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Cost-effectiveness of pharmacogenetic-guided treatment: are
we there yet?
M Verbelen1, ME Weale2 and CM Lewis1,2

Pharmacogenetics (PGx) has the potential to personalize pharmaceutical treatments. Many relevant gene–drug associations have
been discovered, but PGx-guided treatment needs to be cost-effective as well as clinically beneficial to be incorporated into
standard health-care. We reviewed economic evaluations for PGx associations listed in the US Food and Drug Administration (FDA)
Table of Pharmacogenomic Biomarkers in Drug Labeling. We determined the proportion of evaluations that found PGx-guided
treatment to be cost-effective or dominant over the alternative strategies, and estimated the impact on this proportion of removing
the cost of genetic testing. Of the 137 PGx associations in the FDA table, 44 economic evaluations, relating to 10 drugs, were
identified. Of these evaluations, 57% drew conclusions in favour of PGx testing, of which 30% were cost-effective and 27% were
dominant (cost-saving). If genetic information was freely available, 75% of economic evaluations would support PGx-guided
treatment, of which 25% would be cost-effective and 50% would be dominant. Thus, PGx-guided treatment can be a cost-effective
and even a cost-saving strategy. Having genetic information readily available in the clinical health record is a realistic future
prospect, and would make more genetic tests economically worthwhile.
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INTRODUCTION
Pharmacogenetics (PGx) studies the relationship between genetic
variation and inter-individual variability in drug response in terms
of efficacy and safety. Hence, PGx knowledge can be used to tailor
pharmaceutical treatment to the genetic make-up of the patient.
Several robust, well-replicated PGx associations exist, for example,
the association of HLA-B*5701 with abacavir hypersensitivity, HLA-
B*1502 with carbamazepine-induced Stevens–Johnson syndrome/
toxic epidermal necrolysis, and VKORC1 and CYP2C9 with warfarin
dosing.1–3 Accordingly, the US Food and Drug Administration
(FDA) includes information about PGx associations in many drug
labels in a wide range of therapeutic areas.4 These PGx drug labels
cover tests that are commonly used, but also include weaker
genetic associations that are reported without requiring adjust-
ments to pharmaceutical treatment. Most drugs with mandatory
genetic testing are used in oncology, but PGx tests in other
therapeutic areas are already being offered by laboratories and
some have become part of standard clinical practice.5,6

Personalizing drug treatments through PGx testing could
improve their efficacy and safety, as well as reduce costs.7

However, as health-care resources are finite, it is important that
the cost-effectiveness of novel PGx-guided treatment strategies is
assessed in addition to their clinical utility before they are widely
applied. Economic evaluations, which compare costs and out-
comes of at least two competing interventions, are a useful tool to
inform decision making and prioritize health-care spending. In the
context of PGx testing, a pharmaco-economic study might
contrast PGx-guided treatment with standard treatment (ST) with
the same drug, or with an alternative drug that does not require
genetic testing, or with both alternatives. When the PGx strategy is

found to be more effective at an acceptable additional cost (cost-
effective) or more effective at a lower cost (cost-saving or
dominant), this provides a strong argument for the implementa-
tion of PGx testing.
Previously published literature reviews of PGx-guided treatment

and personalized medicine reported that the majority of PGx
strategies were cost-effective or even dominant, though they noted
that there was large heterogeneity in methodology between
studies.8–12 Concerns over the quality of the early economic
evaluations of PGx-guided treatment have been raised, but the
quality is generally considered to have improved over time.13–16

Our review of pharmaco-economic studies of PGx-guided
treatment provides an update on the literature in this rapidly
evolving field (the most recent previous review covered studies up
to early 2013 (ref. 10)). Furthermore, we include a more extensive
range of economic evaluations, whereas recent literature reviews
were limited to cost utility analyses (CUAs) only.10,11 We also
assessed the impact of freely available genetic information on the
cost-effectiveness of PGx-guided treatment. We adopted a narrow
definition of PGx, limiting our scope to consideration of variation
in germline DNA. In contrast to tests on tumour, viral or bacterial
DNA, germline DNA has the advantage that genetic variants need
to be typed only once, and results remain relevant throughout a
patient’s life.

MATERIALS AND METHODS
Data sources and search strategy
The FDA Table of Pharmacogenomic Biomarkers in Drug Labeling
lists FDA-approved drugs that include PGx information on their
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drug label along with the biomarker gene (accessed on 18
September 2015).4 We used this table to identify drugs for which
there is a genetic variant associated with the drug efficacy, safety
or dosing. We excluded non-germline genetic biomarkers, for
example, mutations in viral or tumour DNA.
We then searched for the selected drugs and biomarkers in the

National Health Service Economic Evaluations Database (NHS
EED), a UK Department of Health and National Institute for Health
Research-funded registry of economic evaluations of health and
social care interventions.17,18 This resource includes CUAs, cost-
effectiveness analyses (CEAs), cost–benefit analyses (CBAs—see
below for definitions of these terms) and commentaries by the
Centre for Reviews and Dissemination of the University of York.
Funding of the NHS EED ceased in March 2015 and the latest
database update was December 2014.
For each drug included in our study, the NHS EED was searched

for economic evaluations that contain (1) the drug name and (2)
the specific gene from the FDA label or the search terms genetic,
genotype, genotypic, pharmacogenetic or pharmacogenomic in
any field. We only included studies that compared a PGx-guided
treatment strategy with at least one alternative strategy.
We also searched PubMed to identify more recent papers (until

September 2015) and any other studies missed by the NHS EED
search. We searched for articles that included (1) the name of the
drug and (2) the specific gene mentioned in the FDA label or the
search terms genetic, genotype, genotypic, pharmacogenetic or
pharmacogenomic in the title or abstract, and (3) Cost-Benefit
Analysis as a Medical Subject Headings term. In addition, the
reference lists of retrieved publications were used to identify
additional studies missed in our database searches.

Overview of economic evaluation methodology
Measuring and comparing costs and health outcomes is essential
in a pharmaco-economic study. Whereas costs are naturally
expressed in monetary units, the effect of a healthcare interven-
tion can be expressed in different ways. In CUAs, health outcomes
are assessed as quality-adjusted life years (QALYs), which measure
the expected number of post-treatment years of life accounting
for the quality of life. QALYs allow comparisons of treatment
strategies across therapeutic areas and populations, but are an
abstract concept (‘quality’ is hard to define) and their validity has
been questioned.19 CEAs evaluate the effect of an intervention in
terms of a disease or treatment specific measure, for example the

number of adverse events avoided, the change in score on a
depression rating scale or time taken to remission. CBAs quantify
treatment outcome in purely monetary terms.
Furthermore, the perspective of a pharmaco-economic study

determines which costs and benefits are taken into account. These
can be limited to costs to the public health-care system or private
insurers, for example, staff salaries, drugs and equipment costs, or
may include broader costs such as productivity losses and
informal care. Commonly used perspectives are the third-party
payer and societal perspective, but some studies take a hospital or
patient perspective.
The incremental cost-effectiveness ratio (ICER) summarizes the

difference in costs and health outcomes between a PGx-guided
strategy and ST:

ICER ¼ CostPGx -CostSTð Þ
EffectPGx - EffectSTð Þ

If the PGx treatment reduces costs and achieves a better outcome
than the ST, then the PGx strategy dominates the ST. Contrarily, if
the PGx option costs more but is less effective than the ST, then
the PGx treatment is dominated by the ST (Figure 1). When one
treatment comes at a higher cost but is also more effective than
the other, the ICER is compared to a willingness-to-pay threshold
to determine cost-effectiveness. Generally, ICERs up to £20 000–
£30 000 per QALY (or $30 000–$50 000 per QALY) are considered
cost-effective.20 As costs, health outcomes and willingness-to-pay
thresholds differ between countries, or may differ according to the
assumptions and perspectives adopted, economic studies evalu-
ating the same PGx test may come to different conclusions.

Analyses
We extracted key parameters from the reviewed economic
evaluations, including the unit of outcome, country, perspective,
ICER if applicable and the conclusion regarding the cost-
effectiveness of the PGx testing strategy (the interpretation of
the result as described in the publication). A parameter of
particular interest is the cost of the genetic test, as this can
significantly affect the cost-effectiveness of the PGx testing
strategy and may change over time. To allow comparison between
studies, the price of the genetic test was corrected for inflation
and converted to US dollars estimated at 2014 levels (2014 US$).
A stepwise linear regression model was fitted to test whether

publication year, geographic region (Asia, Oceania, United States
and Canada or EU) or perspective (health care, society or other)
had an influence on the price of genetic testing. A stepwise
logistic regression model was also used to investigate whether
publication year, geographic region, perspective, cost of genetic
test, genetic variant (HLA, TPMT or other) or outcome (QALY or
other) was associated with the PGx testing strategy being cost-
effective. Statistical analysis was performed in R (version 3.1.2, R
Foundation for Statistical Computing, Vienna, Austria).
We estimated the impact of freely available genetic information

on the conclusions regarding the cost-effectiveness of PGx-
informed strategies. The ICER under assumption of free genetic
testing was calculated by adjusting the cost of the PGx-guided
treatment for the cost of the test as reported in the reviewed
studies

ICERfree PGx ¼
CostPGx -Costgenetic test -CostST
� �

EffectPGx - EffectSTÞð

When insufficient details were provided to estimate the
ICERfree PGx, it was assumed that free genetic testing could not
worsen the conclusion regarding PGx-guided treatment. For
example, when a study found the PGx strategy to be cost-
effective, we assumed that PGx-guided treatment with free
genetic testing would also be at least as cost-effective.

Effect difference
EPGx -EST

Cost difference
CPGx -CST

PGx is more effective and 
costs less than ST
PGx DOMINATES ST

PGx is less effective and 
costs more than ST
PGx IS DOMINATED BY ST PGx is more

effective than ST at 
acceptable extra cost

PGx IS COST-EFFECTIVE

PGx is less effective and 
costs less than ST

PGx is more effective than 
ST but extra cost is not 
acceptable
PGx IS NOT 
COST-EFFECTIVE

Figure 1. Cost-effectiveness plane of pharmaco-economic studies.
PGx, pharmacogenetics-guided treatment; ST, standard treatment.
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RESULTS
Description of studies
The FDA Table of Pharmacogenomic Biomarkers in Drug Labeling
listed 137 distinct drugs, of which 68 met our inclusion criteria
(Figure 2). These drugs were from diverse clinical specialties,
including cancer (11 drugs), infectious diseases (10 drugs),
psychiatry (9 drugs) and neurology (8 drugs) (Table 1). Our
literature search yielded economic evaluations for only 10 of these
68 drugs (14.7%; Table 2). All publications related to a single drug,
except for one study investigating a PGx testing strategy for

carbamazepine and phenytoin treatment, which assumed both
drugs to be interchangeable in terms of costs, efficacy and
safety.21 To avoid duplication of studies in our review, this
publication was counted as a carbamazepine study (there were no
other publications on phenytoin).
We retrieved 44 economic evaluations that investigated the

cost-effectiveness of a PGx-informed strategy (Table 2). Full details
of the reviewed studies and extracted information are given in
Supplementary Table 1. The earliest study included was published
in 2000 and over 70% of studies were published in 2009 or later.
Most publications were CUAs (30 studies, 68%) or CEAs (12
studies, 27%), with only two CBAs (5%). A health-care system
perspective was adopted in 18 studies (41%), a societal
perspective in 10 papers (23%), a third-party payer perspective
in 5 studies (11%) and 11 papers (25%) did not state a clear
perspective. In all, 20 studies (45%) were conducted in North
America, 11 (25%) in Europe, 6 (14%) in Asia and 3 (7%) in
Oceania; 4 studies (9%) did not specify a country. Warfarin had the
most economic evaluations (12 studies), followed by azathioprine
(9 studies); clozapine and mercaptopurine had only 1 economic
evaluation each (Table 2).

Cost-effectiveness of PGx-informed treatment
We assessed the overall conclusions regarding cost-effectiveness
of each PGx study. Over half of the 44 economic evaluations took
a favourable view of the PGx-guided strategy: in 12 studies (27%)
it was dominant (cost-saving) and in 13 studies (30%) it was cost-
effective. Eleven publications (25%) found PGx testing not cost-
effective and 8 studies (18%) did not reach a definitive conclusion
(Figure 3a). The majority of economic evaluations concluded in
favour of PGx testing for azathioprine (7 out of 9 studies),
clopidogrel (4 out of 6 studies), abacavir (4 out of 5 studies),
carbamazepine (3 out of 4 studies), irinotecan (3 out of 3 studies)
and clozapine (1 study) (Figure 3b). Although warfarin had the
highest number of economic studies, they reached diverging
conclusions: 3 studies found PGx-guided dosing cost-effective, 4
studies were inconclusive and 5 studies concluded it was not cost-
effective. No studies found unequivocally that PGx-guided

68 Drugs with germline pharmacogenetic associations

Excluded from study because biomarker on label refers to 

27 Tumor or viral DNA

18 Metabolism of drug can cause drug-drug interactions

11 No genetic association known or no action required

6 Diagnostic test for disease treated

4 Association  with concommitantly used drug

3 Mechanism of action

Publications retrieved from

35 NHS Economic Evaluations Database

6 PubMed

3 Reference list

44 Publications reviewed

137 Drugs on FDA Table of Pharmacogenomic Biomarkers in Drug Labeling

Figure 2. Number of drugs and publications included in literature
review.

Table 1. Drugs from the FDA Table of Pharmacogenomic Biomarkers in Drug Labeling included in literature review

Therapeutic area Count Drugs

Oncology 11 Capecitabine, cisplatin, dabrafenib, fluorouracil, irinotecan, lapatinib, mercaptopurine,
nilotinib, pazopanib, rasburicase, thioguanine

Infectious diseases 10 Abacavir, chloroquine, dapsone, mafenide, nalidixic acid, nitrofurantoin, primaquine,
quinine sulphate, rifampin+isoniazid+pyrazinamidea, sulfamethoxazole+trimethoprima

Psychiatry 9 Aripiprazole, atomoxetine, citalopram, clozapine, fluvoxamine, iloperidone,
perphenazine, pimozide, thioridazine

Neurology 8 Carbamazepine, clobazam, dextromethorphan+quinidinea, divalproex, phenytoin,
tetrabenazine, valproic acid, vortioxetine

Cardiology 5 Carvedilol, clopidogrel, isosorbide+hydralazinea, metoprolol, propafenone
Gastroenterology 5 Dexlansoprazole, esomeprazole, metoclopramide, PEG-3350+sodium sulphate+sodium

chloride+potassium chloride+sodium ascorbate+ascorbic acida, rabeprazole
Rheumatology 5 Azathioprine, carisoprodol, celecoxib, flurbiprofen, pegloticase
Endocrinology 4 Chlorpropamide, glimepiride, glipizide, glyburide
Haematology 3 Eltrombopag, methylene blue, warfarin
Analgesic 1 Tramadol
Anaesthesiology 1 Codeine
Dental 1 Cevimeline
Genitourinary 1 Tolterodine
Inborn errors of metabolism 1 Eliglustat
Pulmonary 1 Ivacaftor
Toxicology 1 Sodium nitrite
Transplantation 1 Mycophenolic acid

Abbreviation: FDA, Food and Drug Administration. Drugs in bold had economic evaluations available. aMultiple drugs on a single FDA label.
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citalopram (3 studies) or mercaptopurine (1 study) treatment was
cost-effective.
We assessed the effect of study characteristics on the

probability of concluding in favour of the PGx strategy. A logistic
regression model detected that CUAs (studies using QALYs as
outcome measure) were less likely than CEAs and CBAs to find the
genetic testing strategy cost-effective (odds ratio = 0.13, P-value
o0.05). However, there is no clear explanation for this and it may
be a spurious result due to the relatively small sample size of 44
economic evaluations.

Effect of cost of genetic test on cost-effectiveness of PGx-informed
treatment
The cost of genetic testing is an important parameter of economic
evaluations of PGx interventions. After correcting for inflation and
converting to 2014 US$, the cost of genetic testing quoted by the
reviewed studies ranged between US$33 and US$710 with a
median value of US$175. The price of genetic tests decreased
slightly over time (not statistically significant) and this trend was
more pronounced since 2009, the period when most economic
evaluations were published (P-value o0.05; Figure 4). Prices were
on average higher in the United States and Canada than other
regions of the world (mean United States and Canada: US$363.65;
mean other regions: US$131.80; P-value o0.05). We noted a wide
variability in prices of tests for the same drug. For example, the
lowest price quoted for warfarin PGx testing was US$36 in a 2014
UK-based study,22 while US$600 and US$657 were used in a 2013
Canadian and 2009 US study, respectively.23,24 The prices for
clopidogrel PGx testing also varied considerably: from US$45
(2013 Australian study) to US$ 543 (2013 US study).25,26

Given the decreasing costs of genetic testing and its increasing
availability, we looked ahead to a possible future where genotype
information might be readily available, at negligible cost, for all
patients as part of their electronic health record. Thirty-three
economic evaluations (75%) would support PGx-guided treatment
under this scenario, with 11 studies (25%) finding it cost-effective
and 22 studies (50%) considering it dominant and cost-saving
(Figure 3c). Five studies (11%) would still conclude that PGx
testing was not cost-effective, while 3 studies (7%) would be
inconclusive. A separate set of 3 studies had to be excluded,
because the impact of free genetic testing could not be estimated.
We note that the effect of freely available genetic information can
be striking for some drugs. None of the published studies for
citalopram and mercaptopurine found PGx-informed treatment to
be cost-effective, but all studies switched in favour of PGx testing
under the negligible test cost scenario (Figure 3d). For the 12
economic evaluations of warfarin, the number of cost-effective
studies would increase from 3 to 7 with freely available genetic
testing.

DISCUSSION
We have assessed published economic evaluations comparing the
cost-effectiveness of PGx-guided treatment to ST for drugs listed
in the FDA Table of Pharmacogenomic Biomarkers in Drug
Labeling. The economic evaluations were drawn from the NHS
EED database, which includes economic evaluations up to 31
December 2014. An alternative source of economic studies would
be the Cost-Effectiveness Registry (CEA Registry) maintained by
the Tufts Medical Centre. We opted to use the more comprehen-
sive NHS EED as the CEA Registry is limited to CUAs (measuring
health outcomes in QALYs), which would have reduced the
number of evaluations available for assessment. Moreover, the
CEA Registry was not updated beyond 2014 and it only provides
advanced database searches for subscribers and contributors.18 A
third resource, the Health Economic Evaluations Database curated
by John Wiley & Sons, was discontinued in 2014.27 As economicTa
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evaluations provide evidence for the introduction of PGx testing
into clinical practice, we argue that an up-to-date, accessible
database would be an important and valuable resource for both
health-economic and PGx research.
Few of the FDA-listed drugs have been the subject of published

economic evaluations assessing the economic aspects of PGx
testing. This was previously also noted by Phillips et al.,11 who
found that only 13% of drugs on the FDA table and only 27% of
available genetic tests were accompanied by economic studies.
However, it is increasingly the case that clinical utility alone is not
sufficient to recommend application of a PGx test in clinical
practice, and a favourable economic assessment is therefore of
increasing importance. We call for more pharmaco-economic
studies in this field, which should be regularly updated to respond
to the changing landscape of health-care and, in particular,
genetic testing costs.
There are various limitations of our study that need to be taken

into account. One is that the economic evaluations reviewed may
not be representative of all PGx tests. For example, the economic
aspects of PGx-guided treatment are of less relevance in cases
where testing is clearly necessary, for example, because it

prevents life-threatening adverse events, and economic studies
in such cases therefore tend to be lacking. Another possibility is
that economic studies focus on PGx tests that are already applied
in clinical practice and for which there is an apparent interest.
Studies that find genetic testing to be not cost-effective may also
be less likely to be published.
Notwithstanding the above issues, economic evaluations also

have certain intrinsic limitations. One is that certain inputs into the
model are difficult to quantify accurately. For example, parameters
such as the response rate, the probability of adverse drug
reactions and the cost of managing adverse drug reactions must
sometimes be estimated from sparse information. Randomized
clinical trials are the preferred source for these input data, but
these are not always available. Ideally, the uncertainty in the input
estimates should be accounted for in the economic modelling,
and sensitivity analyses should be performed to verify how robust
the result is to deviations in the inputs, but the level of uncertainty
to apply can itself be a matter of subjective opinion, and vary from
study to study.
Another intrinsic issue is that context and perspective may

influence the conclusion of a study. For example, comparing
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Figure 3. Conclusions of reviewed economic evaluations regarding cost-effectiveness of PGx testing strategy (a) overall and (b) by drug, and
estimated conclusions in scenario of no extra cost for genetic information (c) overall and (d) by drug. PGx, pharmacogenetics-guided
treatment.
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treatments from the perspective of an insurance company over 5
years will count costs and outcomes differently from looking at
the same treatment options from a broader societal perspective.
Likewise, economic evaluations are typically country specific, as
this determines parameters of costs, treatment options, and rates
of non-response and adverse drug reactions. Studies are also time-
specific, as their conclusions may become outdated through
changes in price, in management of adverse drug reactions or
through the availability of new drugs.
In the context of PGx testing, the type of test applied may differ

over time and between countries, and this may influence the
study result. For example, a lab-developed test is likely to be less
expensive than a PGx test which has undergone regulatory
approval. Likewise, a multi-variant test may be less expensive than
a series of single tests. For example, the PGx GeneSight test uses
44 genetic variants to guide selection of antidepressants for major
depressive disorder, with some evidence that the genetic test
resulted in higher response rates and was cost-saving.28,29 Indeed,
another shift in perspective may occur when PGx information is
available for multiple drugs used to treat a specific condition; cost-
effectiveness studies will then move from assessing a single drug
to evaluating cost-effectiveness at the disease level.
Taken together, these issues imply that cost-effectiveness

analyses on their own cannot answer the question of whether
or not a certain strategy should be used and funded, but should
be considered in conjunction with other factors such as the
available resources, the number of patients who benefit from the
intervention and other ethical considerations.
Warfarin provides a useful illustration of some of these issues.

PGx-guided warfarin dosing was favoured by a US cost-
effectiveness study but not supported by a UK study. The UK
study compared warfarin (with and without PGx testing),
rivaroxaban, apixaban and dabigatran, with costs and health
outcomes included from the National Health Service’s
perspective.22 The US study contrasted warfarin treatment without
PGx testing with a strategy where all patients are tested and either
receive PGx-guided doses of warfarin or an alternative drug if they
have low or high warfarin sensitivity.30 The latter analysis took the
perspective of the US health-care payers. Both studies estimated
costs and benefits on a lifetime horizon, measured health
outcomes primarily in terms of QALYs and used CYP2C9 and
VKORC1 for PGx testing. The UK study concluded that PGx-guided
warfarin was cost-effective compared to warfarin with clinically
guided dosing, but recommended the use of apixaban, which

does not require PGx testing, as the most cost-effective treatment
option. In contrast, the US study found that PGx-guided warfarin
was cost-effective compared to clinically dosed warfarin and
supported the use of PGx testing for warfarin dosing. The US study
did not include apixaban or other comparator drugs, which may
have influenced the conclusion reached, but many other factors
differed between the studies. For example, although the price of
the genetic test was twice as high in the US study, this was
outweighed by differences in lifetime costs for warfarin in the
United States and the United Kingdom. This example highlights
the variable factors involved in performing cost-effectiveness
analyses, interpreting their results and comparing such studies.
The PGx dosing algorithm for warfarin is often presented as the

poster child for the achievements of PGx, because the drug is
widely prescribed and implementation of this single-nucleotide
polymorphism-based test could have a major impact on health
care. However, only one-quarter of studies considered genetic-
guided dosing for warfarin to be cost-effective, and the clinical
advantage of genetic-guided dosing over standard dosing
appears to be small or even non-existent.31 Although freely
available genetic testing would improve the cost-effectiveness of
genotype-guided warfarin dosing, other drugs such as abacavir,
where genetic testing for HLA-B*5701 is required by the FDA,
might make more convincing PGx success stories.32

Our study assessed the characteristics of tests in the reviewed
evaluations. We noted that quoted prices for genetic tests in the
United States and Canada were higher than that in other
countries, although there was also a large between-study
variability within these countries. However, higher prices for
genetic testing in the United States and Canada did not lead to
fewer conclusions in favour of PGx testing, as country was not
associated with study outcome. In addition, neither the drug nor
the study perspective was significantly associated with the price of
testing. Genetic test costs may depend on the method used to
determine genetic variants (for example, PCR or measuring
enzyme activity), but the reviewed studies did not provide
sufficient detail to investigate the impact of this parameter on
price. A downward trend in prices for genetic testing is apparent
in recent years, and this may continue as new genetic
technologies become more accessible and lead to further price
reductions.
We show in this study that the cost of genetic testing is an

important factor in determining the cost-effectiveness of a PGx-
guided treatment strategy. If there was no cost attached to
genetic testing, the number of economic evaluations that found
the PGx strategy cost-effective increased greatly, such that half of
the reviewed studies considered it dominant over the alternative
and 75% considered it cost-effective. Freely available genetic
testing might be achievable in future as genomic prices fall and
the perceived or actual value of genetic information increases.
Once genetic tests become a mainstream clinical service,
economies of scale will decrease the price of testing still further.
For example, the direct to consumer testing company 23andMe
offers a genome-wide genotyping service for £149 (United
Kingdom, January 2017 price), which includes single-nucleotide
polymorphism-based testing for 5 of the 10 drugs covered in this
review.33,34 Similarly, the cost of whole-genome sequencing has
fallen every year and is now nearing US$1000.35 Having genetic
information in the electronic health record would allow PGx
information to be queried for any new prescription or dosage
review. A genetic test would need to be performed only once and
this information, safely secured and immediately accessible, could
guide treatment throughout the patient’s life.
Even so, PGx-guided treatment will not be cost-effective in all

situations. Even under the favourable assumption of freely
available genetic testing, it could still be more expensive than
the alternative strategy. This sounds counter-intuitive, but genetic
testing costs may only be a small part of the costs attached to

Figure 4. Cost of pharmacogenomics (PGx) test as reported in the
reviewed economic evaluations over time, with fitted regression
since 2009 (dotted line).
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PGx-informed treatment. Increased costs may arise where the
alternative drug for test-positive patients is more expensive, and
this is exacerbated whether the test has a high proportion of false-
positive results. For example, patients with heart disease or stroke
who are CYP2C19 poor metabolizers may be prescribed the more
expensive ticagrelor in place of clopidogrel (which is metabolized
into its active form by CYP2C19).25 Thus, even if genetic
information is freely accessible, economic evaluations of PGx
testing are still relevant and necessary.
The economic evaluation studies reviewed here show that PGx

has a positive impact on health-care quality and costs. Over half of
reviewed studies concluded that the PGx-informed treatment
strategy is more cost-effective than the alternatives considered
under present-day economics. Only one in four economic
evaluations found the genetic testing option unequivocally not
cost-effective. This encouraging finding, with an even bigger
projected benefit under low-cost genetic typing, suggests that
PGx testing has the potential to be a cost-effective or even cost-
saving intervention. It therefore seems likely that PGx testing will
become a core clinical service, particularly as projects such as the
100 000 Genomes Project pushes genomics to become part of
health-care infrastructure and as electronic health records become
increasingly effective.36
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