Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues
<p>Schematic structure for a 1D grating coupler (GC) with linear waveguide taper and key parameters: period <math display="inline"> <semantics> <mi mathvariant="sans-serif">Λ</mi> </semantics> </math>, fiber tilt angle <span class="html-italic">θ</span>, varying taper width W and taper angle <math display="inline"> <semantics> <mrow> <msub> <mi>θ</mi> <mrow> <mi>t</mi> <mi>a</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> </mrow> </semantics> </math>.</p> "> Figure 2
<p>(<b>a</b>) Loss channels in input and output coupling; (<b>b</b>) wave-vector diagram for fiber-to-chip coupling; and (<b>c</b>) wave-vector diagram for chip-to-fiber perfectly vertical coupling.</p> "> Figure 3
<p>(<b>a</b>) Schematic of planar waveguide grating; and (<b>b</b>) Illustration of a subwavelength grating coupler (SWGC) (inset: its 2D equivalent index model).</p> "> Figure 4
<p>Schematic diagram of a focusing GC with curved grating lines.</p> "> Figure 5
<p>Additional fabrication techniques to enhance GC directionality: (<b>a</b>) GC with poly-silicon overlay; (<b>b</b>) GC with metal reflector, fabricated by flip-chip and benzo-cyclobutene-bond; (<b>c</b>) GC with distributed Bragg reflector; and (<b>d</b>) GC with silicon grating reflector on silicon-nitride-on-silicon platform.</p> "> Figure 6
<p>Structural innovations on GC: (<b>a</b>) apodized GC with varied duty cycle <math display="inline"> <semantics> <mrow> <msub> <mi>f</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> or period <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="sans-serif">Λ</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> for different grating teeth; (<b>b</b>) theoretical calculation of normalized output power distribution (solid) and coupling strength (dashed) for ideally (red) and linearly (blue) apodized GCs. (<b>c</b>) GC with double etch steps; and (<b>d</b>) slanted GC (upper) and dual-layer GC (lower).</p> "> Figure 7
<p>GCs with polarization diversity: (<b>a</b>) 1D polarization splitting grating coupler (PSGC) with traverse electric (TE)/ traverse magnetic (TM) polarizations coupled to TE<sub>0</sub>/TM<sub>0</sub> waveguide modes in contrary directions; (<b>b</b>) wave-vector diagram for 1D PSGC; (<b>c</b>) 2D PSGC with TE/TM polarizations coupled to TE<sub>0</sub> waveguide modes in orthogonal directions; and (<b>d</b>) thick silicon-on-insulator GC for polarization-insensitive coupling.</p> "> Figure 8
<p>Dual-wavelength-band GCs: (<b>a</b>) two bands coupled to orthogonal waveguides; (<b>b</b>) two bands coupled to opposite waveguides; (<b>c</b>) wave-vector diagram for 1D dual-wavelength-band GC; and (<b>d</b>) 2D PSGC that supports dual wavelength bands.</p> "> Figure 9
<p>(<b>a</b>) Multi-core fiber (MCF) multiplexer based on multiple GCs [<a href="#B105-micromachines-11-00666" class="html-bibr">105</a>]; (<b>b</b>) Few-mode-fiber mode multiplexer based on multiple GCs [<a href="#B114-micromachines-11-00666" class="html-bibr">114</a>]; and (<b>c</b>) FMF mode multiplexer based on single GC [<a href="#B118-micromachines-11-00666" class="html-bibr">118</a>].</p> "> Figure 10
<p>(<b>a</b>) Dual-layer SiN-on-SiN GC; and (<b>b</b>) metal GC that excites surface plasmons.</p> "> Figure 11
<p>Lateral coupling by angle polished fiber.</p> ">
Abstract
:1. Introduction
2. Fundamentals of Grating Coupler
2.1. Bragg Condition, Loss Channels and Fiber Tilt Angle
2.2. Subwavelength Grating and Effective Index Medium Theory
2.3. Transition Taper and Focusing Grating Coupler
3. Coupling Efficiency Enhancement
3.1. Additional Fabrication Techniques for Directionality
3.1.1. Poly-Silicon Overlay
3.1.2. Bottom Reflector
3.2. Grating Structural Innovation
3.2.1. Apodized Grating Coupler to Increase Modal Overlap
3.2.2. Complexity in Z-Direction to Increase Directionality
4. Polarization and Wavelength Diversity
4.1. Polarization Diversity
4.1.1. Polarization Splitting Grating Coupler (PSGCs)
4.1.2. Unidirectional Polarization Insensitive Grating Coupler
4.2. Wavelength Diversity
4.2.1. Broadband Grating Coupler
- Reducing by choosing material with lower refractive index, such as silicon nitride. In [89], a SiN GC with -4.2 dB CE and 67 nm 1-dB BW is achieved. Due to its low refractive index contrast that offers less coupling strength, the CE is usually lower than that of SOI GCs. This is improved in [46], where a bottom Si-grating reflector is added to achieve -1.3 dB CE with 80 nm 1-dB BW.
- Reducing by engineering effective refractive index medium in SWGC. In [92], a SWGC that intends to lower is measured with -7 dB CE and 80 nm 1-dB BW. Another SWGC design in [36] yields 5.8 dB CE and 90 nm 1-dB BW in experiment, while it is also shown using comparison that lowering does contribute to larger BW, but CE is reduced similar to the SiN GC case.
- Allowing the optical fiber to accept more dispersed light. One way is to use optical fiber with high numerical aperture [93], as suggested in Equation (12). Another way is to insert a Si-prism between fiber and chip to compensate the angular dispersion, where 1-dB BW of 126 nm is demonstrated in [94]. Unlike changing the grating design or material directly, this method requires either nonstandard SMF or additional fabrication effort, and it also increases the requirement for alignment accuracy.
4.2.2. Dual-Wavelength-Band Grating Coupler
5. Emerging Trends in Grating Coupler Research
5.1. Space Division Multiplexing Using Grating Couplers
5.2. Objective-First Design for Grating Couplers
5.3. Grating Couplers on Different Material Platforms
5.3.1. Multi-Layer Silicon Nitride Grating Coupler
5.3.2. Plasmonic Grating Coupler
6. Practical Issues for Grating Couplers
6.1. Wafer-Level Testing and Packaging
6.2. Applications
6.2.1. Photonics Integrated Circuits (PICs)
6.2.2. Biomedical Sensing
6.2.3. LiDAR
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Reed, G.T.; Knights, A.P. Silicon Photonics: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.-M. Roadmap on silicon photonics. J. Opt. 2016, 18, 073003. [Google Scholar] [CrossRef]
- Rahim, A.; Spuesens, T.; Baets, R.; Bogaerts, W. Open-Access Silicon Photonics: Current Status and Emerging Initiatives. Proc. IEEE 2018, 106, 2313–2330. [Google Scholar] [CrossRef] [Green Version]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Liang, D.; Bowers, J.E. Recent progress in lasers on silicon. Nat. Photonics 2010, 4, 511–517. [Google Scholar] [CrossRef]
- Reed, G.T.; Mashanovich, G.; Gardes, F.Y.; Thomson, D.J. Silicon optical modulators. Nat. Photonics 2010, 4, 518–526. [Google Scholar] [CrossRef] [Green Version]
- Dai, D. Silicon Nanophotonic Integrated Devices for On-Chip Multiplexing and Switching. J. Lightwave Technol. 2017, 35, 572–587. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, R.; Li, X.; Li, T. Development trends in silicon photonics for data centers. Opt. Fiber Technol. 2018, 44, 13–23. [Google Scholar] [CrossRef]
- Hu, T.; Dong, B.; Luo, X.; Liow, T.-Y.; Song, J.; Lee, C.; Lo, G.-Q. Silicon photonic platforms for mid-infrared applications. Photonics Res. 2017, 5, 417–430. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Komljenovic, T.; Huang, J.; Tran, M.; Davenport, M.; Torres, A.; Pintus, P.; Bowers, J. Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 2019, 27, 3642–3663. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Wu, S.; Cheng, L.; Fu, H.Y. Edge Couplers in Silicon Photonic Integrated Circuits: A Review. Appl. Sci. 2020, 10, 1538. [Google Scholar] [CrossRef] [Green Version]
- Nambiar, S.; Sethi, P.; Selvaraja, S. Grating-Assisted Fiber to Chip Coupling for SOI Photonic Circuits. Appl. Sci. 2018, 8, 1142. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, R.; Lacava, C.; Carroll, L.; Gradkowski, K.; Minzioni, P. Coupling strategies for silicon photonics integrated chips [Invited]. Photonics Res. 2019, 7, 201–239. [Google Scholar] [CrossRef]
- Papes, M.; Cheben, P.; Benedikovic, D.; Schmid, J.H.; Pond, J.; Halir, R.; Ortega-Moñux, A.; Wangüemert-Pérez, G.; Ye, W.N.; Xu, D.-X.; et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Opt. Express 2016, 24, 5026–5038. [Google Scholar] [CrossRef]
- Halir, R.; Bock, P.J.; Cheben, P.; Ortega-Moñux, A.; Alonso-Ramos, C.; Schmid, J.H.; Lapointe, J.; Xu, D.-X.; Wangüemert-Pérez, J.G.; Molina-Fernández, Í.; et al. Waveguide sub-wavelength structures: A review of principles and applications. Laser Photonics Rev. 2015, 9, 25–49. [Google Scholar] [CrossRef]
- Halir, R.; Ortega-Monux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wanguemert-Perez, J.G.; Schmid, J.H.; Molina-Fernandez, I.; Cheben, P. Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Cheng, Z.; Chen, X.; Xu, K.; Sun, X.; Tsang, H. Subwavelength Engineering in Silicon Photonic Devices. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–13. [Google Scholar] [CrossRef]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
- Roelkens, G.; Van Thourhout, D.; Baets, R. High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers. Opt. Lett. 2007, 32, 1495–1497. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Chao, L.; Hon Ki, T. Fabrication-Tolerant Waveguide Chirped Grating Coupler for Coupling to a Perfectly Vertical Optical Fiber. IEEE Photonics Technol. Lett. 2008, 20, 1914–1916. [Google Scholar] [CrossRef]
- Tseng, H.L.; Chen, E.; Rong, H.; Na, N. High-performance silicon-on-insulator grating coupler with completely vertical emission. Opt. Express 2015, 23, 24433–24439. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Liu, L.; Zhou, Z.; Wang, X. High efficiency binary blazed grating coupler for perfectly-vertical and near-vertical coupling in chip level optical interconnections. Opt. Commun. 2015, 355, 161–166. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, J.; Zhang, C.; Wang, S.; Jin, C.; Chen, Y.; Chen, K.; Xiang, T.; Shi, Y. Silicon waveguide grating coupler for perfectly vertical fiber based on a tilted membrane structure. Opt. Lett. 2016, 41, 820–823. [Google Scholar] [CrossRef]
- Tong, Y.; Zhou, W.; Tsang, H.K. Efficient perfectly vertical grating coupler for multi-core fibers fabricated with 193 nm DUV lithography. Opt. Lett. 2018, 43, 5709–5712. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Cheng, Q.; Khokhar, A.Z.; Yan, X.; Huang, B.; Chen, H.; Liu, H.; Li, H.; Thomson, D.J.; et al. High-efficiency apodized bidirectional grating coupler for perfectly vertical coupling. Opt. Lett. 2019, 44, 5081–5084. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Chao, L.; Hon Ki, T. Etched Waveguide Grating Variable 1*2 Splitter/Combiner and Waveguide Coupler. IEEE Photonics Technol. Lett. 2009, 21, 268–270. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Ye, M.; Liu, L.; Deng, S.; Zhang, X. A four-port polarization diversity coupler for vertical fiber-chip coupling. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 22–26 March 2015; p. W2A. 10. [Google Scholar]
- Zhu, L.; Yang, W.; Chang-Hasnain, C. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber. Opt. Express 2017, 25, 18462–18473. [Google Scholar] [CrossRef] [PubMed]
- Benedikovic, D.; Alonso-Ramos, C.; Perez-Galacho, D.; Guerber, S.; Vakarin, V.; Marcaud, G.; Le Roux, X.; Cassan, E.; Marris-Morini, D.; Cheben, P.; et al. L-shaped fiber-chip grating couplers with high directionality and low reflectivity fabricated with deep-UV lithography. Opt. Lett. 2017, 42, 3439–3442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rytov, S. Electromagnetic properties of a finely stratified medium. Sov. Phys. JEPT 1956, 2, 466–475. [Google Scholar]
- Halir, R.; Cheben, P.; Janz, S.; Xu, D.X.; Molina-Fernandez, I.; Wanguemert-Perez, J.G. Waveguide grating coupler with subwavelength microstructures. Opt. Lett. 2009, 34, 1408–1410. [Google Scholar] [CrossRef]
- Halir, R.; Cheben, P.; Schmid, J.H.; Ma, R.; Bedard, D.; Janz, S.; Xu, D.X.; Densmore, A.; Lapointe, J.; Molina-Fernandez, I. Continuously apodized fiber-to-chip surface grating coupler with refractive index engineered subwavelength structure. Opt. Lett. 2010, 35, 3243–3245. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, Z.; Jia, H.; Zhang, X.; Qin, S. High-performance and compact binary blazed grating coupler based on an asymmetric subgrating structure and vertical coupling. Opt. Lett. 2011, 36, 2614–2617. [Google Scholar] [CrossRef] [Green Version]
- Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.-X.; Lapointe, J.; Wang, S.; Halir, R.; Ortega-Moñux, A.; Janz, S.; Dado, M. High-efficiency single etch step apodized surface grating coupler using subwavelength structure. Laser Photonics Rev. 2014, 8, L93–L97. [Google Scholar] [CrossRef]
- Benedikovic, D.; Alonso-Ramos, C.; Cheben, P.; Schmid, J.H.; Wang, S.; Halir, R.; Ortega-Monux, A.; Xu, D.X.; Vivien, L.; Lapointe, J.; et al. Single-etch subwavelength engineered fiber-chip grating couplers for 1.3 microm datacom wavelength band. Opt. Express 2016, 24, 12893–12904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Shi, W.; Wang, X.; Lu, Z.; Caverley, M.; Bojko, R.; Chrostowski, L.; Jaeger, N.A. Design of broadband subwavelength grating couplers with low back reflection. Opt. Lett. 2015, 40, 4647–4650. [Google Scholar] [CrossRef]
- Cheben, P.; Xu, D.X.; Janz, S.; Densmore, A. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express 2006, 14, 4695–4702. [Google Scholar] [CrossRef] [PubMed]
- Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.-X.; Densmore, A.; Delâge, A.; Lamontagne, B.; Hall, T.J. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 2010, 35, 2526–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flueckiger, J.; Schmidt, S.; Donzella, V.; Sherwali, A.; Ratner, D.M.; Chrostowski, L.; Cheung, K.C. Sub-wavelength grating for enhanced ring resonator biosensor. Opt. Express 2016, 24, 15672–15686. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Monux, A.; Zavargo-Peche, L.; Maese-Novo, A.; Molina-Fernández, I.; Halir, R.; Wanguemert-Perez, J.; Cheben, P.; Schmid, J. High-performance multimode interference coupler in silicon waveguides with subwavelength structures. IEEE Photonics Technol. Lett. 2011, 23, 1406–1408. [Google Scholar] [CrossRef]
- Fu, Y.; Ye, T.; Tang, W.; Chu, T. Efficient adiabatic silicon-on-insulator waveguide taper. Photonics Res. 2014, 2, A41–A44. [Google Scholar] [CrossRef]
- Van Laere, F.; Claes, T.; Schrauwen, J.; Scheerlinck, S.; Bogaerts, W.; Taillaert, D.; O’Faolain, L.; Van Thourhout, D.; Baets, R. Compact focusing grating couplers for silicon-on-insulator integrated circuits. IEEE Photonics Technol. Lett. 2007, 19, 1919–1921. [Google Scholar] [CrossRef]
- Vermeulen, D.; Selvaraja, S.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; Van Thourhout, D.; Roelkens, G. High-efficiency fiber-to-chip grating couplers realized using an advanced CMOS-compatible silicon-on-insulator platform. Opt. Express 2010, 18, 18278–18283. [Google Scholar] [CrossRef]
- Van Laere, F.; Roelkens, G.; Ayre, M.; Schrauwen, J.; Taillaert, D.; Van Thourhout, D.; Krauss, T.F.; Baets, R. Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides. J. Lightwave Technol. 2007, 25, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Li, C.; Tu, X.; Song, J.; Zhou, H.; Luo, X.; Huang, Y.; Yu, M.; Lo, G.Q. Efficient silicon nitride grating coupler with distributed Bragg reflectors. Opt. Express 2014, 22, 21800–21805. [Google Scholar] [CrossRef] [PubMed]
- Sacher, W.D.; Huang, Y.; Ding, L.; Taylor, B.J.; Jayatilleka, H.; Lo, G.Q.; Poon, J.K. Wide bandwidth and high coupling efficiency Si3N4-on-SOI dual-level grating coupler. Opt. Express 2014, 22, 10938–10947. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, Y.; Galland, C.; Lim, A.E.-J.; Lo, G.-Q.; Baehr-Jones, T.; Hochberg, M. A High-Efficiency Nonuniform Grating Coupler Realized With 248-nm Optical Lithography. IEEE Photonics Technol. Lett. 2013, 25, 1358–1361. [Google Scholar] [CrossRef]
- Benedikovic, D.; Alonso-Ramos, C.; Cheben, P.; Schmid, J.H.; Wang, S.; Xu, D.X.; Lapointe, J.; Janz, S.; Halir, R.; Ortega-Monux, A.; et al. High-directionality fiber-chip grating coupler with interleaved trenches and subwavelength index-matching structure. Opt. Lett. 2015, 40, 4190–4193. [Google Scholar] [CrossRef] [PubMed]
- Schrauwen, J.; Laere, F.V.; Thourhout, D.V.; Baets, R. Focused-Ion-Beam Fabrication of Slanted Grating Couplers in Silicon-on-Insulator Waveguides. IEEE Photonics Technol. Lett. 2007, 19, 816–818. [Google Scholar] [CrossRef] [Green Version]
- Roelkens, G.; Van Thourhout, D.; Baets, R. High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay. Opt. Express 2006, 14, 11622–11630. [Google Scholar] [CrossRef] [Green Version]
- Romero-Garcia, S.; Merget, F.; Zhong, F.; Finkelstein, H.; Witzens, J. Visible wavelength silicon nitride focusing grating coupler with AlCu/TiN reflector. Opt. Lett. 2013, 38, 2521–2523. [Google Scholar] [CrossRef]
- Benedikovic, D.; Cheben, P.; Schmid, J.H.; Xu, D.X.; Lamontagne, B.; Wang, S.; Lapointe, J.; Halir, R.; Ortega-Monux, A.; Janz, S.; et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides. Opt. Express 2015, 23, 22628–22635. [Google Scholar] [CrossRef] [Green Version]
- Zaoui, W.S.; Kunze, A.; Vogel, W.; Berroth, M. CMOS-Compatible Polarization Splitting Grating Couplers With a Backside Metal Mirror. IEEE Photonics Technol. Lett. 2013, 25, 1395–1397. [Google Scholar] [CrossRef]
- Luo, Y.; Nong, Z.; Gao, S.; Huang, H.; Zhu, Y.; Liu, L.; Zhou, L.; Xu, J.; Liu, L.; Yu, S.; et al. Low-loss two-dimensional silicon photonic grating coupler with a backside metal mirror. Opt. Lett. 2018, 43, 474–477. [Google Scholar] [CrossRef]
- Taillaert, D.; Bienstman, P.; Baets, R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Opt. Lett. 2004, 29, 2749–2751. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Ye, M.; Liu, L.; Deng, S.; Zhang, X. Ultra efficient silicon nitride grating coupler with bottom grating reflector. Opt. Express 2015, 23, 26305–26312. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Zhang, Y.; Shao, Z.; Liu, L.; Zhou, L.; Yang, C.; Chen, Y.; Yu, S. High-efficiency wideband SiNx-on-SOI grating coupler with low fabrication complexity. Opt. Lett. 2017, 42, 3391–3394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mossberg, T.; Greiner, C.; Iazikov, D. Interferometric amplitude apodization of integrated gratings. Opt. Express 2005, 13, 2419–2426. [Google Scholar] [CrossRef]
- Marchetti, R.; Lacava, C.; Khokhar, A.; Chen, X.; Cristiani, I.; Richardson, D.J.; Reed, G.T.; Petropoulos, P.; Minzioni, P. High-efficiency grating-couplers: Demonstration of a new design strategy. Sci. Rep. 2017, 7, 16670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yun, H.; Lu, Z.; Bojko, R.; Shi, W.; Wang, X.; Flueckiger, J.; Zhang, F.; Caverley, M.; Jaeger, N.A.F.; et al. Apodized Focusing Fully Etched Subwavelength Grating Couplers. IEEE Photonics J. 2015, 7, 1–10. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z.; Wosinski, L.; Westergren, U.; He, S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Opt. Lett. 2010, 35, 1290–1292. [Google Scholar] [CrossRef]
- Alonso-Ramos, C.; Cheben, P.; Ortega-Monux, A.; Schmid, J.H.; Xu, D.X.; Molina-Fernandez, I. Fiber-chip grating coupler based on interleaved trenches with directionality exceeding 95. Opt. Lett. 2014, 39, 5351–5354. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Halir, R.; Molina-Fernandez, I.; Cheben, P.; He, J.J. High-efficiency apodized-imaging chip-fiber grating coupler for silicon nitride waveguides. Opt. Lett. 2016, 41, 5059–5062. [Google Scholar] [CrossRef]
- Chen, Y.; Dominguez Bucio, T.; Khokhar, A.Z.; Banakar, M.; Grabska, K.; Gardes, F.Y.; Halir, R.; Molina-Fernandez, I.; Cheben, P.; He, J.J. Experimental demonstration of an apodized-imaging chip-fiber grating coupler for Si3N4 waveguides. Opt. Lett. 2017, 42, 3566–3569. [Google Scholar] [CrossRef]
- Chen, X.; Thomson, D.J.; Crudginton, L.; Khokhar, A.Z.; Reed, G.T. Dual-etch apodised grating couplers for efficient fibre-chip coupling near 1310 nm wavelength. Opt. Express 2017, 25, 17864–17871. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ayata, M.; Koch, U.; Fedoryshyn, Y.; Leuthold, J. Perpendicular Grating Coupler Based on a Blazed Antiback-Reflection Structure. J. Lightwave Technol. 2017, 35, 4663–4669. [Google Scholar] [CrossRef]
- Watanabe, T.; Fedoryshyn, Y.; Leuthold, J. 2-D Grating Couplers for Vertical Fiber Coupling in Two Polarizations. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Bin, W.; Jianhua, J.; Nordin, G.P. Embedded slanted grating for vertical coupling between fibers and silicon-on-insulator planar waveguides. IEEE Photonics Technol. Lett. 2005, 17, 1884–1886. [Google Scholar] [CrossRef]
- Dai, M.; Ma, L.; Xu, Y.; Lu, M.; Liu, X.; Chen, Y. Highly efficient and perfectly vertical chip-to-fiber dual-layer grating coupler. Opt. Express 2015, 23, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Trivedi, R.; Sapra, N.V.; Piggott, A.Y.; Vercruysse, D.; Vuckovic, J. Fully-automated optimization of grating couplers. Opt. Express 2018, 26, 4023–4034. [Google Scholar] [CrossRef] [Green Version]
- Michaels, A.; Yablonovitch, E. Inverse design of near unity efficiency perfectly vertical grating couplers. Opt. Express 2018, 26, 4766–4779. [Google Scholar] [CrossRef]
- Tang, Y.; Dai, D.; He, S. Proposal for a grating waveguide serving as both a polarization splitter and an efficient coupler for silicon-on-insulator nanophotonic circuits. IEEE Photonics Technol. Lett. 2009, 21, 242–244. [Google Scholar] [CrossRef]
- Taillaert, D.; Harold, C.; Borel, P.I.; Frandsen, L.H.; Rue, R.M.D.L.; Baets, R. A compact two-dimensional grating coupler used as a polarization splitter. IEEE Photonics Technol. Lett. 2003, 15, 1249–1251. [Google Scholar] [CrossRef]
- Verslegers, L.; Mekis, A.; Pinguet, T.; Chi, Y.; Masini, G.; Sun, P.; Ayazi, A.; Hon, K.; Sahni, S.; Gloeckner, S. Design of low-loss polarization splitting grating couplers. In Photonic Networks and Devices; Optical Society of America: Washington, DC, USA, 2014; p. JT4A. 2. [Google Scholar]
- Zou, J.; Yu, Y.; Zhang, X. Single step etched two dimensional grating coupler based on the SOI platform. Opt. Express 2015, 23, 32490–32495. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Zhang, X. Two-dimensional grating coupler with a low polarization dependent loss of 0.25 dB covering the C-band. Opt. Lett. 2016, 41, 4206–4209. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Chen, H.; Bao, Y.; Dong, J.; Zhang, X. Two-dimensional silicon photonic grating coupler with low polarization-dependent loss and high tolerance. Opt. Express 2019, 27, 22268–22274. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Hu, J.; Zhu, Y.; Cai, X.; Chen, P.; Liu, L. Two-dimensional grating coupler on silicon with a high coupling efficiency and a low polarization-dependent loss. Opt. Express 2020, 28, 4001–4009. [Google Scholar] [CrossRef]
- Shao, S.; Wang, Y. Highly compact polarization-independent grating coupler. Opt. Lett. 2010, 35, 1834–1836. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Tsang, H.K. Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides. Opt. Lett. 2011, 36. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Tsang, H.K. Experimental demonstration of polarization-insensitive air-cladding grating couplers for silicon-on-insulator waveguides. Opt. Lett. 2014, 39, 2206–2209. [Google Scholar] [CrossRef]
- Alonso-Ramos, C.; Zavargo-Peche, L.; Ortega-Monux, A.; Halir, R.; Molina-Fernandez, I.; Cheben, P. Polarization-independent grating coupler for micrometric silicon rib waveguides. Opt. Lett. 2012, 37, 3663–3665. [Google Scholar] [CrossRef]
- Song, J.H.; Doany, F.E.; Medhin, A.K.; Dupuis, N.; Lee, B.G.; Libsch, F.R. Polarization-independent nonuniform grating couplers on silicon-on-insulator. Opt. Lett. 2015, 40, 3941–3944. [Google Scholar] [CrossRef]
- Streshinsky, M.; Shi, R.; Novack, A.; Cher, R.T.; Lim, A.E.; Lo, P.G.; Baehr-Jones, T.; Hochberg, M. A compact bi-wavelength polarization splitting grating coupler fabricated in a 220 nm SOI platform. Opt. Express 2013, 21, 31019–31028. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yang, J.; Lu, H.; Wu, W.; Huang, J.; Chang, S. Polarization-independent grating coupler based on silicon-on-insulator. Chin. Opt. Lett. 2015, 13, 091301–091305. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Lu, H.; Wu, W.; Huang, J.; Chang, S. Subwavelength TE/TM grating coupler based on silicon-on-insulator. Infrared Phys. Technol. 2015, 71, 542–546. [Google Scholar] [CrossRef]
- Mak, J.C.C.; Sacher, W.D.; Ying, H.; Luo, X.; Lo, P.G.; Poon, J.K.S. Multi-layer silicon nitride-on-silicon polarization-independent grating couplers. Opt. Express 2018, 26, 30623–30633. [Google Scholar] [CrossRef]
- Wen, X.; Xu, K.; Song, Q. Design of a barcode-like waveguide nanostructure for efficient chip–fiber coupling. Photonics Res. 2016, 4. [Google Scholar] [CrossRef]
- Doerr, C.R.; Chen, L.; Chen, Y.; Buhl, L.L. Wide Bandwidth Silicon Nitride Grating Coupler. IEEE Photonics Technol. Lett. 2010, 22, 1461–1463. [Google Scholar] [CrossRef]
- Kun, Q.; Dingshan, G.; Changjing, B.; Zhe, Z.; Xu, Z.; Tingting, L.; Lin, C. High Efficiency and Broadband Two-Dimensional Blazed Grating Coupler With Fully Etched Triangular Holes. J. Lightwave Technol. 2012, 30, 2363–2366. [Google Scholar] [CrossRef]
- Xiao, Z.; Luan, F.; Liow, T.Y.; Zhang, J.; Shum, P. Design for broadband high-efficiency grating couplers. Opt. Lett. 2012, 37, 530–532. [Google Scholar] [CrossRef]
- Chen, X.; Xu, K.; Cheng, Z.; Fung, C.K.; Tsang, H.K. Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. Opt. Lett. 2012, 37, 3483–3485. [Google Scholar] [CrossRef]
- Xiang, C.; Tsang, H.K.; Cheng, Z.; Chan, C. Increasing the grating coupler bandwidth with a high numerical-aperture fiber. In Proceedings of the 11th International Conference on Group IV Photonics (GFP), Paris, France, 27–29 August 2014; pp. 100–101. [Google Scholar]
- Sanchez-Postigo, A.; Gonzalo Wanguemert-Perez, J.; Luque-Gonzalez, J.M.; Molina-Fernandez, I.; Cheben, P.; Alonso-Ramos, C.A.; Halir, R.; Schmid, J.H.; Ortega-Monux, A. Broadband fiber-chip zero-order surface grating coupler with 0.4 dB efficiency. Opt. Lett. 2016, 41, 3013–3016. [Google Scholar] [CrossRef] [PubMed]
- Kramer, G.; Pesavento, G. Ethernet passive optical network (EPON): Building a next-generation optical access network. IEEE Commun. Mag. 2002, 40, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Clemmen, S.; Raza, A.; Baets, R. Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Opt. Lett. 2018, 43, 1403–1406. [Google Scholar] [CrossRef]
- Dhakal, A.; Wuytens, P.C.; Peyskens, F.; Jans, K.; Thomas, N.L.; Baets, R. Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers. ACS Photonics 2016, 3, 2141–2149. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, X.; Li, C.; Tsang, H.K. Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers. Opt. Commun. 2011, 284, 2242–2244. [Google Scholar] [CrossRef]
- Roelkens, G.; Van Thourhout, D.; Baets, R. Silicon-on-insulator ultra-compact duplexer based on a diffractive grating structure. Opt. Express 2007, 15, 10091–10096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nambiar, S.; Muthuganesan, H.; Sharma, T.; Selvaraja, S.K. On-chip unidirectional dual-band fiber-chip grating coupler in silicon nitride. OSA Contin. 2018, 1, 864–871. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, Z.; Sun, X.; Tsang, H.K. Tailorable dual-wavelength-band coupling in a transverse-electric-mode focusing subwavelength grating coupler. Opt. Lett. 2018, 43, 2985–2988. [Google Scholar] [CrossRef]
- Zhou, W.; Tsang, H.K. Dual-wavelength-band subwavelength grating coupler operating in the near infrared and extended shortwave infrared. Opt. Lett. 2019, 44, 3621–3624. [Google Scholar] [CrossRef] [PubMed]
- Ryf, R.; Randel, S.; Gnauck, A.H.; Bolle, C.; Sierra, A.; Mumtaz, S.; Esmaeelpour, M.; Burrows, E.C.; Essiambre, R.; Winzer, P.J.; et al. Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6*6 MIMO Processing. J. Lightwave Technol. 2012, 30, 521–531. [Google Scholar] [CrossRef]
- Saitoh, K.; Matsuo, S. Multicore Fiber Technology. J. Lightwave Technol. 2016, 34, 55–66. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, F.; Peucheret, C.; Ou, H.; Miyamoto, Y.; Morioka, T. On-chip grating coupler array on the SOI platform for fan-in/fan-out of MCFs with low insertion loss and crosstalk. Opt. Express 2015, 23, 3292–3298. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Huang, C.; Xu, K.; Zhou, W.; Shu, C.; Tsang, H.K. 3 × 104 Gb/s Single-λ Interconnect of Mode-Division Multiplexed Network With a Multicore Fiber. J. Lightwave Technol. 2018, 36, 318–324. [Google Scholar] [CrossRef]
- Salsi, M.; Koebele, C.; Sperti, D.; Tran, P.; Brindel, P.; Mardoyan, H.; Bigo, S.; Boutin, A.; Verluise, F.; Sillard, P.; et al. Transmission at 2 × 100 Gb/s, over Two Modes of 40 km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer. In Proceedings of the Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, Los Angeles, CA, USA, 6 March 2011; p. PDPB9. [Google Scholar]
- Leon-Saval, S.G.; Fontaine, N.K.; Salazar-Gil, J.R.; Ercan, B.; Ryf, R.; Bland-Hawthorn, J. Mode-selective photonic lanterns for space-division multiplexing. Opt. Express 2014, 22, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.W.; Ophir, N.; Chen, C.P.; Gabrielli, L.H.; Poitras, C.B.; Bergmen, K.; Lipson, M. WDM-compatible mode-division multiplexing on a silicon chip. Nat. Commun. 2014, 5, 3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhu, Y.; Ruan, X.; Li, Y.; Li, Y.; Zhang, F. Bridged Coupler and Oval Mode Converter Based Silicon Mode Division (De)Multiplexer and Terabit WDM-MDM System Demonstration. J. Lightwave Technol. 2018, 36, 2757–2766. [Google Scholar] [CrossRef]
- He, Y.; Zhang, Y.; Zhu, Q.; An, S.; Cao, R.; Guo, X.; Qiu, C.; Su, Y. Silicon High-Order Mode (De)Multiplexer on Single Polarization. J. Lightwave Technol. 2018, 36, 5746–5753. [Google Scholar] [CrossRef]
- Fontaine, N.K.; Doerr, C.R.; Mestre, M.A.; Ryf, R.R.; Winzer, P.J.; Buhl, L.L.; Sun, Y.; Jiang, X.; Lingle, R. Space-division multiplexing and all-optical MIMO demultiplexing using a photonic integrated circuit. In Proceedings of the OFC/NFOEC, Los Angeles, CA, USA, 4–8 March 2012; pp. 1–3. [Google Scholar]
- Koonen, A.M.J.; Haoshuo, C.; van den Boom, H.P.A.; Raz, O. Silicon Photonic Integrated Mode Multiplexer and Demultiplexer. IEEE Photonics Technol. Lett. 2012, 24, 1961–1964. [Google Scholar] [CrossRef]
- Ding, Y.; Ou, H.; Xu, J.; Peucheret, C. Silicon Photonic Integrated Circuit Mode Multiplexer. IEEE Photonics Technol. Lett. 2013, 25, 648–651. [Google Scholar] [CrossRef]
- Ding, Y.; Yvind, K. Efficient silicon PIC mode multiplexer using grating coupler array with aluminum mirror for few-mode fiber. In Proceedings of the 2015 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 10–15 May 2015; pp. 1–2. [Google Scholar]
- Lai, Y.; Yu, Y.; Fu, S.; Xu, J.; Shum, P.P.; Zhang, X. Compact double-part grating coupler for higher-order mode coupling. Opt. Lett. 2018, 43, 3172–3175. [Google Scholar] [CrossRef]
- Ding, Y.; Ou, H.; Xu, J.; Xiong, M.; Peucheret, C. On-chip mode multiplexer based on a single grating coupler. In Proceedings of the IEEE Photonics Conference 2012, Burlingame, CA, USA, 23–27 September 2012; pp. 707–708. [Google Scholar]
- Wohlfeil, B.; Rademacher, G.; Stamatiadis, C.; Voigt, K.; Zimmermann, L.; Petermann, K. A two-dimensional fiber grating coupler on SOI for mode division multiplexing. IEEE Photonics Technol. Lett. 2016, 28, 1241–1244. [Google Scholar] [CrossRef]
- Tong, Y.; Zhou, W.; Wu, X.; Tsang, H.K. Efficient Mode Multiplexer for Few-Mode Fibers Using Integrated Silicon-on-Insulator Waveguide Grating Coupler. IEEE J. Quantum Electron. 2020, 56, 1–7. [Google Scholar] [CrossRef]
- Demirtzioglou, I.; Lacava, C.; Shakoor, A.; Khokhar, A.; Jung, Y.; Thomson, D.J.; Petropoulos, P. Apodized silicon photonic grating couplers for mode-order conversion. Photonics Res. 2019, 7, 1036–1041. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Wang, B.; Li, G.; Zhang, L. Efficient Grating Couplers for Space Division Multiplexing Applications. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–5. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Shen, B.; Wang, P.; Polson, R.; Menon, R. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint. Nat. Photonics 2015, 9, 378–382. [Google Scholar] [CrossRef]
- Mak, J.C.; Sideris, C.; Jeong, J.; Hajimiri, A.; Poon, J.K. Binary particle swarm optimized 2 x 2 power splitters in a standard foundry silicon photonic platform. Opt. Lett. 2016, 41, 3868–3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Cui, H.; Sun, X. Genetic-algorithm-optimized wideband on-chip polarization rotator with an ultrasmall footprint. Opt. Lett. 2017, 42, 3093–3096. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, W.; Xie, H.; Zhang, N.; Xu, K.; Yao, Y.; Xiao, S.; Song, Q. Very sharp adiabatic bends based on an inverse design. Opt. Lett. 2018, 43, 2482–2485. [Google Scholar] [CrossRef]
- Jensen, J.S.; Sigmund, O. Topology optimization for nano-photonics. Laser Photonics Rev. 2011, 5, 308–321. [Google Scholar] [CrossRef]
- Lu, J.; Vuckovic, J. Nanophotonic computational design. Opt. Express 2013, 21, 13351–13367. [Google Scholar] [CrossRef]
- Wohlfeil, B.; Zimmermann, L.; Petermann, K. Optimization of fiber grating couplers on SOI using advanced search algorithms. Opt. Lett. 2014, 39, 3201–3203. [Google Scholar] [CrossRef] [PubMed]
- Hammond, A.M.; Camacho, R.M. Designing integrated photonic devices using artificial neural networks. Opt. Express 2019, 27, 29620–29638. [Google Scholar] [CrossRef] [Green Version]
- Sapra, N.V.; Vercruysse, D.; Su, L.; Yang, K.Y.; Skarda, J.; Piggott, A.Y.; Vuckovic, J. Inverse Design and Demonstration of Broadband Grating Couplers. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–7. [Google Scholar] [CrossRef]
- Baets, R.; Subramanian, A.Z.; Clemmen, S.; Kuyken, B.; Bienstman, P.; Le Thomas, N.; Roelkens, G.; Van Thourhout, D.; Helin, P.; Severi, S. Silicon Photonics: Silicon nitride versus silicon-on-insulator. In Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, 20–22 March 2016; p. Th3J. 1. [Google Scholar]
- Sacher, W.D.; Mikkelsen, J.C.; Huang, Y.; Mak, J.C.C.; Yong, Z.; Luo, X.; Li, Y.; Dumais, P.; Jiang, J.; Goodwill, D.; et al. Monolithically Integrated Multilayer Silicon Nitride-on-Silicon Waveguide Platforms for 3-D Photonic Circuits and Devices. Proc. IEEE 2018, 106, 2232–2245. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Song, J.; Luo, X.; Liow, T.Y.; Lo, G.Q. CMOS compatible monolithic multi-layer Si(3)N(4)(-) on-SOI platform for low-loss high performance silicon photonics dense integration. Opt. Express 2014, 22, 21859–21865. [Google Scholar] [CrossRef] [PubMed]
- Maire, G.; Vivien, L.; Sattler, G.; Kazmierczak, A.; Sanchez, B.; Gylfason, K.B.; Griol, A.; Marris-Morini, D.; Cassan, E.; Giannone, D.; et al. High efficiency silicon nitride surface grating couplers. Opt. Express 2008, 16, 328–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, J.C.C.; Wilmart, Q.; Olivier, S.; Menezo, S.; Poon, J.K.S. Silicon nitride-on-silicon bi-layer grating couplers designed by a global optimization method. Opt. Express 2018, 26, 13656–13665. [Google Scholar] [CrossRef] [PubMed]
- Ong, E.W.; Fahrenkopf, N.M.; Coolbaugh, D.D. SiNx bilayer grating coupler for photonic systems. OSA Contin. 2018, 1, 13–25. [Google Scholar] [CrossRef]
- Lu, J.; Petre, C.; Yablonovitch, E.; Conway, J. Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO_2 interface. J. Opt. Soc. Am. B 2007, 24, 2268–2272. [Google Scholar] [CrossRef] [Green Version]
- Ayata, M.; Fedoryshyn, Y.; Koch, U.; Leuthold, J. Compact, ultra-broadband plasmonic grating couplers. Opt. Express 2019, 27, 29719–29729. [Google Scholar] [CrossRef]
- Hirboodvash, Z.; Khodami, M.; Fong, N.R.; Lisicka-Skrzek, E.; Olivieri, A.; Northfield, H.; Niall Tait, R.; Berini, P. Grating couplers fabricated by e-beam lithography for long-range surface plasmon waveguides embedded in a fluoropolymer. Appl. Opt. 2019, 58, 2994–3002. [Google Scholar] [CrossRef] [PubMed]
- Messner, A.; Jud, P.A.; Winiger, J.; Heni, W.; Baeuerle, B.; Eppenberger, M.; Koch, U.; Haffner, C.; Xu, H.; Elder, D.L.; et al. High-Speed Plasmonic Modulator for Simultaneous C- and O-Band Modulation with Simplified Fabrication. In Proceedings of the Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA, 8 March 2020; p. M1D.3. [Google Scholar]
- Jian, J.; Xu, P.; Chen, H.; He, M.; Wu, Z.; Zhou, L.; Liu, L.; Yang, C.; Yu, S. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express 2018, 26, 29651–29658. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Chapman, R.J.; Tambasco, J.J.; Peruzzo, A. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 2019, 27, 17681–17685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentschel, C.; Schmidt, S. PDL Measurements using the Agilent 8169A Polarization Controller (Product note). Agil. Technol. 2002, 1–16. [Google Scholar]
- Nyman, B.M.; Favin, D.L.; Wolter, G. Automated system for measuring polarization-dependent loss. In Proceedings of the Conference on Optical Fiber Communication, San Jose, CA, USA, 20 February 1994; p. ThK6. [Google Scholar]
- Kopp, C.; Bernabé, S.; Bakir, B.B.; Fedeli, J.; Orobtchouk, R.; Schrank, F.; Porte, H.; Zimmermann, L.; Tekin, T. Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 498–509. [Google Scholar] [CrossRef]
- Zimmermann, L.; Schroder, H.; Tekin, T.; Bogaerts, W.; Dumon, P. g-Pack–a generic testbed package for Silicon photonics devices. In Proceedings of the 2008 5th IEEE International Conference on Group IV Photonics, Cardiff, UK, 17–19 September 2008; pp. 371–373. [Google Scholar]
- Kopp, C.; Volpert, M.; Routin, J.; Bernabé, S.; Rossat, C.; Tournaire, M.; Hamelin, R. Merging parallel optics packaging and surface mount technologies. In Proceedings of the Photonics Packaging, Integration, and Interconnects VIII, San Jose, CA, USA, 19–24 January 2008; p. 68990Y. [Google Scholar]
- Bernabé, S.; Kopp, C.; Lombard, L.; Fedeli, J.-M. Microelectronic-like packaging for silicon photonics: A 10 Gbps multi-chip-module optical receiver based on Ge-on-Si photodiode. In Proceedings of the 3rd Electronics System Integration Technology Conference ESTC, Berlin, Germany, 13–16 September 2010; pp. 1–5. [Google Scholar]
- Snyder, B.; O’Brien, P. Packaging Process for Grating-Coupled Silicon Photonic Waveguides Using Angle-Polished Fibers. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 954–959. [Google Scholar] [CrossRef]
- Snyder, B.; O’Brien, P. Planar fiber packaging method for silicon photonic integrated circuits. In Proceedings of the Optical Fiber Communication Conference, Los Angeles, CA, USA, 4 – March 2012; p. OM2E. 5. [Google Scholar]
- Li, C.; Chee, K.S.; Tao, J.; Zhang, H.; Yu, M.; Lo, G.Q. Silicon photonics packaging with lateral fiber coupling to apodized grating coupler embedded circuit. Opt. Express 2014, 22, 24235–24240. [Google Scholar] [CrossRef]
- Carroll, L.; Lee, J.-S.; Scarcella, C.; Gradkowski, K.; Duperron, M.; Lu, H.; Zhao, Y.; Eason, C.; Morrissey, P.; Rensing, M.; et al. Photonic Packaging: Transforming Silicon Photonic Integrated Circuits into Photonic Devices. Appl. Sci. 2016, 6, 426. [Google Scholar] [CrossRef]
- Lin, S.; Wang, D.; Khan, F.; Chen, J.; Nickel, A.; Kim, B.; Matsui, Y.; Young, B.; Kwakernaak, M.; Carey, G.; et al. Grating Coupled Laser (GCL) for Si Photonics. In Proceedings of the Optical Fiber Communication Conference (OFC) 2020, San Diego, CA, USA, 8 March 2020; p. M4H.5. [Google Scholar]
- Kang, J.H.; Atsumi, Y.; Hayashi, Y.; Suzuki, J.; Kuno, Y.; Amemiya, T.; Nishiyama, N.; Arai, S. 50 Gbps data transmission through amorphous silicon interlayer grating couplers with metal mirrors. Appl. Phys. Express 2014, 7, 032202. [Google Scholar] [CrossRef]
- Sodagar, M.; Pourabolghasem, R.; Eftekhar, A.A.; Adibi, A. High-efficiency and wideband interlayer grating couplers in multilayer Si/SiO2/SiN platform for 3D integration of optical functionalities. Opt. Express 2014, 22, 16767–16777. [Google Scholar] [CrossRef] [Green Version]
- Vörös, J.; Ramsden, J.; Csucs, G.; Szendrő, I.; De Paul, S.; Textor, M.; Spencer, N. Optical grating coupler biosensors. Biomaterials 2002, 23, 3699–3710. [Google Scholar] [CrossRef]
- Li, H.-Y.; Hsu, W.-C.; Liu, K.-C.; Chen, Y.-L.; Chau, L.-K.; Hsieh, S.; Hsieh, W.-H. A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities. Sens. Actuators B Chem. 2015, 206, 371–380. [Google Scholar] [CrossRef]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-scale nanophotonic phased array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef] [PubMed]
- McManamon, P.F.; Bos, P.J.; Escuti, M.J.; Heikenfeld, J.; Serati, S.; Xie, H.; Watson, E.A. A Review of Phased Array Steering for Narrow-Band Electrooptical Systems. Proc. IEEE 2009, 97, 1078–1096. [Google Scholar] [CrossRef]
- Heck, M.J.R. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics 2017, 6, 93–107. [Google Scholar] [CrossRef]
Ref. | Section | Features Description | Peak CE (dB) | BW (nm, Exp.1) | Comments |
---|---|---|---|---|---|
[43] | 3.1.1 | SOI GC with overlay | Sim.1: −1.0 Exp.1: −1.6 | 44 (1 dB) | Polysilicon overlay enhances the upwards directionality for GCs. |
[44] | 3.1.2 | SOI GC with Au bottom reflector | Sim.: −1.1 Exp.: −1.6 | 45 (1 dB) | Metal reflector enhances directionality by “recycling” substrate leakage, but requires complex fabrication processes. |
[45] | 3.1.2 | SiN GC with DBR reflector | Sim.: −2.3 Exp.: −2.5 | 53 (1 dB) | DBR is another type of reflector that deposited layer by layer, compatible with SiN fabrication process. Reflectivity restricted by the number of layers. |
[46] | 3.1.2 | SiN GC with SOI grating reflector | Sim.: −1.0 Exp.: −1.3 | 80 (1 dB) | SOI grating can also be an efficient bottom reflector, it is compatible with SiN multilayer integration. |
[47] | 3.2.1 | SOI GC, duty-cycle apodized | Exp.: −3.1 | 41 (1 dB) | The diffraction field profile of apodized GC has a good overlap with fiber mode, which enhances CE without additional processes. |
[34] | 3.2.1 | SOI SWGC, effective index apodized | Sim.: −2.0 Exp.: −2.2 | 64 (3 dB) | Apart from duty-cycle and period, SWG effective index can also be apodized for SWGC. |
[48] | 3.2.2 | SOI SWGC, dual-etch | Sim.: −1.1 Exp.: −1.3 | 52 (3 dB) | Multiple etch depths is another option to enhance directionality without introducing overlay or reflector. |
[49] | 3.2.2 | Slanted GC | Sim.: −1.9 Exp.: −3.4 | 80 (3 dB) | Slanted GC is one option to enhance directionality, but fabrication requires FIB, and results differs from simulation. |
Ref. | Year | Feature Description | Peak CE (dB, Sim.) | Peak CE (dB, Exp.) | PDL (dB, Exp.) | Operation Band |
---|---|---|---|---|---|---|
[72] | 2009 | 1D PSGC | −3 | / | / | C |
[53] | 2013 | 1D PSGC with Al bottom reflector | −1.1 | −2.4 | / | C |
[73] | 2003 | 2D PSGC first proposal | / | −7 | / | C |
[74] | 2014 | 2D PSGC on double-SOI substrate | / | −2 | / | S |
[27] | 2015 | Perfectly vertical 2D four-port PSGC, bi-direction propagation | / | −4.8 | / | C |
[54] | 2018 | 2D PSGC with gold bottom reflector | −1.4 | −1.8 | 1 | C |
[67] | 2019 | Dual-etch 2D PSGC | −2.4 | −2.6 | 0.8 | C |
[75] | 2015 | Four-port fully-etched 2D PSGC with unique grating cell | −5.8 | −6 | 0.2 | C |
[76] | 2016 | 2D PSGC with unique grating cell | −4 | −4.4 | 0.25 | C |
[77] | 2018 | 2D PSGC with unique grating cell | −3.4 | −4.2 | 0.2 | C |
[78] | 2020 | 2D PSGC with unique grating cell and gold bottom reflector | −1.7 | −2.4 | 0.2 | O |
[79] | 2010 | T-shaped polarization-insensitive GC | −2.4 | / | / | C |
[80,81] | 2011& 2014 | Polarization-insensitive SWGC on 340 nm SOI with DBR reflector | −2.5 | TM: −3.2 TE: −4.3 | 1.1 | C |
[82] | 2012 | Polarization-insensitive GC on 1.5 μm SOI, 0.75 μm-thick waveguide | −2.8 | / | / | C |
[83] | 2016 | Non-uniform GC by union/intersection of TE/TM GC | TE: −6.9 TM: −7.1 | TE: −7.9 TM: −7.4 | 0.5 | C |
Ref. | Year | Feature Description | Peak Wavelength (nm) | Peak CE (dB, Sim.) | Peak CE (dB, Exp.) |
---|---|---|---|---|---|
[99] | 2007 | Coupling to contrary directions, with overlay | 1310 1490 | −2.6 −2.5 | / |
[98] | 2011 | Coupling to orthogonal directions, like 2D PSGCs | 1480 1530 | / | −6.5 −6 |
[84] | 2013 | 2D PSGC for both bands, O/C-band couple to TM/TE waveguide modes | 1300 (to TM mode) 1550 (to TE mode) | / | −8.2 (to TM mode) −7.1 (to TE mode) |
[100] | 2018 | Shallow etched SiN GC | 1290 1550 | −4 −4.7 | −8.2 −7.3 |
[101] | 2018 | SWGC on suspended-membrane waveguide | 1486 1594 | −3.3 −3.7 | −7.4 −7.0 |
[102] | 2019 | SWGC on suspended-membrane waveguide | 1560 2255 | −3.4 −1.7 | −6.9 −5.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Mao, S.; Li, Z.; Han, Y.; Fu, H.Y. Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues. Micromachines 2020, 11, 666. https://doi.org/10.3390/mi11070666
Cheng L, Mao S, Li Z, Han Y, Fu HY. Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues. Micromachines. 2020; 11(7):666. https://doi.org/10.3390/mi11070666
Chicago/Turabian StyleCheng, Lirong, Simei Mao, Zhi Li, Yaqi Han, and H. Y. Fu. 2020. "Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues" Micromachines 11, no. 7: 666. https://doi.org/10.3390/mi11070666