Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells
<p>Typical HPLC chromatograms for the water, 50% ethanol and 50% methanol extracts from olive leaves. Peaks identified were: (3) gallic acid (internal standard), (5) tyrosol and (13) oleuropein.</p> "> Figure 2
<p>Methods for the preparation of olive leaf extracts.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
Solvent | Cultivar | TPC | Total Flavonoids | Oleuropein |
---|---|---|---|---|
(mg GAE/g) | (mg RE/g) | (µmol/g) | ||
Water | Corregiola | 230.15 ± 6.85 a | 345.45 ± 85.71 a | 86.33 ± 1.41 a |
Ethanol (50%) | Corregiola | 238.70 ± 11.85 a | 828.13 ± 47.82 b | 114.54 ± 1.14 b |
Methanol (50%) | Corregiola | 231.05 ± 11.15 a | 539.53 ± 18.16 a | 109.54 ± 3.92 b |
Water | Frantoio | 233.45 ± 0.20 a | 442.95 ± 16.52 a | 85.11 ± 1.65 a |
Ethanol (50%) | Frantoio | 241.60 ± 23.5 a | 1035.79 ± 121.25 b | 111.93 ± 5.80 b |
Methanol (50%) | Frantoio | 236.20 ± 11.02 a | 528.51 ± 43.87 a | 105.01 ± 1.13 b |
Solvent | Cultivar | DPPH | FRAP | CUPRAC |
---|---|---|---|---|
(% Inhibition) | (mg TRE/g) | (mg TRE/g) | ||
Water | Corregiola | 74.75 ± 5.85 a | 22.85 ± 19.17 a | 308.65 ± 36.83 a |
Ethanol (50%) | Corregiola | 70.97 ± 12.9 a | 218.51 ± 49.34 a | 322.32 ± 32.99 a |
Methanol (50%) | Corregiola | 84.25 ± 4.31 a | 237.81 ± 35.49 a | 302.54 ± 6.75 a |
Water | Frantoio | 75.61 ± 2.73 a | 232.12 ± 4.89 a | 318.07 ± 59.76 a |
Ethanol (50%) | Frantoio | 86.34 ± 4.27 a | 303.44 ± 19.81 a | 326.62 ± 21.71 a |
Methanol (50%) | Frantoio | 86.63 ± 8.19 a | 216.15 ± 55.66 a | 303.92 ± 22.17 a |
2.1. The Influence of Extraction Methods on Phytochemical Properties
2.2. The Influence of Extraction Methods on Antioxidant Capacity
2.3. The Influence of Extraction Methods on Growth Inhibition of Pancreatic Cancer Cells in Vitro
Solvent | Cultivar | Gemcitabine (50 nM) | Concentration of Olive Leaf Extract (µg/mL) | |||
---|---|---|---|---|---|---|
0 (Controls) | 50 | 100 | 200 | |||
water | Corregiola | 100 a,i | 55.89 ± 3.53 b,i | 14.59 ± 0.5 c,i | 0.63 ± 0.29 c,i | |
ethanol | Corregiola | 100 a,i | 121.59 ± 13.7 a,ii | 4.26 ± 2.6 b,ii | 0.44 ± 2.08 b,i | |
methanol | Corregiola | 100 a,i | 73.57 ± 9.33 b,ii | 32.83 ± 10.41 c,iii | 0.87 ± 0.17 d,i | |
water | Frantoio | 100 a,i | 103.19 ± 27.9 a,ii | 0.47 ± 0.13 b,ii | 0.61 ± 0.17 b,i | |
ethanol | Frantoio | 100 a,i | 122.78 ± 21.1 a,ii | 30.37 ± 4.48 b,iii | 0.87 ± 0.22 c,i | |
methanol | Frantoio | 100 a,i | 120.26 ± 9.22 b,ii | 41.13 ± 16.02 c,iii | 0.98 ± 0.56 c,i | |
control | 100 a,i | |||||
47.8 ± 0.1 |
3. Experimental Section
3.1. Materials
3.2. Sample Preparation and Extraction of Phenolic Compounds
3.3. Total Phenolic Compounds
3.4. HPLC
3.5. Determination and Quantification of Oleuropein
3.6. Flavonoids
3.7. Assessment of Antioxidant Capacity
3.7.1. FRAP
3.7.2. CUPRAC
3.7.3. DPPH
3.8. Effect of Olive Leaf Extracts on Pancreas Cells
3.8.1. Pancreas Cell Culture
3.8.2. Assessment of Cell Growth Inhibition of Olive Leaf Extracts
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tsatsanis, C.; Androulidaki, A.; Venihaki, M.; Margioris, A.N. Signalling networks regulating cyclooxygenase-2. Int. J. Biochem. Cell Biol. 2006, 38, 1654–1661. [Google Scholar] [CrossRef] [PubMed]
- Sebolt-Leopold, J.S.; Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat. Rev. Cancer 2004, 4, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I. Olive oil and the cardiovascular system. Pharmacol. Res. 2007, 55, 175–186. [Google Scholar] [CrossRef] [PubMed]
- De la Puerta, R.; Ruiz Gutierrez, V.; Hoult, J.R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharmacol. 1999, 57, 445–449. [Google Scholar] [CrossRef]
- Bisignano, G.; Tomaino, A.; lo Cascio, R.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar] [CrossRef] [PubMed]
- Menendez, J.A.; Vazquez-Martin, A.; Colomer, R.; Brunet, J.; Carrasco-Pancorbo, A.; Garcia-Villalba, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (herceptin) in her2-overexpressing breast cancer cells. BMC Cancer 2007, 7. [Google Scholar] [CrossRef] [PubMed]
- Hassan, Z.K.; Elamin, M.H.; Omer, S.A.; Daghestani, M.H.; Al-Olayan, E.S.; Elobeid, M.A.; Virk, P. Oleuropein induces apoptosis via the p53 pathway in breast cancer cells. Asian Pac. J. Cancer Prev. 2013, 14, 6739–6742. [Google Scholar] [CrossRef]
- Hamdi, H.K.; Castellon, R. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor. Biochem. Biophys. Res. Commun. 2005, 334, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Chimento, A.; Casaburi, I.; Rosano, C.; Avena, P.; De Luca, A.; Campana, C.; Martire, E.; Santolla, M.F.; Maggiolini, M.; Pezzi, V.; et al. Oleuropein and hydroxytyrosol activate gper/gpr30-dependent pathways leading to apoptosis of er-negative skbr3 breast cancer cells. Mol. Nutr. Food Res. 2013, 58, 478–479. [Google Scholar] [CrossRef] [PubMed]
- Carrera-González, M.P.; Ramírez-Expósito, M.J.; Mayas, M.D.; Martínez-Martos, J.M. Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci. Technol. 2013, 31, 92–99. [Google Scholar] [CrossRef]
- Cardeno, A.; Sanchez-Hidalgo, M.; Rosillo, M.A.; Alarcon de la Lastra, C. Oleuropein, a secoiridoid derived from olive tree, inhibits the proliferation of human colorectal cancer cell through downregulation of hif-1alpha. Nutr. Cancer 2013, 65, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Scarlett, C.J.; Smith, R.C.; Saxby, A.; Nielsen, A.; Samra, J.S.; Wilson, S.R.; Baxter, R.C. Proteomic classification of pancreatic adenocarcinoma tissue using protein chip technology. Gastroenterology 2006, 130, 1670–1678. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.K.; Merrett, N.D.; Biankin, A.V.; Network, N.S.W.P.C. Improving outcomes for operable pancreatic cancer: Is access to safer surgery the problem? J. Gastroenterol. Hepatol. 2008, 23, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Scarlett, C.J.; Roach, P.D. Green tea and pancreatic cancer chemoprevention. In Green Tea: Varieties, Production and Health Benefits; Wu, W., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2012; Volume 1, pp. 77–93. [Google Scholar]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2012. Cancer J Clin. 2012, 62, 10–29. [Google Scholar] [CrossRef] [PubMed]
- Biankin, A.V.; Waddell, N.; Kassahn, K.S.; Gingras, M.C.; Muthuswamy, L.B.; Johns, A.L.; Miller, D.K.; Wilson, P.J.; Patch, A.M.; Wu, J.; et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012, 491, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xynos, N.; Papaefstathiou, G.; Gikas, E.; Argyropoulou, A.; Aligiannis, N.; Skaltsounis, A.L. Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Sep. Purif. Technol. 2014, 122, 323–330. [Google Scholar] [CrossRef]
- Taamalli, A.; Arraez-Roman, D.; Ibanez, E.; Zarrouk, M.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using hplc-esi-tof-ms/it-ms(2). J. Agric. Food Chem. 2012, 60, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Şahin, S.; Şamlı, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Seabra, R.M.; Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentao, P.; Goncalves, A.; Pereira, J.A.; Oliveira, M.B.; Andrade, P.B. Phenolic profiles of portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar]
- Tan, S.P.; Parks, S.E.; Stathopoulos, C.E.; Roach, P.D. Extraction of flavanoids form bitter melon. Food Nutr. Sci. 2014, 5, 458–465. [Google Scholar] [CrossRef]
- Han, J.; Talorete, T.P.; Yamada, P.; Isoda, H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer mcf-7 cells. Cytotechnology 2009, 59, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad-Qasem, M.H.; Barrajón-Catalán, E.; Micol, V.; Mulet, A.; García-Pérez, J.V. Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Res. Int. 2013, 50, 189–196. [Google Scholar] [CrossRef]
- Goldsmith, C.; Vuong, Q.; Stathopoulos, C.; Roach, P.; Scarlett, C. Optimization of the aqueous extraction of phenolic compounds from olive leaves. Antioxidants 2014, 3, 700–712. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of abts, dpph, frap, and orac assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Goldsmith, C.D.; Stathopoulos, C.E.; Golding, J.B.; Roach, P.D. Fate of phenolic compounds during olive oil production with the traditional press method. Int. Food Res. J. 2014, 21, 101–109. [Google Scholar]
- Vuong, Q.V.; Hirun, S.; Chuen, T.L.K.; Goldsmith, C.D.; Bowyer, M.C.; Chalmers, A.C.; Phillips, P.A.; Scarlett, C.J. Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (syzygium paniculatum) extract. J. Herbal Med. 2014, 4, 134–140. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins c and e, using their cupric ion reducing capability in the presence of neocuproine: Cuprac method. J. Agric. Food. Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of carica papaya leaf aqueous extracts. J. Herbal Med. 2013, 3, 104–111. [Google Scholar] [CrossRef]
- Elamin, M.H.; Daghestani, M.H.; Omer, S.A.; Elobeid, M.A.; Virk, P.; Al-Olayan, E.M.; Hassan, Z.K.; Mohammed, O.B.; Aboussekhra, A. Olive oil oleuropein has anti-breast cancer properties with higher efficiency on er-negative cells. Food Chem. Toxicol. 2013, 53, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the olive leaf extracts are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldsmith, C.D.; Vuong, Q.V.; Sadeqzadeh, E.; Stathopoulos, C.E.; Roach, P.D.; Scarlett, C.J. Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells. Molecules 2015, 20, 12992-13004. https://doi.org/10.3390/molecules200712992
Goldsmith CD, Vuong QV, Sadeqzadeh E, Stathopoulos CE, Roach PD, Scarlett CJ. Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells. Molecules. 2015; 20(7):12992-13004. https://doi.org/10.3390/molecules200712992
Chicago/Turabian StyleGoldsmith, Chloe D., Quan V. Vuong, Elham Sadeqzadeh, Costas E. Stathopoulos, Paul D. Roach, and Christopher J. Scarlett. 2015. "Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells" Molecules 20, no. 7: 12992-13004. https://doi.org/10.3390/molecules200712992
APA StyleGoldsmith, C. D., Vuong, Q. V., Sadeqzadeh, E., Stathopoulos, C. E., Roach, P. D., & Scarlett, C. J. (2015). Phytochemical Properties and Anti-Proliferative Activity of Olea europaea L. Leaf Extracts against Pancreatic Cancer Cells. Molecules, 20(7), 12992-13004. https://doi.org/10.3390/molecules200712992