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Grating couplers enable position-friendly interfacing of 
silicon chips by optical fibers. The conventional coupler 
designs call upon comparatively complex architectures 
to afford efficient light coupling to sub-micron silicon-
on-insulator (SOI) waveguides. Conversely, the blazing 
effect in double-etched gratings provides high coupling 
efficiency, with reduced fabrication intricacy. In this 
work, we demonstrate for the first time the realization 
of an ultra-directional L-shaped grating coupler, 
seamlessly fabricated by using 193-nm deep-ultraviolet 
(deep-UV) lithography. We also include a subwavelength 
index engineered waveguide-to-grating transition that 
provides an eight-fold reduction of the grating 
reflectivity, down to 1% (-20 dB). A measured coupling 
efficiency of -2.7 dB (54%) is achieved, with a 
bandwidth of 62 nm. These results open promising 
prospects for implementation of efficient, robust, and 
cost-effective coupling interfaces for sub-micrometric 
SOI waveguides, as desired for large-volume 
applications in silicon photonics. 

OCIS codes: (050.0050) Diffraction and gratings; (130.0130) Integrated 
optics; (050.1950) Diffraction gratings; (050.6624) Subwavelength 
structures. 
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Silicon-on-insulator (SOI) has become a compelling material platform to realize nano-scale photonic devices, leveraging existing facilities of the microelectronic industry [1, 2]. However, the high confinement in SOI waveguides of sub-

micrometric dimensions imposes a fundamental challenge for low-loss light coupling to or from access ports [3-25].    Optical input/output interfaces between optical fibers and SOI waveguides affording robustness, cost-effectivity, and high-efficiency coupling are widely recognized as a key functionality for large-volume applications. Surface grating couplers play essential role for such widespread deployment. They allow flexible positioning on the chip, thereby enabling automated wafer-scale testing, preferred for mass-scale scenarios. Furthermore, these devices generally provide larger tolerances in fabrication and alignment processes, compared to edge coupling counterparts [3-5].    Grating couplers, with an out-of-plane coupling configuration, are particularly unique components of the photonic device library, since they inherently desire high vertical index contrast to provide outstanding coupling reliance. However, the fiber-chip coupling efficiency is limited by the back-reflections at the grating-to-waveguide interface, mode mismatch between the Gaussian-like fiber mode and the exponential-like beam diffracted by the grating, and the power radiated towards the Si handle. The first two issues can be addressed by grating apodization [6-8]. However, the limited diffraction efficiency towards the fiber (directionality), which solely dictates the overall coupling efficiency, remains a significant challenge. Typically, the improvement of the grating directionality may be achieved by exploiting the thin-film interference effect [5, 12]. Further techniques for enhancing the directionality include additional overlayers [13], backside metallization [12, 17, 18], distributed Bragg mirrors 
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