Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation
<p>TEM micrographs and Ag particle size distribution of the studied catalysts: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>.</p> "> Figure 1 Cont.
<p>TEM micrographs and Ag particle size distribution of the studied catalysts: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>.</p> "> Figure 1 Cont.
<p>TEM micrographs and Ag particle size distribution of the studied catalysts: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>.</p> "> Figure 1 Cont.
<p>TEM micrographs and Ag particle size distribution of the studied catalysts: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>.</p> "> Figure 2
<p>Ag 3d XPS spectra of studied catalysts: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>.</p> "> Figure 2 Cont.
<p>Ag 3d XPS spectra of studied catalysts: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>.</p> "> Figure 3
<p>Kinetics of betulin oxidation over different silver catalysts, data are presented taking into account the mass balance closure: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>; conditions: 140 °C, synthetic air (50 mL/min) as oxidant, solvent-mesitylene, initial betulin concentration: 4.5 mmol/L, 0.2 g catalyst.</p> "> Figure 3 Cont.
<p>Kinetics of betulin oxidation over different silver catalysts, data are presented taking into account the mass balance closure: (<b>a</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pH<sub>2</sub>; (<b>b</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_dp_pO<sub>2</sub>; (<b>c</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pH<sub>2</sub>; (<b>d</b>) Ag/γ-Al<sub>2</sub>O<sub>3</sub>_iw_pO<sub>2</sub>; (<b>e</b>) Ag/AlOOH_dp_pH<sub>2</sub>; (<b>f</b>) Ag/AlOOH_dp_pO<sub>2</sub>; (<b>g</b>) Ag/AlOOH_iw_pH<sub>2</sub>; (<b>h</b>) Ag/AlOOH_iw_pO<sub>2</sub>; (<b>i</b>) Ag/AlOOH_cal_dp_pH<sub>2</sub>; (<b>j</b>) Ag/AlOOH_cal_dp_pO<sub>2</sub>; (<b>k</b>) Ag/AlOOH_cal_iw_pH<sub>2</sub>; (<b>l</b>) Ag/AlOOH_cal_iw_pO<sub>2</sub>; conditions: 140 °C, synthetic air (50 mL/min) as oxidant, solvent-mesitylene, initial betulin concentration: 4.5 mmol/L, 0.2 g catalyst.</p> "> Figure 4
<p>TOF dependence as a function of the mean Ag particle size: (<b>a</b>) for materials prepared by deposition–precipitation with NaOH method; (<b>b</b>) for materials prepared by incipient wetness impregnation method.</p> "> Scheme 1
<p>Reaction scheme for betulin oxidation. Reproduced with permission from Ref. [<a href="#B44-nanomaterials-11-00469" class="html-bibr">44</a>]. Copyright 2019 the Royal Society of Chemistry. A—betulin, B—betulone, C—betulinic aldehyde, D—betulonic aldehyde, E—betulinic acid, F—betulonic acid.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization Results
3.2. Catalytic Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolstikov, G.A.; Flekhter, O.B.; Shultz, E.E.; Baltina, L.A.; Tolstikov, A.G. Betulin and its derivatives. Chemistry and biological activity. Chem. Sustain. Dev. 2005, 13, 1–29. [Google Scholar]
- Hayek, E.W.; Jordis, U.; Moche, W.; Sauter, F. A bicentennial of betulin. Phytochemistry 1989, 28, 2229–2242. [Google Scholar] [CrossRef]
- Eckerman, C.H.; Ekman, R. Comparison of solvents fir extraction and crystallization of betulinol from birch bark waste. Pap. Puu 1985, 67, 100–106. [Google Scholar]
- Pakdel, H.; Murwanashyaka, J.N.; Roy, C. Extraction of Betulin by Vacuum Pyrolysis of Birch Bark. J. Wood Chem. Technol. 2002, 22, 147–155. [Google Scholar] [CrossRef]
- Ohara, S.; Hayashi, Y.; Yatagai, M. Utilization of bark extractives. Baiomasu Henkan Keikaku Kenkyu Hokoku 1990, 24, 12–35. [Google Scholar]
- Kuznetsov, B.N.; Levdansky, V.A.; Polezhaeva, N.I. Extraction of betulin with lowest aliphatic alcohols from the outer bark of Betula pendula roth., activated with superheated steam in the presence of alkali. Chem. Plant Raw Mater. 2004, 2, 21–24. [Google Scholar]
- Pisha, E.; Chai, H.; Lee, I.-S.; Chagwedera, T.E.; Farnsworth, N.R.; Cordell, G.A.; Beecher, C.W.; Fong, H.H.; Kinghorn, A.D.; Brown, D.M.; et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat. Med. 1995, 1, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Li, J.; Zhang, S.; Xing, P.; Xia, M. Betulinic acid exerts potent antitumor effects on paclitaxel-resistant human lung carcinoma cells (H460) via G2/M phase cell cycle arrest and induction of mitochondrial apoptosis. Oncol. Lett. 2018, 16, 3628–3634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Singh, A.K.; Raj, V.; Rai, A.; Keshari, A.K.; Kumar, D.; Maity, B.; Prakash, A.; Maiti, S.; Saha, S. Poly(lactic-co-glycolic acid)-loaded nanoparticles of betulinic acid for improved treatment of hepatic cancer: Characterization, in vitro and in vivo evaluations. Int. J. Nanomed. 2018, 13, 975–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, A.-Q.; Yu, Y.; Yao, Y.-Q.; Yang, F.-F.; Liao, M.; Song, L.-J.; Li, Y.-L.; Li, Y.-J.; Deng, Y.-L.; Yang, S.-P.; et al. Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models. Oncotarget 2017, 9, 3794–3804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lingaraju, M.C.; Pathak, N.N.; Begum, J.; Balaganur, V.; Ramachandra, H.D.; Bhat, R.A.; Ram, M.; Singh, V.; Kandasamy, K.; Kumar, D.; et al. Betulinic acid attenuates renal oxidative stress and inflammation in experimental model of murine polymicrobial sepsis. Eur. J. Pharm. Sci. 2015, 70, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Lv, Y.-C.; He, P.-P.; Tang, Y.-Y.; Xie, W.; Liu, X.-Y.; Li, Y.; Lan, G.; Zhang, M.; Zhang, C.; et al. Betulinic acid downregulates expression of oxidative stress-induced lipoprotein lipase via the PKC/ERK/c-Fos pathway in RAW264.7 macrophages. Biochimistry 2015, 119, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Nader, M.A.; Baraka, H.N. Effect of betulinic acid on neutrophil recruitment and inflammatory mediator expression in lipopolysaccharide-induced lung inflammation in rats. Eur. J. Pharm. Sci. 2012, 46, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Shukla, D.; Das, S.; Roy, P.; Mukherjee, A.; Saha, B. Lactoferrin-modified Betulinic Acid-loaded PLGA nanoparticles are strong anti-leishmanials. Cytokine 2018, 110, 412–415. [Google Scholar] [CrossRef] [PubMed]
- Sousa, P.L.; Souza, R.O.D.S.; Tessarolo, L.D.; De Menezes, R.R.P.P.B.; Sampaio, T.L.; Canuto, J.A.; Martins, A.M.C. Betulinic acid induces cell death by necrosis in Trypanosoma cruzi. Acta Trop. 2017, 174, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wu, Y.-L.; Lian, L.-H.; Xie, W.-X.; Li, X.; Ouyang, B.-Q.; Bai, T.; Li, Q.; Yang, N.; Nan, J.-X. The anti-fibrotic effect of betulinic acid is mediated through the inhibition of NF-κB nuclear protein translocation. Chem. Biol. Interact. 2012, 195, 215–223. [Google Scholar] [CrossRef]
- Pohjala, L.; Alakurtti, S.; Ahola, T.; Yli-Kauhaluoma, J.; Tammela, P. Betulin-Derived Compounds as Inhibitors of Alphavirus Replication. J. Nat. Prod. 2009, 72, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yang, S.; Jin, L.; Hu, D.; Wu, Z.; Yang, S. Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities. Molecules 2012, 17, 6156–6169. [Google Scholar] [CrossRef]
- Alakurtti, S.; Bergström, P.; Sacerdoti-Sierra, N.; Jaffe, C.L.; Yli-Kauhaluoma, J. Anti-leishmanial activity of betulin derivatives. J. Antibiot. 2010, 63, 123–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, C.P.; Núñez, M.J.; Jiménez, I.A.; Busserolles, J.; Alcaraz, M.J.; Bazzocchi, I.L. Activity of lupane triterpenoids from Maytenus species as inhibitors of nitric oxide and prostaglandin E2. Bioorg. Med. Chem. 2006, 14, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.; Nawrot, D.A.; Alakurtti, S.; Ghemtio, L.; Yli-Kauhaluoma, J.; Tammela, P. Screening and Characterisation of Antimicrobial Properties of Semisynthetic Betulin Derivatives. PLoS ONE 2014, 9, e102696. [Google Scholar] [CrossRef] [Green Version]
- Hata, K.; Hori, K.; Ogasawara, H.; Takahashi, S. Anti-leukemia activities of Lup-28-al-20(29)-en-3-one, a lupane triterpene. Toxicol. Lett. 2003, 143, 1–7. [Google Scholar] [CrossRef]
- Zuco, V.; Supino, R.; Righetti, S.C.; Cleris, L.; Marchesi, E.; Gambacorti-Passerini, C.; Formelli, F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002, 175, 17–25. [Google Scholar] [CrossRef]
- Bębenek, E.; Kadela-Tomanek, M.; Chrobak, E.; Latocha, M.; Boryczka, S. Novel triazoles of 3-acetylbetulin and betulone as anticancer agents. Med. Chem. Res. 2018, 27, 2051–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, K.; Hori, K.; Takahashi, S. Differentiation- and apoptosis-inducing activities by pentacyclic triterpenes on a mouse melanoma cell line. J. Nat. Prod. 2002, 65, 645–648. [Google Scholar] [CrossRef]
- Dubinin, M.V.; Semenova, A.A.; Ilzorkina, A.I.; Mikheeva, I.B.; Yashin, V.A.; Penkov, N.V.; Vydrina, V.A.; Ishmuratov, G.Y.; Sharapov, V.A.; Khoroshavina, E.I.; et al. Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183383. [Google Scholar] [CrossRef] [PubMed]
- Chairez-Ramirez, M.H.; Moreno-Jiménez, M.R.; González-Laredo, R.F.; Gallegos-Infante, J.; Rocha-Guzmán, N.E. Lupane-type triterpenes and their anti-cancer activities against most common malignant tumors: A review. EXCLI J. 2016, 15, 758–771. [Google Scholar]
- Yang, S.; Zhao, Q.; Xiang, H.; Liu, M.; Zhang, Q.; Xue, W.; Song, B.; Yang, S. Antiproliferative activity and apoptosis-inducing mechanism of constituents from Toona sinensis on human cancer cells. Cancer Cell Int. 2013, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Makarova, M.; Shikov, A.; Avdeeva, O.; Pozharitskaya, O.; Makarenko, I.; Makarov, V.; Djachuk, G. Evaluation of acute toxicity of betulin. Planta Med. 2011, 77, PM48. [Google Scholar] [CrossRef]
- Gosselin, R.E.; Hodge, H.; Smith, R.P.; Gleason, M.N. Clinical Toxicology of Commercial Products: Acute Poisoning, 4th ed.; Williams & Wilkins: Baltimore, MD, USA, 1976; p. 332, ISBN-10 0683036319. [Google Scholar]
- Bowden, K.; Heilbron, I.M.; Jones, E.R.H.; Weedon, B.C.L. 13. Researches on acetylenic compounds. Part I. The preparation of acetylenic ketones by oxidation of acetylenic carbinols and glycols. J. Chem. Soc. 1946, 39–45. [Google Scholar] [CrossRef]
- Komissarova, N.G.; Belenkova, N.G.; Spirikhin, L.; Shitikova, O.V.; Yunusov, M.S. Selective Oxidation of Betulin by Cr(VI) Reagents. Chem. Nat. Compd. 2002, 38, 58–61. [Google Scholar] [CrossRef]
- Barthel, A.; Stark, S.; Csuk, R. Oxidative transformations of betulinol. Tetrahedron 2008, 64, 9225–9229. [Google Scholar] [CrossRef]
- Csuk, R.; Schmuck, K.; Schaefer, R. A practical synthesis of betulinic acid. Tetrahedron Lett. 2006, 47, 8769–8770. [Google Scholar] [CrossRef]
- Yakovleva, M.P.; Vydrina, V.A.; Sayakhov, R.R.; Ishmuratov, G.Y. Synthesis of Betulonic and Betulinic Acids from Betulin. Chem. Nat. Compd. 2018, 54, 795–797. [Google Scholar] [CrossRef]
- Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochem. Rev. 2019, 18, 929–951. [Google Scholar] [CrossRef] [Green Version]
- Muffler, K.; Leipold, D.; Scheller, M.-C.; Haas, C.; Steingroewer, J.; Bley, T.; Neuhaus, H.E.; Mirata, M.A.; Schrader, J.; Ulber, R. Biotransformation of triterpenes. Process. Biochem. 2011, 46, 1–15. [Google Scholar] [CrossRef]
- Qi-he, C.; Jing, L.; Hai-feng, Z.; Guo-qing, H.; Ming-liang, F. The betulinic acid production from betulin through biotransformation by fungi. Enzym. Microb. Technol. 2009, 45, 175–180. [Google Scholar]
- Feng, Y.; Li, M.; Liu, J.; Xu, T.-Y.; Fang, R.-S.; Chen, Q.; He, G. A novel one-step microbial transformation of betulin to betulinic acid catalysed by Cunninghamella blakesleeana. Food Chem. 2013, 136, 73–79. [Google Scholar] [CrossRef]
- Liu, H.; Lei, X.; Li, N.; Zong, M.-H. Highly regioselective synthesis of betulone from betulin by growing cultures of marine fungus Dothideomycete sp. HQ 316564. J. Mol. Catal. B Enzym. 2013, 88, 32–35. [Google Scholar] [CrossRef]
- Mao, D.-B.; Feng, Y.-Q.; Bai, Y.-H.; Xu, C. Novel biotransformation of betulin to produce betulone by Rhodotorula mucilaginosa. J. Taiwan Inst. Chem. Eng. 2012, 43, 825–829. [Google Scholar] [CrossRef]
- Tulisalo, J.; Wickholm, N.; Pirttimaa, M.; Alakurtti, S.; Yli-Kauhaluoma, J. WO 2013/038312; Stora Enso Oyj: Helsinki, Finland, 2013. [Google Scholar]
- Tulisalo, J.; Pirttimaa, M.; Alakurtti, S.; Yli-Kauhaluoma, J.; Koskimies, S. WO 2013/038314 A.1; Stora Enso Oyj: Helsinki, Finland, 2013. [Google Scholar]
- Kolobova, E.; Pakrieva, E.; Carabineiro, S.A.; Bogdanchikova, N.; Kharlanov, A.N.; Kazantsev, S.O.; Hemming, J.; Mäki-Arvela, P.; Pestryakov, A.; Murzin, D.Y. Oxidation of a wood extractive betulin to biologically active oxo-derivatives using supported gold catalysts. Green Chem. 2019, 21, 3370–3382. [Google Scholar] [CrossRef] [Green Version]
- Kolobova, E.; Mäki-Arvela, P.; Grigoreva, A.; Pakrieva, E.; Carabineiro, S.; Peltonen, J.; Kazantsev, S.; Bogdanchikova, N.; Pestryakov, A.; Murzin, D. Catalytic oxidative transformation of betulin to its valuable oxo-derivatives over gold supported catalysts: Effect of support nature. Catal. Today 2020. [Google Scholar] [CrossRef]
- Kolobova, E.; Kotolevich, Y.; Pakrieva, E.; Mamontov, G.; Farias, M.; Corberán, V.C.; Bogdanchikova, N.; Hemming, J.; Smeds, A.; Mäki-Arvela, P.; et al. Modified Ag/TiO2 systems: Promising catalysts for liquid-phase oxidation of alcohols. Fuel 2018, 234, 110–119. [Google Scholar] [CrossRef]
- Shcherban, N.D.; Mäki-Arvela, P.; Aho, A.; Sergiienko, S.A.; Skoryk, M.A.; Kolobova, E.; Simakov, A.; Eränen, K.; Smeds, A.; Hemming, J.; et al. Preparation of Betulone Via Betulin Oxidation Over Ru Nanoparticles Deposited on Graphitic Carbon Nitride. Catal. Lett. 2019, 149, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Mäki-Arvela, P.; Barsukova, M.; Winberg, I.; Smeds, A.; Hemming, J.; Eränen, K.; Torozova, A.; Aho, A.; Volcho, K.P.; Murzin, D. Unprecedented Selective Heterogeneously Catalysed “Green” Oxidation of Betulin to Biologically Active Compounds using Synthetic Air and Supported Ru Catalysts. Chemistry 2016, 1, 3866–3869. [Google Scholar] [CrossRef]
- Kolobova, E.; Pestryakov, A.; Bogdanchikova, N.; Corberán, V.C. Silver catalysts for liquid-phase oxidation of alcohols in green chemistry: Challenges and outlook. Catal. Today 2019, 333, 81–88. [Google Scholar] [CrossRef]
- Kolobova, E.; Pestryakov, A.; Mamontov, G.; Kotolevich, Y.; Bogdanchikova, N.; Farias, M.; Vosmerikov, A.; Vosmerikova, L.; Corberan, V.C. Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel 2017, 188, 121–131. [Google Scholar] [CrossRef]
- Kolobova, E.; Pestryakov, A.; Shemeryankina, A.; Kotolevich, Y.; Martynyuk, O.; Vazquez, H.T.; Bogdanchikova, N. Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel 2014, 138, 65–71. [Google Scholar] [CrossRef]
- Roelofs, F.; Vogelsberger, W. Dissolution kinetics of nanodispersed γ-alumina in aqueous solution at different pH: Unusual kinetic size effect and formation of a new phase. J. Colloid Interface Sci. 2006, 303, 450–459. [Google Scholar] [CrossRef]
- Madarász, J.; Pokol, G.; Novak, C.; Cobos, F.T.; Gál, S. Studies on isothermal kinetics of some reactions of aluminum oxides and hydroxides. J. Therm. Anal. Calorim. 1992, 38, 445–454. [Google Scholar] [CrossRef]
- Novak, C.; Pokol, G.; Izvekov, V.; Gál, T. Studies on the reactions of aluminium oxides and hydroxides. J. Therm. Anal. Calorim. 1990, 36, 1895–1909. [Google Scholar] [CrossRef]
- Lefèvre, G.; Duc, M.; Lepeut, P.; Caplain, R.; Fédoroff, M. Hydration of γ-Alumina in Water and Its Effects on Surface Reactivity. Langmuir 2002, 18, 7530–7537. [Google Scholar] [CrossRef]
- Carrier, X.; Marceau, E.; Lambert, J.-F.; Che, M. Transformations of γ-alumina in aqueous suspensions. 1. Alumina chemical weathering studied as a function of pH. J. Colloid Interface Sci. 2007, 308, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Fang, B.; Li, X. Dehydration reactions and kinetic parameters of gibbsite. Ceram. Int. 2010, 36, 2493–2498. [Google Scholar] [CrossRef]
- Egorova, S.R.; Lamberov, A.A. Effect of the phase composition of gibbsite on the specific surface area of coarse Floccule of products formed in its dehydration under thermal treatment. Russ. J. Appl. Chem. 2014, 87, 1021–1030. [Google Scholar] [CrossRef]
- Egorova, S.R.; Lamberov, A.A. Formation and distribution of phases during the dehydration of large hydrargillite floccules. Inorg. Mater. 2015, 51, 331–339. [Google Scholar] [CrossRef]
- Zhang, R.; Kaliaguene, S. Lean reduction of NO by C3H6 over Ag/alumina derived from Al2O3, AlOOH, Al(OH)3. Appl. Catal. B-Environ. 2008, 78, 275–278. [Google Scholar] [CrossRef]
- Esteban-Cubillo, A.; Diaz, C.; Fernandez, A.; Diaz, L.A.; Pecharroman, C.; Torrecillas, R.; Moya, J.S. Silver nanoparticles supported on α-, η- and δ-alumina. J. Eur. Ceram. Soc. 2006, 26, 1–7. [Google Scholar] [CrossRef]
- Wang, F.; Ma, J.; He, G.; Chen, M.; Zhang, C.; He, H. Nanosize Effect of Al2O3 in Ag/Al2O3 Catalyst for the Selective Catalytic Oxidation of Ammonia. ACS Catal. 2018, 8, 2670–2682. [Google Scholar] [CrossRef]
- Giorgio, S.; Cabié, M.; Henry, C.R. Dynamic observations of Au catalysts by environmental electron microscopy. Gold Bull. 2008, 41, 167–173. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, S.; Joao, S.S.; Nitsche, S.; Chaudanson, D.; Sitja, G.; Henry, C. Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows. Ultramicroscopy 2006, 106, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Bukhtiyarov, A.; Stakheev, A.Y.; Mytareva, A.I.; Prosvirin, I.P.; Bukhtiyarov, V.I. In situ XPS study of the size effect in the interaction of NO with the surface of the model Ag/Al2O3/FeCrAl catalysts. Russ. Chem. Bull. 2015, 64, 2780–2785. [Google Scholar] [CrossRef]
- Seker, E.; Cavataio, J.; Gulari, E.; Lorpongpaiboon, P.; Osuwan, S. Nitric oxide reduction by propene over silver/alumina and silver–gold/alumina catalysts: Effect of preparation methods. Appl. Catal. A Gen. 1999, 183, 121–134. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1992; pp. 120–121, 207, 213. ISBN 0-9627026-2-5. [Google Scholar]
- Hoflund, G.B.; Hazos, Z.F.; Salaita, G.N. Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy. Phys. Rev. B. 2000, 62, 11126–11133. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Xu, J.; Huang, B. Effect of Al2O3 phase on the catalytic performance for HCHO oxidation over Ag/Al2O3 catalysts. Appl. Catal. A Gen. 2020, 602, 117705. [Google Scholar] [CrossRef]
- Chang, S.; Li, M.; Hua, Q.; Zhang, L.; Ma, Y.; Ye, B.; Huang, W. Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J. Catal. 2012, 293, 195–204. [Google Scholar] [CrossRef]
- Mejía, M.I.; Restrepo, G.; Mariín, J.M.; Sanjines, R.; Pulgarin, C.; Mielczarski, E.; Kiwi, J. Magnetron-Sputtered Ag Surfaces. New Evidence for the Nature of the Ag Ions Intervening in Bacterial Inactivation. ACS Appl. Mater. Interfaces 2009, 2, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Salido, I.; Lim, D.C.; Kim, Y.D. Ag nanoparticles on highly ordered pyrolytic graphite (HOPG) surfaces studied using STM and XPS. Surf. Sci. 2005, 588, 6–18. [Google Scholar] [CrossRef]
- Mason, M.G. Electronic structure of supported small metal clusters. Phys. Rev. B 1983, 27, 748–762. [Google Scholar] [CrossRef]
- Morterra, C.; Emanuel, C.; Cerrato, G.; Magnacca, G. Infrared study of some surface properties of boehmite (γ-AlO2H). J. Chem. Soc. Faraday Trans. 1992, 88, 339–348. [Google Scholar] [CrossRef]
- Ram, S. Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH)·αH2O bulk crystals. Infrared Phys. Technol. 2001, 42, 547–560. [Google Scholar] [CrossRef]
- Raybaud, P.; Digne, M.; Lftimie, R.; Wellens, W.; Euzen, P.; Toulhoat, H. Morphology and surface properties of boehmite (γ-AlOOH): A density functional theory study. J. Catal. 2001, 201, 236–246. [Google Scholar] [CrossRef]
- Digne, M.; Sautet, P.H.; Raybaud, P.; Euzen, P.; Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 2004, 226, 54–68. [Google Scholar] [CrossRef]
- Sposito, I.G. The Environmental Chemistry of Aluminum; CRC Press, Inc.: London, UK, 1996; p. 331. ISBN 9781566700306. [Google Scholar]
- Parera, J.M.; Figoli, N.S. Active sites and mechanisms of dehydration of methanol and methylation of methylaniline on alumina and on silica-alumina. J. Catal. 1969, 14, 303–310. [Google Scholar] [CrossRef]
- Morterra, C.; Bolis, V.; Magnacca, G. IR Spectroscopic and Microcalorimetric Characterization of Lewis Acid Sites on (Transition Phase) Al2O3 Using Adsorbed CO. Langmuir 1994, 10, 1812–1824. [Google Scholar] [CrossRef]
- Fionov, A.V.; Zaitseva, I.M.; Kharlanov, A.N.; Lunina, E.V. Donor-acceptor properties of aluminum oxide surface modified by sodium and calcium cations. Kinet. Catal. 1997, 38, 139–144. [Google Scholar]
Sample | Observed Phase (Framework) | SBET (m2/g) | Pore Size (nm) | Pore Volume (cm³/g) | Ag Content (wt.%) by ICP | Ag Average Particle Size (nm) by TEM |
---|---|---|---|---|---|---|
γ-Al2O3 | γ-Al2O3 (cubic) | 274 | 11.7 | 1.14 | - | - |
AlOOH | AlO(OH) (orthorhombic) | 321 | 5.8 | 0.41 | - | - |
AlOOH_cal | γ-Al2O3 (cubic) | 248 | 6.6 | 0.53 | - | - |
Ag/γ-Al2O3_dp_pH2 | γ-Al2O3 (cubic) Ag (cubic) | 278 | 11.3 | 1.06 | 2.7 | 3.0 |
Ag/γ-Al2O3_dp_pO2 | - | - | - | - | 2.7 | 11.5 |
Ag/γ-Al2O3_iw_pH2 | γ-Al2O3 (cubic) Ag (cubic) | 257 | 10.9 | 1.03 | 2.8 | 2.9 |
Ag/γ-Al2O3_iw_pO2 | - | - | - | - | 2.8 | 3.1 |
Ag/AlOOH_dp_pH2 | AlO(OH) (orthorhombic) Ag (cubic) | 254 | 5.8 | 0.38 | 2.7 | 3.4 |
Ag/AlOOH_dp_pO2 | - | - | - | - | 2.7 | 3.4 |
Ag/AlOOH_iw_pH2 | AlO(OH) (orthorhombic) Ag (cubic) | 222 | 4.6 | 0.38 | 2.6 | 4.6 |
Ag/AlOOH_iw_pO2 | - | - | - | - | 2.6 | 7.6 |
Ag/AlOOH_cal_dp_pH2 | γ-Al2O3 (cubic) Ag (cubic) | 249 | 6.3 | 0.50 | 2.8 | 2.6 |
Ag/AlOOH_cal_dp_pO2 | γ-Al2O3 (cubic) Al(OH)3 (monoclinic) Ag (cubic) | - | - | - | 2.8 | 2.3 |
Ag/AlOOH_cal_iw_pH2 | γ-Al2O3 (cubic) Ag (cubic) | 232 | 6.5 | 0.61 | 2.7 | 2.9 |
Ag/AlOOH_cal_iw_pO2 | γ-Al2O3 (cubic) Ag (cubic) | - | - | - | 2.7 | 2.4 |
Sample | Ag Electronic State Relative Content, % | |||
---|---|---|---|---|
Ag+ | Ag0 | |||
Ag/γ-Al2O3_dp_pH2 | 0 | 81 | 19 | 0 |
Ag/γ-Al2O3_dp_pO2 | 0 | 100 | 0 | 0 |
Ag/γ-Al2O3_iw_pH2 | 7 | 83 | 10 | 0 |
Ag/γ-Al2O3_iw_pO2 | 8 | 79 | 13 | 0 |
Ag/AlOOH_dp_pH2 | 0 | 100 | 0 | 0 |
Ag/AlOOH_dp_pO2 | 7 | 93 | 0 | 0 |
Ag/AlOOH_iw_pH2 | 0 | 100 | 0 | 0 |
Ag/AlOOH_iw_pO2 | 0 | 100 | 0 | 0 |
Ag/AlOOH_cal_dp_pH2 | 6 | 69 | 25 | 0 |
Ag/AlOOH_cal_dp_pO2 | 8 | 61 | 21 | 10 |
Ag/AlOOH_cal_iw_pH2 | 7 | 73 | 20 | 0 |
Ag/AlOOH_cal_iw_pO2 | 5 | 74 | 15 | 6 |
Entry | Catalyst | X (%) 1 | GCLPA (%) 2 | TOF × 10−3 (s−1) 3 | Selectivity (%) 4 | ∑Yproduct (%) 5 | ||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | ||||||
1 | Ag/γ-Al2O3_dp_pH2 | 83 | 77 | 4.13 | 8 | 53 | 1 | 38 | 0 | 67 |
2 | Ag/γ-Al2O3_dp_pO2 | 19 | 88 | 0.68 | 3 | 70 | 3 | 24 | 0 | 17 |
3 | Ag/γ-Al2O3_iw_pH2 | 75 | 60 | 7.48 | 12 | 44 | 2 | 41 | tr | 46 |
4 | Ag/γ-Al2O3_iw_pO2 | 73 | 70 | 1.80 | 9 | 58 | 1 | 32 | 0 | 52 |
5 | Ag/AlOOH_dp_pH2 | 31 | 91 | 0.56 | 7 | 71 | 2 | 20 | 0 | 29 |
6 | Ag/AlOOH_dp_pO2 | 33 | 86 | 1.27 | 6 | 72 | 2 | 20 | 0 | 29 |
7 | Ag/AlOOH_iw_pH2 | 30 | 89 | 0.85 | 6 | 74 | 2 | 18 | 0 | 28 |
8 | Ag/AlOOH_iw_pO2 | 24 | 85 | 1.50 | 5 | 73 | 3 | 19 | 0 | 21 |
9 | Ag/AlOOH_cal_dp_pH2 | 51 | 90 | 1.93 | 7 | 68 | 2 | 22 | tr | 47 |
10 | Ag/AlOOH_cal_dp_pO2 | 42 | 96 | 0.48 | 7 | 70 | 2 | 20 | tr | 41 |
11 | Ag/AlOOH_cal_iw_pH2 | 58 | 78 | 1.17 | 6 | 72 | 2 | 19 | tr | 47 |
12 | Ag/AlOOH_cal_iw_pO2 | 44 | 78 | 0.62 | 6 | 72 | 2 | 19 | tr | 43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoreva, A.; Kolobova, E.; Pakrieva, E.; Mäki-Arvela, P.; Carabineiro, S.A.C.; Gorbunova, A.; Bogdanchikova, N.; Murzin, D.Y.; Pestryakov, A. Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. Nanomaterials 2021, 11, 469. https://doi.org/10.3390/nano11020469
Grigoreva A, Kolobova E, Pakrieva E, Mäki-Arvela P, Carabineiro SAC, Gorbunova A, Bogdanchikova N, Murzin DY, Pestryakov A. Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. Nanomaterials. 2021; 11(2):469. https://doi.org/10.3390/nano11020469
Chicago/Turabian StyleGrigoreva, Anna, Ekaterina Kolobova, Ekaterina Pakrieva, Päivi Mäki-Arvela, Sónia A. C. Carabineiro, Alina Gorbunova, Nina Bogdanchikova, Dmitry Yu. Murzin, and Alexey Pestryakov. 2021. "Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation" Nanomaterials 11, no. 2: 469. https://doi.org/10.3390/nano11020469
APA StyleGrigoreva, A., Kolobova, E., Pakrieva, E., Mäki-Arvela, P., Carabineiro, S. A. C., Gorbunova, A., Bogdanchikova, N., Murzin, D. Y., & Pestryakov, A. (2021). Supported Silver Nanoparticles as Catalysts for Liquid-Phase Betulin Oxidation. Nanomaterials, 11(2), 469. https://doi.org/10.3390/nano11020469