Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics
Abstract
:1. Introduction
2. Long-Acting Risperidone
2.1. Pharmacokinetics
2.2. Pharmacogenetics
2.2.1. Efficacy
2.2.2. Safety
3. Long-Acting Paliperidone
3.1. Pharmacokinetics
3.2. Pharmacogenetics
4. Long-Acting Aripiprazole
4.1. Pharmacokinetics
4.2. Pharmacogenetics
5. Pharmacokinetics/Pharmacogenetics Implementation
6. Unsolved Questions and Future Directions
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saha, S.; Chant, D.; Welham, J.; McGrath, J. A Systematic Review of the Prevalence of Schizophrenia. PLoS Med. 2005, 2, e141. [Google Scholar] [CrossRef]
- Organización Mundial de Salud. Informe Sobre la Salud en el Mundo 2001: Salud Mental: Nuevos Conocimientos, Nuevas Esperanzas; OMS: Genebra, Switzerland, 2001; ISBN 978-92-4-356201-8. [Google Scholar]
- Tandon, R.; Keshavan, M.S.; Nasrallah, H.A. Schizophrenia, “Just the Facts” What We Know in 2008. 2. Epidemiology and Etiology. Schizophr Res. 2008, 102, 1–18. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013; ISBN 978-0-89042-555-8. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Combs, D.R.; Mueser, K.T. Schizophrenia and Severe Mental Illness. In Treatments for Psychological Problems and Syndromes; McKay, D., Abramowitz, J.S., Storch, E.A., Eds.; John Wiley & Sons, Ltd: Chichester, UK, 2017; pp. 188–201. ISBN 978-1-118-87714-2. [Google Scholar]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature 2014, 511, 421–427. [CrossRef] [PubMed] [Green Version]
- Flórez, J. Farmacología Humana; Elsevier Masson: Barcelona, Spain, 2012; ISBN 978-84-458-1861-9. [Google Scholar]
- Nosé, M.; Barbui, C.; Tansella, M. How Often Do Patients with Psychosis Fail to Adhere to Treatment Programmes? A Systematic Review. Psychol Med. 2003, 33, 1149–1160. [Google Scholar] [CrossRef]
- Haddad, P.M.; Brain, C.; Scott, J. Nonadherence with Antipsychotic Medication in Schizophrenia: Challenges and Management Strategies. Patient Relat Outcome Meas 2014, 5, 43–62. [Google Scholar] [CrossRef] [Green Version]
- FDA. Table of Pharmacogenomic Biomarkers in Drug Labeling; FDA: White Oak, MD, USA, 2020. [Google Scholar]
- Hicks, J.K.; Bishop, J.R.; Sangkuhl, K.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Daly, A.K.; Brockmöller, J.; Broly, F.; Eichelbaum, M.; Evans, W.E.; Gonzalez, F.J.; Huang, J.D.; Idle, J.R.; Ingelman-Sundberg, M.; Ishizaki, T.; et al. Nomenclature for Human CYP2D6 Alleles. Pharmacogenetics 1996, 6, 193–201. [Google Scholar] [CrossRef]
- Sistonen, J.; Sajantila, A.; Lao, O.; Corander, J.; Barbujani, G.; Fuselli, S. CYP2D6 Worldwide Genetic Variation Shows High Frequency of Altered Activity Variants and No Continental Structure. Pharm. Genom. 2007, 17, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, D.C.; Genro, J.P.; Sortica, V.A.; Suarez-Kurtz, G.; de Moraes, M.E.; Pena, S.D.J.; dos Santos, A.K.R.; Romano-Silva, M.A.; Hutz, M.H. Distribution of CYP2D6 Alleles and Phenotypes in the Brazilian Population. PLoS ONE 2014, 9, e110691. [Google Scholar] [CrossRef] [Green Version]
- Caudle, K.E.; Sangkuhl, K.; Whirl-Carrillo, M.; Swen, J.J.; Haidar, C.E.; Klein, T.E.; Gammal, R.S.; Relling, M.V.; Scott, S.A.; Hertz, D.L.; et al. StandardizingCYP 2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group. Clin. Transl. Sci. 2020, 13, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Cytochrome P450 2D6 Variants in a Caucasian Population: Allele Frequencies and Phenotypic Consequences. Am. J. Hum. Genet. 1997, 60, 284–295. [Google Scholar]
- Marez, D.; Legrand, M.; Sabbagh, N.; Lo Guidice, J.M.; Spire, C.; Lafitte, J.J.; Meyer, U.A.; Broly, F. Polymorphism of the Cytochrome P450 CYP2D6 Gene in a European Population: Characterization of 48 Mutations and 53 Alleles, Their Frequencies and Evolution. Pharmacogenetics 1997, 7, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Bradford, L.D. CYP2D6 Allele Frequency in European Caucasians, Asians, Africans and Their Descendants. Pharmacogenomics 2002, 3, 229–243. [Google Scholar] [CrossRef]
- Ji, L.; Pan, S.; Marti-Jaun, J.; Hänseler, E.; Rentsch, K.; Hersberger, M. Single-Step Assays to Analyze CYP2D6 Gene Polymorphisms in Asians: Allele Frequencies and a Novel *14B Allele in Mainland Chinese. Clin. Chem. 2002, 48, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Johansson, I.; Lundqvist, E.; Bertilsson, L.; Dahl, M.L.; Sjöqvist, F.; Ingelman-Sundberg, M. Inherited Amplification of an Active Gene in the Cytochrome P450 CYP2D Locus as a Cause of Ultrarapid Metabolism of Debrisoquine. Proc. Natl. Acad. Sci. USA 1993, 90, 11825–11829. [Google Scholar] [CrossRef] [Green Version]
- Müller, D.J.; Kekin, I.; Kao, A.C.C.; Brandl, E.J. Towards the Implementation of CYP2D6 and CYP2C19 Genotypes in Clinical Practice: Update and Report from a Pharmacogenetic Service Clinic. Int Rev. Psychiatry 2013, 25, 554–571. [Google Scholar] [CrossRef] [PubMed]
- Laika, B.; Leucht, S.; Heres, S.; Steimer, W. Intermediate Metabolizer: Increased Side Effects in Psychoactive Drug Therapy. The Key to Cost-Effectiveness of Pretreatment CYP2D6 Screening? Pharm. J. 2009, 9, 395–403. [Google Scholar] [CrossRef]
- Dagostino, C.; Allegri, M.; Napolioni, V.; D’Agnelli, S.; Bignami, E.; Mutti, A.; van Schaik, R.H. CYP2D6 Genotype Can Help to Predict Effectiveness and Safety during Opioid Treatment for Chronic Low Back Pain: Results from a Retrospective Study in an Italian Cohort. Pharmgenomics Pers. Med. 2018, 11, 179–191. [Google Scholar] [CrossRef] [Green Version]
- Klomp, S.D.; Manson, M.L.; Guchelaar, H.-J.; Swen, J.J. Phenoconversion of Cytochrome P450 Metabolism: A Systematic Review. J. Clin. Med. 2020, 9, 2890. [Google Scholar] [CrossRef]
- Patel, R.; Chesney, E.; Taylor, M.; Taylor, D.; McGuire, P. Is Paliperidone Palmitate More Effective than Other Long-Acting Injectable Antipsychotics? Psychol. Med. 2018, 48, 1616–1623. [Google Scholar] [CrossRef] [Green Version]
- Ramstack, M.; Grandolfi, G.P.; Mannaert, E.; D’Hoore, P.; Lasser, R.A. Long-Acting Risperidone: Prolonged-Release Injectable Delivery of Risperidone Using Medisorbò Microsphere Technology. Schizophr. Res. 2003, 60, 314. [Google Scholar] [CrossRef]
- Karas, A.; Burdge, G.; Rey, J.A. PerserisTM: A New and Long-Acting, Atypical Antipsychotic Drug-Delivery System. Pharm. Ther. 2019, 44, 460–466. [Google Scholar]
- Nasser, A.F.; Henderson, D.C.; Fava, M.; Fudala, P.J.; Twumasi-Ankrah, P.; Kouassi, A.; Heidbreder, C. Efficacy, Safety, and Tolerability of RBP-7000 Once-Monthly Risperidone for the Treatment of Acute Schizophrenia: An 8-Week, Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase 3 Study. J. Clin. Psychopharmacol. 2016, 36, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Gefvert, O.; Eriksson, B.; Persson, P.; Helldin, L.; Björner, A.; Mannaert, E.; Remmerie, B.; Eerdekens, M.; Nyberg, S. Pharmacokinetics and D2 Receptor Occupancy of Long-Acting Injectable Risperidone (Risperdal ConstaTM) in Patients with Schizophrenia. Int J. Neuropsychopharmacol 2005, 8, 27–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.; Bourin, M.; Baker, G.B. Metabolism of Risperidone to 9-Hydroxyrisperidone by Human Cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch. Pharm. 1999, 359, 147–151. [Google Scholar] [CrossRef] [PubMed]
- AEMPS Ficha Técnica Risperdal Consta®. Available online: https://cima.aemps.es/cima/pdfs/es/ft/65213/FT_65213.pdf (accessed on 15 January 2021).
- Lee, L.H.N.; Choi, C.; Collier, A.C.; Barr, A.M.; Honer, W.G.; Procyshyn, R.M. The Pharmacokinetics of Second-Generation Long-Acting Injectable Antipsychotics: Limitations of Monograph Values. CNS Drugs 2015, 29, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [CrossRef] [Green Version]
- Hendset, M.; Molden, E.; Refsum, H.; Hermann, M. Impact of CYP2D6 Genotype on Steady-State Serum Concentrations of Risperidone and 9-Hydroxyrisperidone in Patients Using Long-Acting Injectable Risperidone. J. Clin. Psychopharmacol. 2009, 29, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Remington, G.; Mamo, D.; Labelle, A.; Reiss, J.; Shammi, C.; Mannaert, E.; Mann, S.; Kapur, S. A PET Study Evaluating Dopamine D2 Receptor Occupancy for Long-Acting Injectable Risperidone. Am. J. Psychiatry 2006, 163, 396–401. [Google Scholar] [CrossRef] [Green Version]
- Ganoci, L.; Lovrić, M.; Živković, M.; Šagud, M.; Klarica Domjanović, I.; Božina, N. The Role Of Cyp2d6, Cyp3a4/5, And Abcb1 Polymorphisms In Patients Using Long-Acting Injectable Risperidone. Clin. Ther. 2016, 38, e10–e11. [Google Scholar] [CrossRef]
- Nesvåg, R.; Tanum, L. Therapeutic Drug Monitoring of Patients on Risperidone Depot. Nord. J. Psychiatry 2005, 59, 51–55. [Google Scholar] [CrossRef]
- de Leon, J. Personalizing Dosing of Risperidone, Paliperidone and Clozapine Using Therapeutic Drug Monitoring and Pharmacogenetics. Neuropharmacology 2020, 168, 107656. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; Spina, E.; Hiemke, C.; de Leon, J. A Systematic Review and Combined Analysis of Therapeutic Drug Monitoring Studies for Long-Acting Risperidone. Expert Rev. Clin. Pharmacol. 2017, 10, 965–981. [Google Scholar] [CrossRef]
- Vermeulen, A.; Piotrovsky, V.; Ludwig, E.A. Population Pharmacokinetics of Risperidone and 9-Hydroxyrisperidone in Patients with Acute Episodes Associated with Bipolar I Disorder. J. Pharm. Pharm. 2007, 34, 183–206. [Google Scholar] [CrossRef] [PubMed]
- Scordo, M.G.; Spina, E.; Facciolà, G.; Avenoso, A.; Johansson, I.; Dahl, M.L. Cytochrome P450 2D6 Genotype and Steady State Plasma Levels of Risperidone and 9-Hydroxyrisperidone. Psychopharmacology 1999, 147, 300–305. [Google Scholar] [CrossRef]
- Cho, H.-Y.; Lee, Y.-B. Pharmacokinetics and Bioequivalence Evaluation of Risperidone in Healthy Male Subjects with Different CYP2D6 Genotypes. Arch. Pharm Res. 2006, 29, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Llerena, A.; Berecz, R.; Dorado, P.; de la Rubia, A. QTc Interval, CYP2D6 and CYP2C9 Genotypes and Risperidone Plasma Concentrations. J. Psychopharmacol. 2004, 18, 189–193. [Google Scholar] [CrossRef]
- Choong, E.; Polari, A.; Kamdem, R.H.; Gervasoni, N.; Spisla, C.; Sirot, E.J.; Bickel, G.G.; Bondolfi, G.; Conus, P.; Eap, C.B. Pharmacogenetic Study on Risperidone Long-Acting Injection: Influence of Cytochrome P450 2D6 and Pregnane X Receptor on Risperidone Exposure and Drug-Induced Side-Effects. J. Clin. Psychopharmacol. 2013, 33, 289–298. [Google Scholar] [CrossRef]
- De Leon, J.; Susce, M.T.; Pan, R.-M.; Wedlund, P.J.; Orrego, M.L.; Diaz, F.J. A Study of Genetic (CYP2D6 and ABCB1) and Environmental (Drug Inhibitors and Inducers) Variables That May Influence Plasma Risperidone Levels. Pharmacopsychiatry 2007, 40, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, N.; Božina, N.; Lovrić, M.; Medved, V.; Jakovljević, M.; Peleš, A.M. The Role of CYP2D6 and ABCB1 Pharmacogenetics in Drug-Naïve Patients with First-Episode Schizophrenia Treated with Risperidone. Eur J. Clin. Pharm. 2010, 66, 1109–1117. [Google Scholar] [CrossRef] [Green Version]
- Jukic, M.M.; Smith, R.L.; Haslemo, T.; Molden, E.; Ingelman-Sundberg, M. Effect of CYP2D6 Genotype on Exposure and Efficacy of Risperidone and Aripiprazole: A Retrospective, Cohort Study. Lancet Psychiatry 2019, 6, 418–426. [Google Scholar] [CrossRef]
- Locatelli, I.; Kastelic, M.; Koprivšek, J.; Kores-Plesničar, B.; Mrhar, A.; Dolžan, V.; Grabnar, I. A Population Pharmacokinetic Evaluation of the Influence of CYP2D6 Genotype on Risperidone Metabolism in Patients with Acute Episode of Schizophrenia. Eur. J. Pharm. Sci. 2010, 41, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, F.; Guidi, M.; Choong, E.; von Gunten, A.; Conus, P.; Csajka, C.; Eap, C.B. Genetics-Based Population Pharmacokinetics and Pharmacodynamics of Risperidone in a Psychiatric Cohort. Clin. Pharm. 2015, 54, 1259–1272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunes, A.; Spina, E.; Dahl, M.-L.; Scordo, M.G. ABCB1 Polymorphisms Influence Steady-State Plasma Levels of 9-Hydroxyrisperidone and Risperidone Active Moiety. Ther. Drug Monit. 2008, 30, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Brown, S.J.; Shan, Y.; Lee, A.M.; Allen, J.D.; Eum, S.; de Leon, J.; Bishop, J.R. CYP2D6 Genetic Polymorphisms and Risperidone Pharmacokinetics: A Systematic Review and Meta-Analysis. Pharmacotherapy 2020, 40, 632–647. [Google Scholar] [CrossRef] [PubMed]
- de Leon, J.; Susce, M.T.; Pan, R.-M.; Fairchild, M.; Koch, W.H.; Wedlund, P.J. The CYP2D6 Poor Metabolizer Phenotype May Be Associated with Risperidone Adverse Drug Reactions and Discontinuation. J. Clin. Psychiatry 2005, 66, 15–27. [Google Scholar] [CrossRef]
- Hendset, M.; Molden, E.; Knape, M.; Hermann, M. Serum Concentrations of Risperidone and Aripiprazole in Subgroups Encoding CYP2D6 Intermediate Metabolizer Phenotype. Ther. Drug Monit 2014, 36, 80–85. [Google Scholar] [CrossRef]
- Feng, Y.; Pollock, B.G.; Coley, K.; Marder, S.; Miller, D.; Kirshner, M.; Aravagiri, M.; Schneider, L.; Bies, R.R. Population Pharmacokinetic Analysis for Risperidone Using Highly Sparse Sampling Measurements from the CATIE Study. Br. J. Clin. Pharmacol. 2008, 66, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Sherwin, C.M.T.; Saldaña, S.N.; Bies, R.R.; Aman, M.G.; Vinks, A.A. Population Pharmacokinetic Modeling of Risperidone and 9-Hydroxyrisperidone to Estimate CYP2D6 Subpopulations in Children and Adolescents. Ther. Drug Monit. 2012, 34, 535–544. [Google Scholar] [CrossRef] [Green Version]
- Thyssen, A.; Vermeulen, A.; Fuseau, E.; Fabre, M.-A.; Mannaert, E. Population Pharmacokinetics of Oral Risperidone in Children, Adolescents and Adults with Psychiatric Disorders. Clin. Pharm. 2010, 49, 465–478. [Google Scholar] [CrossRef]
- Kneller, L.A.; Abad-Santos, F.; Hempel, G. Physiologically Based Pharmacokinetic Modelling to Describe the Pharmacokinetics of Risperidone and 9-Hydroxyrisperidone According to Cytochrome P450 2D6 Phenotypes. Clin. Pharm. 2020, 59, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Gomeni, R.; Heidbreder, C.; Fudala, P.J.; Nasser, A.F. A Model-Based Approach to Characterize the Population Pharmacokinetics and the Relationship between the Pharmacokinetic and Safety Profiles of RBP-7000, a New, Long-Acting, Sustained-Released Formulation of Risperidone. J. Clin. Pharmacol. 2013, 53, 1010–1019. [Google Scholar] [CrossRef]
- de Leon, J.; Sandson, N.B.; Cozza, K.L. A Preliminary Attempt to Personalize Risperidone Dosing Using Drug–Drug Interactions and Genetics: Part I. Psychosomatics 2008, 49, 258–270. [Google Scholar] [CrossRef]
- Kakihara, S.; Yoshimura, R.; Shinkai, K.; Matsumoto, C.; Goto, M.; Kaji, K.; Yamada, Y.; Ueda, N.; Ohmori, O.; Nakamura, J. Prediction of Response to Risperidone Treatment with Respect to Plasma Concencentrations of Risperidone, Catecholamine Metabolites, and Polymorphism of Cytochrome P450 2D6. Int. Clin. Psychopharmacol. 2005, 20, 71–78. [Google Scholar] [CrossRef]
- Almoguera, B.; Riveiro-Alvarez, R.; Lopez-Castroman, J.; Dorado, P.; Vaquero-Lorenzo, C.; Fernandez-Piqueras, J.; LLerena, A.; Abad-Santos, F.; Baca-García, E.; Dal-Ré, R.; et al. CYP2D6 Poor Metabolizer Status Might Be Associated with Better Response to Risperidone Treatment. Pharm. Genom. 2013, 23, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Petty, R. Prolactin and Antipsychotic Medications: Mechanism of Action. Schizophr. Res. 1999, 35, S67–S73. [Google Scholar] [CrossRef]
- Turrone, P.; Kapur, S.; Seeman, M.V.; Flint, A.J. Elevation of Prolactin Levels by Atypical Antipsychotics. AJP 2002, 159, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Madhusoodanan, S.; Parida, S.; Jimenez, C. Hyperprolactinemia Associated with Psychotropics-a Review. Hum. Psychopharmacol. Clin. Exp. 2010, 25, 281–297. [Google Scholar] [CrossRef]
- Roke, Y.; van Harten, P.N.; Franke, B.; Galesloot, T.E.; Boot, A.M.; Buitelaar, J.K. The Effect of the Taq1A Variant in the Dopamine D₂ Receptor Gene and Common CYP2D6 Alleles on Prolactin Levels in Risperidone-Treated Boys. Pharm. Genom. 2013, 23, 487–493. [Google Scholar] [CrossRef]
- Schoretsanitis, G.; de Leon, J.; Diaz, F.J. Prolactin Levels: Sex Differences in the Effects of Risperidone, 9-Hydroxyrisperidone Levels, CYP2D6 and ABCB1 Variants. Pharmacogenomics 2018, 19, 815–823. [Google Scholar] [CrossRef]
- Lane, H.-Y.; Liu, Y.-C.; Huang, C.-L.; Chang, Y.-C.; Wu, P.-L.; Lu, C.-T.; Chang, W.-H. Risperidone-Related Weight Gain: Genetic and Nongenetic Predictors. J. Clin. Psychopharmacol. 2006, 26, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Cabaleiro, T.; Ochoa, D.; López-Rodríguez, R.; Román, M.; Novalbos, J.; Ayuso, C.; Abad-Santos, F. Effect of Polymorphisms on the Pharmacokinetics, Pharmacodynamics, and Safety of Risperidone in Healthy Volunteers. Hum. Psychopharmacol. 2014, 29, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Yamamoto, K.; Ohsawa, F.; Otsuka, I.; Hishimoto, A.; Sora, I.; Hirai, M.; Yano, I. Association of CYP2D6 Polymorphisms and Extrapyramidal Symptoms in Schizophrenia Patients Receiving Risperidone: A Retrospective Study. J. Pharm. Health Care Sci. 2018, 4, 28. [Google Scholar] [CrossRef]
- AEMPS Ficha Técnica Xeplion®. Available online: https://cima.aemps.es/cima/pdfs/ft/11672002/FT_11672002.pdf (accessed on 29 January 2021).
- Chue, P.; Chue, J. A Review of Paliperidone Palmitate. Expert Rev. Neurother. 2012, 12, 1383–1397. [Google Scholar] [CrossRef]
- Muller, R.H.; Keck, C.M. Challenges and Solutions for the Delivery of Biotech Drugs—a Review of Drug Nanocrystal Technology and Lipid Nanoparticles. J. Biotechnol. 2004, 113, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Janssen Pharmaceuticals. A Study of Paliperidone Palmitate 6-Month Formulation (NCT03345342). Available online: https://Clinicaltrials.Gov/Ct2/Show/Study/NCT03345342 (accessed on 7 May 2018).
- Samtani, M.N.; Nandy, P.; Ravenstijn, P.; Remmerie, B.; Vermeulen, A.; Russu, A.; D’hoore, P.; Baum, E.Z.; Savitz, A.; Gopal, S.; et al. Prospective Dose Selection and Acceleration of Paliperidone Palmitate 3-Month Formulation Development Using a Pharmacometric Bridging Strategy. Br. J. Clin. Pharmacol. 2016, 82, 1364–1370. [Google Scholar] [CrossRef] [Green Version]
- Ravenstijn, P.; Remmerie, B.; Savitz, A.; Samtani, M.N.; Nuamah, I.; Chang, C.-T.; De Meulder, M.; Hough, D.; Gopal, S. Pharmacokinetics, Safety, and Tolerability of Paliperidone Palmitate 3-Month Formulation in Patients with Schizophrenia: A Phase-1, Single-Dose, Randomized, Open-Label Study. J. Clin. Pharmacol. 2016, 56, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Samtani, M.N.; Vermeulen, A.; Stuyckens, K. Population Pharmacokinetics of Intramuscular Paliperidone Palmitate in Patients with Schizophrenia: A Novel Once-Monthly, Long-Acting Formulation of an Atypical Antipsychotic. Clin. Pharm. 2009, 48, 585–600. [Google Scholar] [CrossRef]
- Ravenstijn, P.; Samtani, M.; Russu, A.; Hough, D.; Gopal, S. Paliperidone Palmitate Long-Acting Injectable Given Intramuscularly in the Deltoid Versus the Gluteal Muscle: Are They Therapeutically Equivalent? J. Clin. Psychopharmacol. 2016, 36, 744–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Collier, A.C.; Barr, A.M.; Honer, W.G.; Procyshyn, R.M. Paliperidone Palmitate Long-Acting Injectable Given Intramuscularly in the Deltoid Versus the Gluteal Muscle: Are They Therapeutically Equivalent? J. Clin. Psychopharmacol. 2015, 35, 447–449. [Google Scholar] [CrossRef]
- Helland, A.; Syrstad, V.E.G.; Spigset, O. Prolonged Elimination of Paliperidone after Administration of Paliperidone Palmitate Depot Injections. J. Clin. Psychopharmacol. 2015, 35, 95–96. [Google Scholar] [CrossRef]
- Coppola, D.; Liu, Y.; Gopal, S.; Remmerie, B.; Samtani, M.N.; Hough, D.W.; Nuamah, I.; Sulaiman, A.; Pandina, G. A One-Year Prospective Study of the Safety, Tolerability and Pharmacokinetics of the Highest Available Dose of Paliperidone Palmitate in Patients with Schizophrenia. BMC Psychiatry 2012, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, M.O.; Samtani, M.N.; Plan, E.L.; Jonsson, E.N.; Rossenu, S.; Vermeulen, A.; Russu, A. Population Pharmacokinetics of a Novel Once-Every 3 Months Intramuscular Formulation of Paliperidone Palmitate in Patients with Schizophrenia. Clin. Pharm. 2017, 56, 421–433. [Google Scholar] [CrossRef] [PubMed]
- Helland, A.; Spigset, O. Serum Concentrations of Paliperidone After Administration of the Long-Acting Injectable Formulation. Ther. Drug Monit. 2017, 39, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Boumba, V.A.; Petrikis, P.; Patteet, L.; Baou, M.; Rallis, G.; Metsios, A.; Karampas, A.; Maudens, K.; Mavreas, V. A Pilot Study of Plasma Antipsychotic Drugs Concentrations of First Episode Patients with Psychosis From Epirus—Greece. CPSP 2019, 8, 123–129. [Google Scholar] [CrossRef]
- Nazirizadeh, Y.; Vogel, F.; Bader, W.; Haen, E.; Pfuhlmann, B.; Gründer, G.; Paulzen, M.; Schwarz, M.; Zernig, G.; Hiemke, C. Serum Concentrations of Paliperidone versus Risperidone and Clinical Effects. Eur. J. Clin. Pharmacol. 2010, 66, 797–803. [Google Scholar] [CrossRef]
- Vermeir, M.; Naessens, I.; Remmerie, B.; Mannens, G.; Hendrickx, J.; Sterkens, P.; Talluri, K.; Boom, S.; Eerdekens, M.; van Osselaer, N.; et al. Absorption, Metabolism, and Excretion of Paliperidone, a New Monoaminergic Antagonist, in Humans. Drug Metab. Dispos. 2008, 36, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Lisbeth, P.; Vincent, H.; Kristof, M.; Bernard, S.; Manuel, M.; Hugo, N. Genotype and Co-Medication Dependent CYP2D6 Metabolic Activity: Effects on Serum Concentrations of Aripiprazole, Haloperidol, Risperidone, Paliperidone and Zuclopenthixol. Eur J. Clin. Pharmacol. 2016, 72, 175–184. [Google Scholar] [CrossRef]
- Yasui-Furukori, N.; Kubo, K.; Ishioka, M.; Tsuchimine, S.; Inoue, Y. Interaction between Paliperidone and Carbamazepine. Ther. Drug Monit. 2013, 35, 649–652. [Google Scholar] [CrossRef]
- Berwaerts, J.; Cleton, A.; Herben, V.; van de Vliet, I.; Chang, I.; van Hoek, P.; Eerdekens, M. The Effects of Paroxetine on the Pharmacokinetics of Paliperidone Extended-Release Tablets. Pharmacopsychiatry 2009, 42, 158–163. [Google Scholar] [CrossRef]
- AEMPS Ficha Técnica Abilify Maintena®. Available online: https://cima.aemps.es/cima/pdfs/es/ft/113882002/FT_113882002.pdf (accessed on 21 January 2021).
- Mallikaarjun, S.; Kane, J.M.; Bricmont, P.; McQuade, R.; Carson, W.; Sanchez, R.; Forbes, R.A.; Fleischhacker, W.W. Pharmacokinetics, Tolerability and Safety of Aripiprazole Once-Monthly in Adult Schizophrenia: An Open-Label, Parallel-Arm, Multiple-Dose Study. Schizophr Res. 2013, 150, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvio Caccia N-Dealkylation of Arylpiperazine Derivatives: Disposition and Metabolism of the 1-Aryl-Piperazines Formed. CDM 2007, 8, 612–622. [CrossRef] [PubMed]
- Tadori, Y.; Forbes, R.A.; McQuade, R.D.; Kikuchi, T. In Vitro Pharmacology of Aripiprazole, Its Metabolite and Experimental Dopamine Partial Agonists at Human Dopamine D2 and D3 Receptors. Eur. J. Pharmacol. 2011, 668, 355–365. [Google Scholar] [CrossRef]
- Swainston Harrison, T.; Perry, C.M. Aripiprazole: A Review of Its Use in Schizophrenia and Schizoaffective Disorder. Drugs 2004, 64, 1715–1736. [Google Scholar] [CrossRef]
- Kirschbaum, K.M.; Uhr, M.; Holthoewer, D.; Namendorf, C.; Pietrzik, C.; Hiemke, C.; Schmitt, U. Pharmacokinetics of Acute and Sub-Chronic Aripiprazole in P-Glycoprotein Deficient Mice. Neuropharmacology 2010, 59, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Raoufinia, A.; Peters-Strickland, T.; Nylander, A.-G.; Baker, R.A.; Eramo, A.; Jin, N.; Bricmont, P.; Repella, J.; McQuade, R.D.; Hertel, P.; et al. Aripiprazole Once-Monthly 400 Mg: Comparison of Pharmacokinetics, Tolerability, and Safety of Deltoid Versus Gluteal Administration. Int. J. Neuropsychopharmacol. 2017, 20, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Hard, M.L.; Mills, R.J.; Sadler, B.M.; Turncliff, R.Z.; Citrome, L. Aripiprazole Lauroxil: Pharmacokinetic Profile of This Long-Acting Injectable Antipsychotic in Persons With Schizophrenia. J. Clin. Psychopharmacol. 2017, 37, 289–295. [Google Scholar] [CrossRef]
- Hendset, M.; Hermann, M.; Lunde, H.; Refsum, H.; Molden, E. Impact of the CYP2D6 Genotype on Steady-State Serum Concentrations of Aripiprazole and Dehydroaripiprazole. Eur. J. Clin. Pharmacol. 2007, 63, 1147–1151. [Google Scholar] [CrossRef]
- Suzuki, T.; Mihara, K.; Nakamura, A.; Kagawa, S.; Nagai, G.; Nemoto, K.; Kondo, T. Effects of Genetic Polymorphisms of CYP2D6, CYP3A5, and ABCB1 on the Steady-State Plasma Concentrations of Aripiprazole and Its Active Metabolite, Dehydroaripiprazole, in Japanese Patients with Schizophrenia. Ther. Drug Monit. 2014, 36, 651–655. [Google Scholar] [CrossRef]
- Suzuki, T.; Mihara, K.; Nakamura, A.; Nagai, G.; Kagawa, S.; Nemoto, K.; Ohta, I.; Arakaki, H.; Uno, T.; Kondo, T. Effects of the CYP2D6*10 Allele on the Steady-State Plasma Concentrations of Aripiprazole and Its Active Metabolite, Dehydroaripiprazole, in Japanese Patients with Schizophrenia. Ther. Drug Monit. 2011, 33, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, C.; Ochoa, D.; Román, M.; Saiz-Rodríguez, M.; Wojnicz, A.; Gómez-Sánchez, C.I.; Martín-Vílchez, S.; Abad-Santos, F. Influence of CYP2D6, CYP3A4, CYP3A5 and ABCB1 Polymorphisms on Pharmacokinetics and Safety of Aripiprazole in Healthy Volunteers. Basic Clin. Pharm. Toxicol. 2018, 122, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tveito, M.; Molden, E.; Høiseth, G.; Correll, C.U.; Smith, R.L. Impact of Age and CYP2D6 Genetics on Exposure of Aripiprazole and Dehydroaripiprazole in Patients Using Long-Acting Injectable versus Oral Formulation: Relevance of Poor and Intermediate Metabolizer Status. Eur J. Clin. Pharmacol. 2020, 76, 41–49. [Google Scholar] [CrossRef]
- van der Weide, K.; van der Weide, J. The Influence of the CYP3A4*22 Polymorphism and CYP2D6 Polymorphisms on Serum Concentrations of Aripiprazole, Haloperidol, Pimozide, and Risperidone in Psychiatric Patients. J. Clin. Psychopharmacol. 2015, 35, 228–236. [Google Scholar] [CrossRef]
- Azuma, J.; Hasunuma, T.; Kubo, M.; Miyatake, M.; Koue, T.; Higashi, K.; Fujiwara, T.; Kitahara, S.; Katano, T.; Hara, S. The Relationship between Clinical Pharmacokinetics of Aripiprazole and CYP2D6 Genetic Polymorphism: Effects of CYP Enzyme Inhibition by Coadministration of Paroxetine or Fluvoxamine. Eur J. Clin. Pharmacol. 2012, 68, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Kubo, M.; Koue, T.; Maune, H.; Fukuda, T.; Azuma, J. Pharmacokinetics of Aripiprazole, a New Antipsychotic, Following Oral Dosing in Healthy Adult Japanese Volunteers: Influence of CYP2D6 Polymorphism. Drug Metab Pharm. 2007, 22, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Kane, J.M.; Carson, W.H.; Saha, A.R.; McQuade, R.D.; Ingenito, G.G.; Zimbroff, D.L.; Ali, M.W. Efficacy and Safety of Aripiprazole and Haloperidol versus Placebo in Patients with Schizophrenia and Schizoaffective Disorder. J. Clin. Psychiatry 2002, 63, 763–771. [Google Scholar] [CrossRef]
- Potkin, S.G.; Saha, A.R.; Kujawa, M.J.; Carson, W.H.; Ali, M.; Stock, E.; Stringfellow, J.; Ingenito, G.; Marder, S.R. Aripiprazole, an Antipsychotic with a Novel Mechanism of Action, and Risperidone vs Placebo in Patients with Schizophrenia and Schizoaffective Disorder. Arch. Gen. Psychiatry 2003, 60, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Subuh Surja, A.A.; Reynolds, K.K.; Linder, M.W.; El-Mallakh, R.S. Pharmacogenetic Testing of CYP2D6 in Patients with Aripiprazole-Related Extrapyramidal Symptoms: A Case–Control Study. Pers. Med. 2008, 5, 361–365. [Google Scholar] [CrossRef]
- Sangüesa, E.; Cirujeda, C.; Concha, J.; Padilla, P.P.; Ribate, M.P.; García, C.B. Implementation of Pharmacogenetics in a Clozapine Treatment Resistant Patient: A Case Report. Pharmacogenomics 2019, 20, 871–877. [Google Scholar] [CrossRef]
- Franco-Martin, M.A.; Sans, F.; García-Berrocal, B.; Blanco, C.; Llanes-Alvarez, C.; Isidoro-García, M. Usefulness of Pharmacogenetic Analysis in Psychiatric Clinical Practice: A Case Report. Clin. Psychopharmacol. Neurosci. 2018, 16, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.; Sharp, S.; Manzardo, A.M.; Butler, M.G. Pharmacogenetics Informed Decision Making in Adolescent Psychiatric Treatment: A Clinical Case Report. Int. J. Mol. Sci. 2015, 16, 4416–4428. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, O.; Kuivaniemi, H.; Tromp, G.; Faucett, W.A.; Li, R.; Manolio, T.A.; Sanderson, S.C.; Kannry, J.; Zinberg, R.; Basford, M.A.; et al. The Electronic Medical Records and Genomics (EMERGE) Network: Past, Present, and Future. Genet. Med. 2013, 15, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, J.M.; Haidar, C.E.; Wilkinson, M.R.; Crews, K.R.; Baker, D.K.; Kornegay, N.M.; Yang, W.; Pui, C.-H.; Reiss, U.M.; Gaur, A.H.; et al. PG4KDS: A Model for the Clinical Implementation of Pre-Emptive Pharmacogenetics. Am. J. Med. Genet. 2014, 166, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Blagec, K.; Koopmann, R.; Crommentuijn van Rhenen, M.; Holsappel, I.; van der Wouden, C.H.; Konta, L.; Xu, H.; Steinberger, D.; Just, E.; Swen, J.J.; et al. Implementing Pharmacogenomics Decision Support across Seven European Countries: The Ubiquitous Pharmacogenomics (U-PGx) Project. J. Am. Med Inform. Assoc. 2018, 25, 893–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borobia, A.M.; Dapia, I.; Tong, H.Y.; Arias, P.; Muñoz, M.; Tenorio, J.; Hernández, R.; García García, I.; Gordo, G.; Ramírez, E.; et al. Clinical Implementation of Pharmacogenetic Testing in a Hospital of the Spanish National Health System: Strategy and Experience Over 3 Years: Clinical Implementation of Pharmacogenetic Testing. Clin. Transl. Sci. 2018, 11, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Quiénes Somos. Available online: http://www.seff.es/ (accessed on 23 January 2021).
- Thompson, C.; Steven, P. Hamilton; Catriona Hippman Psychiatrist Attitudes towards Pharmacogenetic Testing, Direct-to-Consumer Genetic Testing, and Integrating Genetic Counseling into Psychiatric Patient Care. Psychiatry Res. 2015, 226, 68–72. [Google Scholar] [CrossRef]
- Walden, L.M.; Brandl, E.J.; Changasi, A.; Sturgess, J.E.; Soibel, A.; Notario, J.F.D.; Cheema, S.; Braganza, N.; Marshe, V.S.; Freeman, N.; et al. Physicians’ Opinions Following Pharmacogenetic Testing for Psychotropic Medication. Psychiatry Res. 2015, 229, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Fundación Instituto Roche. Medicina Personalizada de Precisión En España: Mapa de Comunidades; Fundación Instituto Roche: Madrid, Spain, 2019. [Google Scholar]
- Mas, S.; Gassò, P.; Alvarez, S.; Parellada, E.; Bernardo, M.; Lafuente, A. Intuitive Pharmacogenetics: Spontaneous Risperidone Dosage Is Related to CYP2D6, CYP3A5 and ABCB1 Genotypes. Pharm. J. 2012, 12, 255–259. [Google Scholar] [CrossRef]
- Verbelen, M.; Weale, M.E.; Lewis, C.M. Cost-Effectiveness of Pharmacogenetic-Guided Treatment: Are We There Yet? Pharm. J. 2017, 17, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Winner, J.; Allen, J.D.; Altar, C.A.; Spahic-Mihajlovic, A. Psychiatric Pharmacogenomics Predicts Health Resource Utilization of Outpatients with Anxiety and Depression. Transl. Psychiatry 2013, 3, e242. [Google Scholar] [CrossRef]
- Kurylev, A.A.; Brodyansky, V.M.; Andreev, B.V.; Kibitov, A.O.; Limankin, O.V.; Mosolov, S.N. The Combined Effect of CYP2D6 and DRD2 Taq1A Polymorphisms on the Antipsychotics Daily Doses and Hospital Stay Duration in Schizophrenia Inpatients (Observational Naturalistic Study). Psychiatr. Danub 2018, 30, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Herbild, L.; Andersen, S.E.; Werge, T.; Rasmussen, H.B.; Jürgens, G. Does Pharmacogenetic Testing for CYP450 2D6 and 2C19 among Patients with Diagnoses within the Schizophrenic Spectrum Reduce Treatment Costs? Basic Clin. Pharmacol. Toxicol. 2013, 113, 266–272. [Google Scholar] [CrossRef]
- de Leon, J.; Wynn, G.; Sandson, N.B. The Pharmacokinetics of Paliperidone versus Risperidone. Psychosomatics 2010, 51, 80–88. [Google Scholar] [CrossRef]
- Arakawa, R.; Ito, H.; Takano, A.; Takahashi, H.; Morimoto, T.; Sassa, T.; Ohta, K.; Kato, M.; Okubo, Y.; Suhara, T. Dose-Finding Study of Paliperidone ER Based on Striatal and Extrastriatal Dopamine D2 Receptor Occupancy in Patients with Schizophrenia. Psychopharmacology 2008, 197, 229–235. [Google Scholar] [CrossRef]
- Kapur, S.; Remington, G.; Zipursky, R.B.; Wilson, A.A.; Houle, S. The D2 Dopamine Receptor Occupancy of Risperidone and Its Relationship to Extrapyramidal Symptoms: A PET Study. Life Sci. 1995, 57, PL103–PL107. [Google Scholar] [CrossRef]
- Aravagiri, M.; Marder, S. Brain, Plasma and Tissue Pharmacokinetics of Risperidone and 9-Hydroxyrisperidone after Separate Oral Administration to Rats. Psychopharmacology 2002, 159, 424–431. [Google Scholar] [CrossRef]
- Wang, J.-S.; Ruan, Y.; Taylor, R.M.; Donovan, J.L.; Markowitz, J.S.; DeVane, C.L. The Brain Entry of Risperidone and 9-Hydroxyrisperidone Is Greatly Limited by P-Glycoprotein. Int. J. Neuropsychopharm. 2004, 7, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, S.; Uchida, H.; Bies, R.R.; Caravaggio, F.; Suzuki, T.; Plitman, E.; Mar, W.; Gerretsen, P.; Pollock, B.G.; Mulsant, B.H.; et al. Dopamine D2/3 Receptor Occupancy Following Dose Reduction Is Predictable With Minimal Plasma Antipsychotic Concentrations: An Open-Label Clinical Trial. Schizophr Bull. 2016, 42, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Kim, S.; Seo, S.; Lee, J.S.; Howes, O.D.; Kim, E.; Kwon, J.S. The Relationship between Dopamine Receptor Blockade and Cognitive Performance in Schizophrenia: A [11C]-Raclopride PET Study with Aripiprazole. Transl. Psychiatry 2018, 8, 87. [Google Scholar] [CrossRef] [PubMed]
Study | LAI/Oral | n | Race | Age (Median) | Male/Female | CYP2D6 Phenotypes | Outcome |
---|---|---|---|---|---|---|---|
Vermeulen A et al. [41] | Oral | 407 | NR | 38 | 267/140 | PM/IM/NM | Irrelevant |
Scordo MG et al. [42] | Oral | 37 | Caucasians | 41 | 30/7 | PM/IM/NM/UM | Irrelevant |
Cho HY et al. [43] | Oral | 24 | Asian | 24.6 | NR | PM/NM | Irrelevant |
Hendset, M et al. [35] | LAI | 90 | Caucasians | 38 | 53/37 | PM/IM/NM/UM | Relevant (higher plasma exposure for IM and PM) |
Llerena A et al. [44] | Oral | 35 | Caucasians | 43 | NR | PM/IM/NM/UM | Irrelevant |
Choong, E et al. [45] | LAI | 42 | Caucasian (76%) | 35 | 30/12 | PM/IM/NM/UM | Relevant (higher plasma exposure for IM and PM and lower for UM) |
Leon, J. D et al. [46] | Oral | 277 | Caucasian (78%) | 43.7 | 150/127 | PM/IM/NM/UM | Relevant (higher plasma exposure for PM) |
Jovanović, N et al. [47] | Oral | 83 | Caucasians | 30.3 | 17/66 | PM/NM/IM | Irrelevant |
Jukic, M et al. [48] | Oral | 725 | Caucasians | 42.8 | 355/370 | PM/IM/NM/UM | Relevant (higher plasma exposure for IM and PM and lower for UM) |
Locatelli, I et al. [49] | LAI | 50 | Caucasian | 30 | 39/11 | PM/IM/NM/UM | Irrelevant |
Vandenberghe, F et al. [50] | Oral | 150 | Caucasian (81%) | 39 | 82/68 | PM/IM/NM/UM | Relevant (higher plasma exposure for PM) |
Gunes, A et al. [51] | Oral | 46 | Caucasian | 45 | 35/11 | PM/NM/PM | Relevant (higher plasma exposure for PM) |
Drug | Main Active Metabolite | Therapeutic Reference Range | Metabolism | TDM Recommendation (33) | Mean PK Values | Genetic Test Recommendation (94) |
---|---|---|---|---|---|---|
LAI-Risperidone microespheres | 9-OH-Risperidone | 20–60 ng/mL | CYP2D6/CYP3A4 | 2 | Tmax: 28 days Tss: 8 weeks T1/2: 3–6 days | Informative |
LAI-Risperidone ATRIGEL® | 9-OH-Risperidone | 20–60 ng/mL | CYP2D6/CYP3A4 | 2 | Double Tmax: 4–6 h and 10–14 days Tss: 8 weeks T1/2: 8–9 days | Informative |
Author | Formulation | Model | Covariates | Parameters Values | Equations |
---|---|---|---|---|---|
Samtani et al. [77] | LAI-PP1M | - One-compartment model with first-order elimination - Dual and sequential input absorption: rapid zero order followed by first-order absorption after a lag time. - Flip-flop kinetics due to dissolution rate limited absorption. | - SEX, AGE, IVOL and INJS on Ka - CLCR on CL - BMI and SEX on Vd | KA: 0.488 h−1 CL: 4.95 L/h VD: 391 L | SEX = 1 for males SEX = 0.726 for females |
Magnusson et al. [82] | LAI-PP3M | - One-compartment model with first-order elimination - Dual and sequential input absorption processes: rapid zero absorption followed by first-order absorption. | - IVOL on Ka - INJS and SEX on Kamax - CLCR on CL - BMI on Vd | KA: not available. CL/F: 3.84 L/h VD/F: 1960 L |
Drug | Main Active Metabolite | Therapeutic Reference Range | Metabolism | TDM Recommendation (33) | Mean PK Values | Genetic Test Recommendation (94) |
---|---|---|---|---|---|---|
LAI-Paliperidone PP1M | - | 20–60 ng/mL | 60% excreted unmetabolized/ CYP2D6/CYP3A4 In vitro | 2 | Tmax: 13 days Tss: 8–9 months T1/2: 25–49 days | Informative |
LAI-Paliperidone PP3M | - | 2–60 ng/mL | 60% excreted unmetabolized/ CYP2D6/CYP3A4 In vitro | 2 | Tmax: 30–33 days Tss: 15 months T1/2: 84–95 days (deltoid) 118–139 days (gluteal) | Informative |
STUDY | Oral/LAI | n | Race | Age (Median) | Male/Female | CYP2D6 Phenotypes | Outcome |
---|---|---|---|---|---|---|---|
Vermeir et al. [86] | Oral | 5 | Caucasian | 51 | 5/0 | PM/NM * | Irrelevant |
Lisbeth et al. [87] | Oral/LAI | 31 | Caucasian | 35 | 22/9 | PM/IM/EM/UM | Irrelevant |
Berwaerts et al. [89] | Oral | 60 | Caucasian (75%) | NR | 60/0 | NM/UM | Irrelevant (Coadministration with paroxetine) |
Author | Formulation | Model | Covariates | Parameters Values | Equations |
---|---|---|---|---|---|
Hard et al. [97] | Aripiprazole lauroxil | - 2-compartment model with sequential zero-order absorption followed by a first-order process - Zero-order conversion of aripiprazole lauroxil to aripiprazole | - CYP2D6 PM on CL - Total weight on Vd | KA: 0.574 h−1 CL/F: 0.767 L/H (PM) vs. 2.02 L/h (non-PM) VD/F: 2122 L | CL equation not reported |
Study | Oral/LAI | n | Race | Age (Median) | Male/Female | CYP2D6 Phenotypes | Outcome |
---|---|---|---|---|---|---|---|
Suzuki et al. [99] | Oral | 89 | Asian | 38 | 46/43 | IM/NM/UM | Relevant (higher plasma exposure for IM and PM) |
Suzuki et al. [100] | Oral | 63 | Asian | NR | 36/33 | PM/IM | Relevant (For ×10 allele) |
Hendset et al. [54] | Oral | 266 | Caucasian | 33 | NR | IM/NM | Irrelevant |
Hendset et al. [98] | Oral | 62 | Caucasian | 31 | 29/33 | PM/NM | Relevant (higher plasma exposure for PM) |
Belmonte et al.* [101] | Oral | 148 | Caucasian | 26 | 85/63 | PM/IM/NM/UM | Relevant (higher plasma exposure for PM and IM) |
Tveito et al. [102] | Oral/LAI | 635(469/166) | Caucasian | 40 | 294/341 | PM/IM/NM/UM | Relevant (higher plasma exposure for PM and IM) |
Jukic et al. [48] | Oral | 890 | Caucasian | 37 | 400/490 | PM/IM/NM/UM | Relevant (higher plasma exposure for PM and IM) |
Lisbeth et al. [87] | Oral/Lai | 18(17/1) | Caucasian | 36 | 11/7 | PM/IM/NM/UM | Relevant (higher plasma exposure for PM) |
van der Weide et al. [103] | Oral | 130 | Caucasian | NR | NR | PM/IM/NM/UM | Irrelevant |
Azuma et al.** [104] | Oral | 27 | Asian | NR | NR | IM/NM | Relevant (Coadministration with CYP2D6 inhibitors) |
Kubo et al.** [105] | Oral | 20 | Asian | 24 | 20/0 | IM/NM | Irrelevant |
Drug | Main Active Metabolite | Therapeutic Reference Range | Metabolism | TDM Recommendation (33) | Mean PK Values | Genetic Test Recommendation (94) |
---|---|---|---|---|---|---|
LAI-Aripiprazole Monohydrate | Dehydro-aripiprazole | 100–350 ng/Ml Active moiety: 150–500 ng/mL | CYP2D6/CYP3A4 | 2 | Tmax: 4–7 days Tss: 4 months T1/2 400 mg: 46.5 days 300 mg: 29.9 days | Actionable |
LAI-Aripiprazole Lauroxil | Dehydro-aripiprazole | 100–350 ng/mL Active moiety: 150–500 ng/mL | CYP2D6/CYP3A4 | 2 | Tmax: 41 days Tss: 4 months T1/2: 53.9–57.2 days | Actionable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toja-Camba, F.J.; Gesto-Antelo, N.; Maroñas, O.; Echarri Arrieta, E.; Zarra-Ferro, I.; González-Barcia, M.; Bandín-Vilar, E.; Mangas Sanjuan, V.; Facal, F.; Arrojo Romero, M.; et al. Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics. Pharmaceutics 2021, 13, 935. https://doi.org/10.3390/pharmaceutics13070935
Toja-Camba FJ, Gesto-Antelo N, Maroñas O, Echarri Arrieta E, Zarra-Ferro I, González-Barcia M, Bandín-Vilar E, Mangas Sanjuan V, Facal F, Arrojo Romero M, et al. Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics. Pharmaceutics. 2021; 13(7):935. https://doi.org/10.3390/pharmaceutics13070935
Chicago/Turabian StyleToja-Camba, Francisco José, Nerea Gesto-Antelo, Olalla Maroñas, Eduardo Echarri Arrieta, Irene Zarra-Ferro, Miguel González-Barcia, Enrique Bandín-Vilar, Victor Mangas Sanjuan, Fernando Facal, Manuel Arrojo Romero, and et al. 2021. "Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics" Pharmaceutics 13, no. 7: 935. https://doi.org/10.3390/pharmaceutics13070935
APA StyleToja-Camba, F. J., Gesto-Antelo, N., Maroñas, O., Echarri Arrieta, E., Zarra-Ferro, I., González-Barcia, M., Bandín-Vilar, E., Mangas Sanjuan, V., Facal, F., Arrojo Romero, M., Carracedo, A., Mondelo-García, C., & Fernández-Ferreiro, A. (2021). Review of Pharmacokinetics and Pharmacogenetics in Atypical Long-Acting Injectable Antipsychotics. Pharmaceutics, 13(7), 935. https://doi.org/10.3390/pharmaceutics13070935