Starch-Capped AgNPs’ as Potential Cytotoxic Agents against Prostate Cancer Cells
"> Figure 1
<p>(<b>A</b>) Photograph of starch capped AgNPs’ suspension; (<b>B</b>) UV-Vis spectrum of starch capped AgNPs’ suspension; (<b>C</b>) TEM image of AgNPs (20 nm resolution); (<b>D</b>) TEM image of AgNPs (5 nm resolution); (<b>E</b>) HRTEM image of AgNPs; (<b>F</b>) FFT from the blue box in <a href="#nanomaterials-11-00256-f001" class="html-fig">Figure 1</a>E showing spacings of ~2.3 and ~2.0 A.</p> "> Figure 2
<p>Bright field microscopy images of LNCaP cell morphology after exposure to different concentrations of AgNPs ranging from 5 to 100 ppm, for 24 h and 48 h (20× OLYMPUS IX51 microscope).</p> "> Figure 3
<p>Bright field microscopy images of PC-3 cell morphology after exposure to different concentrations of AgNPs ranging from 5 to 100 ppm, for 24 h and 48 h (20× OLYMPUS IX51 microscope).</p> "> Figure 4
<p>LNCaP cells viability assessed by trypan blue exclusion method upon treatment with AgNPs for 24 h (<b>A</b>) and 48 h (<b>B</b>) and the comparison between their effect at the two time points (<b>C</b>). Results are expressed as percentage of control (untreated cells), as mean ± SEM.</p> "> Figure 5
<p>PC-3 cells viability assessed by trypan blue exclusion method upon treatment with AgNPs for 24 h (<b>A</b>) and 48 h (<b>B</b>) and the comparison between their effect at the two time points (<b>C</b>). Results are expressed as percentage of control (untreated cells), as mean ± SEM.</p> "> Figure 6
<p>Evaluation of cell viability, by WST-1 assay, upon LNCaP cells treatment with AgNPs at concentrations of 10–210 ppm for 24 h (<b>A</b>) and 48 h (<b>B</b>) and the comparison between their effect at the two time points (<b>C</b>). Results are expressed as percentage of control (untreated cells), as mean ± SEM.</p> "> Figure 7
<p>Evaluation of cell viability, by WST-1 assay, upon PC-3 cells treatment with AgNPs at concentrations of 10–210 ppm for 24 h (<b>A</b>) and 48 h (<b>B</b>) and the comparison between their effect at the two time points (<b>C</b>). Results are expressed as percentage of control (untreated cells), as mean ± SEM.</p> "> Figure 8
<p>Effect of AgNPs at concentrations of 10–210 ppm, on LNCaP cell proliferation assessed by BrdU incorporation assay after 24 h. Results are expressed as percentage of control (untreated cells) considered as 100%, as mean ± SEM.</p> "> Figure 9
<p>Effect of AgNPs at concentrations of 10–210 ppm, on PC-3 cell proliferation assessed by BrdU incorporation assay after 24 h (<b>A</b>) and 48 of treatment (<b>B</b>). and the comparison between their effect at the two time points (<b>C</b>). Results are expressed as percentage of control (untreated cells) considered as 100%, as mean ± SEM.</p> "> Figure 10
<p>Cell cycle analysis, of LNCaP cells treated with different concentrations of AgNPs for 24 h, assessed using a PI stain and flow cytometry. (<b>A</b>)—Representative DNA histograms. (<b>B</b>)—Quantitative analysis of PC-3 cells AgNPs treated. Data is expressed as mean ± SEM.</p> "> Figure 11
<p>Cell cycle analysis, of LNCaP cells treated with different concentrations of AgNPs for 24 h, assessed using a PI stain and flow cytometry. (<b>A</b>)—Representative DNA histograms. (<b>B</b>)—Quantitative analysis of PC-3 cells AgNPs treated. Data is expressed as mean ± SEM.</p> "> Figure 12
<p>Cell cycle analysis, of PC-3 cells treated with different concentrations of AgNPs for 24 h, assessed using a PI stain and flow cytometry. (<b>A</b>)—Representative DNA histograms. (<b>B</b>)—Quantitative analysis of PC-3 cells AgNPs treated. Data is expressed as mean ± SEM.</p> "> Figure 13
<p>Cell cycle analysis, of PC-3 cells treated with different concentrations of AgNPs for 48 h, assessed using a PI stain and flow cytometry. (<b>A</b>)—Representative DNA histograms images. (<b>B</b>)—Quantitative analysis of PC-3 cells AgNPs treated. Data is expressed as mean ± SEM.</p> "> Figure 14
<p>AgNPs’ cellular uptake quantification through Ag<sup>+</sup> quantification by atomic absorption spectrometry (AAS) in LNCaP cells (<b>A</b>,<b>B</b>) and in PC-3 cells (<b>C</b>,<b>D</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of AgNPs
2.3. Cell Culture and Treatments Conditions
2.4. Trypan Blue Exclusion Assay
2.5. Cell Morphology
2.6. WST-1 Viability Assay
2.7. Cell Proliferation Assay-BrdU
2.8. Cell Cycle Analysis
2.9. AgNPs Uptake Measurement
2.10. Statistical Analysis
3. Results
3.1. AgNPs Synthesis and Characterization
3.2. AgNPs’ Cytotoxic Power and Impact on Cellular Morphology
3.3. AgNPs’ Cytotoxic Power against Cytoplasmic Membrane
3.4. AgNPs’ Cytotoxic Power against Mitochondria
3.5. AgNPs’ Cytotoxic Power against Cellular Proliferation
3.6. AgNPs’ Cytotoxic Power in the Cell Cycle
3.7. AgNPs’ Cellular Uptake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucci, M.; Zichi, C.; Buttigliero, C.; Vignani, F.; Scagliotti, G.V.; Di Maio, M. Enzalutamide-resistant castration-resistant prostate cancer: Challenges and solutions. OncoTargets Ther. 2018, 11, 7353–7368. [Google Scholar] [CrossRef] [Green Version]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar] [PubMed]
- Maughan, B.L.; Antonarakis, E.S. Androgen pathway resistance in prostate cancer and therapeutic implications. Expert Opin. Pharmacother. 2015, 16, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Buttigliero, C.; Tucci, M.; Bertaglia, V.; Vignani, F.; Bironzo, P.; Di Maio, M.; Scagliotti, G.V. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat. Rev. 2015, 41, 884–892. [Google Scholar] [CrossRef]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Khan, S.U.; Saleh, T.A.; Wahab, A.; Khan, M.H.; Khan, D.; Khan, W.U.; Rahim, A.; Kamal, S.; Khan, F.U.; Fahad, S. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomed. 2018, 13, 733–762. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Du, Z.; Ma, S.; Liu, Y.; Li, D.; Huang, H.; Jiang, S.; Cheng, S.; Wu, W.; Zhang, K.; et al. Effects of green-synthesized silver nanoparticles on lung cancer cells in vitro and grown as xenograft tumors in vivo. Int. J. Nanomed. 2016, 11, 1879–1887. [Google Scholar] [CrossRef] [Green Version]
- Kummara, S.; Patil, M.B.; Uriah, T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles—A comparative study. Biomed. Pharmacother. Biomed. Pharmacother. 2016, 84, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Deepak, P.; Amutha, V.; Kamaraj, C.; Balasubramani, G.; Aiswarya, D.; Perumal, P. Chapter 15—Chemical and Green Synthesis of Nanoparticles and their Efficacy on Cancer Cells. In Green Synthesis, Characterization and Applications of Nanoparticles; Shukla, A.K., Iravani, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 369–387. [Google Scholar]
- Morais, M.; Teixeira, A.L.; Dias, F.; Machado, V.; Medeiros, R.; Prior, J.A.V. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J. Med. Chem. 2020, 63, 14308–14335. [Google Scholar] [CrossRef] [PubMed]
- Cutruzzolà, F.; Giardina, G.; Marani, M.; Macone, A.; Paiardini, A.; Rinaldo, S.; Paone, A. Glucose Metabolism in the Progression of Prostate Cancer. Front. Physiol. 2017, 8, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satapathy, S.R.; Mohapatra, P.; Preet, R.; Das, D.; Sarkar, B.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine 2013, 8, 1307–1322. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.-G.; Zhang, S.; Hwang, J.-Y.; Kong, I.-K. Silver Nanoparticles Potentiates Cytotoxicity and Apoptotic Potential of Camptothecin in Human Cervical Cancer Cells. Oxidative Med. Cell. Longev. 2018, 2018, 6121328. [Google Scholar] [CrossRef]
- Banerjee, P.P.; Bandyopadhyay, A.; Harsha, S.N.; Policegoudra, R.S.; Bhattacharya, S.; Karak, N.; Chattopadhyay, A. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer 2017, 9, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef]
- Kumar, S.V.; Bafana, A.P.; Pawar, P.; Rahman, A.; Dahoumane, S.A.; Jeffryes, C.S. High conversion synthesis of <10 nm starch-stabilized silver nanoparticles using microwave technology. Sci. Rep. 2018, 8, 5106. [Google Scholar]
- Fan, W.; Yung, B.; Huang, P.; Chen, X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem. Rev. 2017, 117, 13566–13638. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Wang, J.; Yang, Q.; Yao, B.; Zhao, Y.; Zhao, A.; Sun, W.; Zhang, Q. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environ. Toxicol. Pharmacol. 2017, 56, 56–60. [Google Scholar] [CrossRef]
- He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, Antibacterial Activity and Anticancer Effects Against Prostate Cancer (PC-3) Cells of Silver Nanoparticles Using Dimocarpus Longan Lour. Peel Extract. Nanoscale Res. Lett. 2016, 11, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Yang, T.; Chen, S.; Qi, S.; Zhang, Z.; Xu, Y. Silver nanoparticles regulate autophagy through lysosome injury and cell hypoxia in prostate cancer cells. J. Biochem. Mol. Toxicol. 2020, 34, e22474. [Google Scholar] [CrossRef] [PubMed]
- Kumari, R.; Saini, A.K.; Kumar, A.; Saini, R.V. Apoptosis induction in lung and prostate cancer cells through silver nanoparticles synthesized from Pinus roxburghii bioactive fraction. JBIC J. Biol. Inorg. Chem. 2020, 25, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—Antiproliferative effect against prostate cancer cells. Cancer Nanotechnol. 2013, 4, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Liu, X.; Samuel Ravi, S.O.; Ramachandran, A.; Aziz Ibrahim, I.A.; Nassir, A.M.; Yao, J. Synthesis of silver nanoparticles (AgNPs) from leaf extract of Salvia miltiorrhiza and its anticancer potential in human prostate cancer LNCaP cell lines. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2846–2854. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The Metabolic Phenotype of Prostate Cancer. Front. Oncol. 2017, 7, 131. [Google Scholar] [CrossRef]
- Gonzalez-Menendez, P.; Hevia, D.; Mayo, J.C.; Sainz, R.M. The dark side of glucose transporters in prostate cancer: Are they a new feature to characterize carcinomas? Int. J. Cancer 2018, 142, 2414–2424. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Menendez, P.; Hevia, D.; Alonso-Arias, R.; Alvarez-Artime, A.; Rodriguez-Garcia, A.; Kinet, S.; Gonzalez-Pola, I.; Taylor, N.; Mayo, J.C.; Sainz, R.M. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress. Redox Biol. 2018, 17, 112–127. [Google Scholar] [CrossRef]
- Morais, M.; Dias, F.; Prior, J.A.V.; Teixeira, A.L.; Medeiros, R. The Impact of Oxidoreductases-Related MicroRNAs in Glucose Metabolism of Renal Cell Carcinoma and Prostate Cancer. In Oxidoreductase; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Cameron, S.J.; Hosseinian, F.; Willmore, W.G. A Current Overview of the Biological and Cellular Effects of Nanosilver. Int. J. Mol. Sci. 2018, 19, 2030. [Google Scholar] [CrossRef] [Green Version]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.G.; Wang, Y.H.; Xing, H.H.; Gurunathan, S. Quercetin-mediated synthesis of graphene oxide-silver nanoparticle nanocomposites: A suitable alternative nanotherapy for neuroblastoma. Int. J. Nanomed. 2017, 12, 5819–5839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basta, A.H.; El-Saied, H.; Hasanin, M.S.; El-Deftar, M.M. Green carboxymethyl cellulose-silver complex versus cellulose origins in biological activity applications. Int. J. Biol. Macromol. 2018, 107 Pt A, 1364–1372. [Google Scholar] [CrossRef]
- Saratale, R.G.; Benelli, G.; Kumar, G.; Kim, D.S.; Saratale, G.D. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens. Environ. Sci. Pollut. Res. Int. 2018, 25, 10392–10406. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Kumari, M.; Rajachandar, S.; Ashe, S.; Thathapudi, N.C.; Nayak, B. Biofilm Impeding AgNPs Target Skin Carcinoma by Inducing Mitochondrial Membrane Depolarization Mediated through ROS Production. ACS Appl. Mater. Interfaces 2016, 8, 28538–28553. [Google Scholar] [CrossRef] [PubMed]
- Maurer, L.L.; Meyer, J.N. A systematic review of evidence for silver nanoparticle-induced mitochondrial toxicity. Environ. Sci. Nano 2016, 3, 311–322. [Google Scholar] [CrossRef]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.A.; Siddiqui, M.A. Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, 9390784. [Google Scholar] [CrossRef] [Green Version]
- Panzarini, E.; Mariano, S.; Vergallo, C.; Carata, E.; Fimia, G.M.; Mura, F.; Rossi, M.; Vergaro, V.; Ciccarella, G.; Corazzari, M.; et al. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicol. In Vitro Int. J. Publ. Assoc. BIBRA 2017, 41, 64–74. [Google Scholar] [CrossRef]
- Wei, H.; Lian, W.; Wang, C. 3,6-diazabicyclo[3.3.1]heptanes Induces Apoptosis and Arrests Cell Cycle in Prostate Cancer Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e920266. [Google Scholar] [CrossRef]
- Li, Y.; Pan, J.; Gou, M. The Anti-Proliferation, Cycle Arrest and Apoptotic Inducing Activity of Peperomin E on Prostate Cancer PC-3 Cell Line. Molecules 2019, 24, 1472. [Google Scholar] [CrossRef] [Green Version]
- Cuddihy, A.R.; O’Connell, M.J. Cell-cycle responses to DNA damage in G2. Int. Rev. Cytol. 2003, 222, 99–140. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, M.; Machado, V.; Dias, F.; Palmeira, C.; Martins, G.; Fonseca, M.; Martins, C.S.M.; Teixeira, A.L.; Prior, J.A.V.; Medeiros, R. Starch-Capped AgNPs’ as Potential Cytotoxic Agents against Prostate Cancer Cells. Nanomaterials 2021, 11, 256. https://doi.org/10.3390/nano11020256
Morais M, Machado V, Dias F, Palmeira C, Martins G, Fonseca M, Martins CSM, Teixeira AL, Prior JAV, Medeiros R. Starch-Capped AgNPs’ as Potential Cytotoxic Agents against Prostate Cancer Cells. Nanomaterials. 2021; 11(2):256. https://doi.org/10.3390/nano11020256
Chicago/Turabian StyleMorais, Mariana, Vera Machado, Francisca Dias, Carlos Palmeira, Gabriela Martins, Magda Fonseca, Catarina S. M. Martins, Ana Luísa Teixeira, João A. V. Prior, and Rui Medeiros. 2021. "Starch-Capped AgNPs’ as Potential Cytotoxic Agents against Prostate Cancer Cells" Nanomaterials 11, no. 2: 256. https://doi.org/10.3390/nano11020256
APA StyleMorais, M., Machado, V., Dias, F., Palmeira, C., Martins, G., Fonseca, M., Martins, C. S. M., Teixeira, A. L., Prior, J. A. V., & Medeiros, R. (2021). Starch-Capped AgNPs’ as Potential Cytotoxic Agents against Prostate Cancer Cells. Nanomaterials, 11(2), 256. https://doi.org/10.3390/nano11020256