- Pérez-Planells, L.; Valor, E.; Coll, C.; Niclòs, R. Comparison and evaluation of the TES and ANEM algorithms for land surface temperature and emissivity separation over the area of Valencia, Spain. Remote Sens. 2017, 9, 1251. [Google Scholar] [CrossRef]
Historical Center | University District | Neudorf District | |
---|---|---|---|
Average building height (m) | 19.5 | 19.7 | 13.6 |
Building density | 0.54 | 0.28 | 0.70 |
Wall | Roof | Ground | |
---|---|---|---|
Albedo | 0.3 | 0.15 | 0.105 |
Emissivity | 0.95 | 0.95 | 0.95 |
Layer composition (c (J·kg−1·K−1), k (W·m−1·K−1), ρ (kg·m−3)) | 0.05 m roughcast (1000, 1.5, 1900) | 0.06 m red tiles (1000, 0.8, 1634) | 0.06 m asphalt (1021, 1.16, 2400) |
0.24 m concrete (1000, 1.88, 2000) | 0.15 m isolating material (1450, 0.04, 20) | 1 m bedrock (2100, 1, 1000) | |
0.04 m plaster (1000, 0.35, 900) |
RMSE (W·m−2) | L: 5 m | L: 25 m | L: 50 m |
---|---|---|---|
H: 10 m | 0.7 | 2.4 | 1.9 |
H: 30 m | 1.5 | 6.2 | 7.1 |
H: 50 m | 2.3 | 8.8 | 11.6 |
RMSE (W·m−2) | L: 5 m | L: 25 m | L: 50 m |
---|---|---|---|
H: 10 m | 0.3 | 3.3 | 3.5 |
H: 30 m | 1.1 | 7.1 | 8.5 |
H: 50 m | 2.0 | 10.1 | 13.6 |
Max ε Difference | Mean ε Difference | Std Dev. ε Difference | |||||||
---|---|---|---|---|---|---|---|---|---|
District | University District | Neudorf District | Historical Center | University District | Neudorf District | Historical Center | University District | Neudorf District | Historical Center |
Band 8.3 μm | −0.07 | −0.04 | −0.1 | −0.01 | −0.01 | −0.01 | 0.010 | 0.008 | 0.012 |
Band 8.65 μm | −0.04 | −0.04 | −0.08 | −0.02 | −0.02 | −0.02 | 0.009 | 0.008 | 0.014 |
Band 9.1 μm | −0.05 | −0.04 | −0.09 | −0.03 | −0.03 | −0.04 | 0.010 | 0.010 | 0.018 |
Band 10.6 μm | −0.04 | −0.02 | −0.04 | −0.01 | −0.01 | −0.02 | 0.007 | 0.003 | 0.010 |
Band 11.3 μm | −0.04 | −0.03 | −0.06 | −0.01 | −0.01 | −0.02 | 0.008 | 0.005 | 0.015 |
University District | Neudorf District | Historical Center | |
---|---|---|---|
Max difference | −1.3 °C | −0.9 °C | −1.2 °C |
Mean difference | −0.6 °C | −0.6 °C | −0.5 °C |
Std dev. difference | 0.20 °C | 0.20 °C | 0.23 °C |
Max ε Difference | Mean ε Difference | Std Dev. ε Difference | |||||||
---|---|---|---|---|---|---|---|---|---|
District | University District | Neudorf District | Historical Center | University District | Neudorf District | Historical Center | University District | Neudorf District | Historical Center |
Band 8.3 μm | −0.14 | −0.08 | −0.18 | −0.02 | −0.02 | −0.01 | 0.03 | 0.02 | 0.03 |
Band 8.65 μm | −0.08 | −0.08 | −0.16 | −0.03 | −0.03 | −0.03 | 0.02 | 0.02 | 0.03 |
Band 9.1 μm | −0.08 | −0.08 | −0.16 | −0.05 | −0.05 | −0.06 | 0.02 | 0.02 | 0.03 |
Band 10.6 μm | −0.06 | −0.03 | −0.06 | −0.01 | −0.01 | −0.02 | 0.01 | 0.01 | 0.01 |
Band 11.3 μm | −0.05 | −0.05 | −0.08 | −0.02 | −0.01 | −0.03 | 0.01 | 0.01 | 0.02 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roupioz, L.; Nerry, F.; Colin, J. Correction for the Impact of the Surface Characteristics on the Estimation of the Effective Emissivity at Fine Resolution in Urban Areas. Remote Sens. 2018, 10, 746. https://doi.org/10.3390/rs10050746
Roupioz L, Nerry F, Colin J. Correction for the Impact of the Surface Characteristics on the Estimation of the Effective Emissivity at Fine Resolution in Urban Areas. Remote Sensing. 2018; 10(5):746. https://doi.org/10.3390/rs10050746
Chicago/Turabian StyleRoupioz, Laure, Françoise Nerry, and Jérôme Colin. 2018. "Correction for the Impact of the Surface Characteristics on the Estimation of the Effective Emissivity at Fine Resolution in Urban Areas" Remote Sensing 10, no. 5: 746. https://doi.org/10.3390/rs10050746