Various Structures of the Roots and Explicit Properties of q-cosine Bernoulli Polynomials and q-sine Bernoulli Polynomials
<p>Approximate root of <math display="inline"><semantics> <mrow> <msub> <mrow/> <mi>C</mi> </msub> <msub> <mi>B</mi> <mrow> <mi>n</mi> <mo>,</mo> <mn>0.9</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Approximate roots for <math display="inline"><semantics> <mrow> <msub> <mrow/> <mi>C</mi> </msub> <msub> <mi>B</mi> <mrow> <mn>50</mn> <mo>,</mo> <mn>0.9</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Approximate roots of <math display="inline"><semantics> <mrow> <msub> <mrow/> <mi>C</mi> </msub> <msub> <mi>B</mi> <mrow> <mi>n</mi> <mo>,</mo> <mn>0.5</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Stacking structure in 3D of <math display="inline"><semantics> <mrow> <msub> <mrow/> <mi>C</mi> </msub> <msub> <mi>B</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>≤</mo> <mi>n</mi> <mo>≤</mo> <mn>30</mn> <mo>,</mo> <mn>0.5</mn> <mo>≤</mo> <mi>q</mi> <mo>≤</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Approximate roots of <math display="inline"><semantics> <mrow> <msub> <mrow/> <mi>C</mi> </msub> <msub> <mi>B</mi> <mrow> <mi>n</mi> <mo>,</mo> <mn>0.1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>30</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Stacking structure of <math display="inline"><semantics> <mrow> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>≤</mo> <mi>n</mi> <mo>≤</mo> <mn>30</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Stacking structure of <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>≤</mo> <mi>n</mi> <mo>≤</mo> <mn>30</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Stacking structure of <math display="inline"><semantics> <mrow> <msub> <mrow/> <mi>S</mi> </msub> <msub> <mi>B</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>≤</mo> <mi>n</mi> <mo>≤</mo> <mn>30</mn> <mo>,</mo> <mi>q</mi> <mo>=</mo> <mn>0.9</mn> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Some Properties of -cosine Bernoulli Polynomials and -sine Bernoulli Polynomials
3. The Structures, Experiments, and Speculations of Specific Approximations of and
Author Contributions
Funding
Conflicts of Interest
References
- Andrews, G.E.; Askey, R.; Roy, R. Special Functions; Cambridge Press: Cambridge, UK, 1999. [Google Scholar]
- Arik, M.; Demircan, E.; Turgut, T.; Ekinci, L.; Mungan, M. Fibonacci oscillators. Z. Phys. C Part. Fields 1992, 55, 89–95. [Google Scholar] [CrossRef]
- Bangerezako, G. Variational q–calculus. J. Math. Anal. Appl. 2004, 289, 650–665. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, R.D. The general theory of linear q-qifference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stiling, Bernoulli and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Endre, S.; David, M. An Introduction to Numerical Analysis; Cambridge University Press: Cambridge, UK, 2003; ISBN 0-521-00794-1. [Google Scholar]
- Exton, H. q-Hypergeometric Functions and Applications; Halstead Press: New York, NY, USA; Ellis Horwood: Chichester, UK, 1983; ISBN 978-0470274538. [Google Scholar]
- Jagannathan, R.; Rao, K.S. Two-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series. arXiv 2016, arXiv:math/0602613. [Google Scholar]
- Jackson, H.F. q-Difference equations. Am. J. Math 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, H.F. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 2013, 46, 253–281. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Part of the Universitext book series(UTX); Springer: Basel, Switzerland, 2002; ISBN 978-0-387-95341-0. [Google Scholar]
- Konvalina, J. A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients. Am. Math. Mon. 2000, 107, 901–910. [Google Scholar] [CrossRef]
- Kim, T.; Ryoo, C.S. Some identities for Euler and Bernoulli polynomials and their zeros. Axioms 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Ryoo, C.S. Sheffer Type Degenerate Euler and Bernoulli Polynomials. Filomat 2019, 33, 6173–6185. [Google Scholar] [CrossRef]
- Kang, J.Y.; Agarwal, R.P. Some relationships between (p,q)-Euler polynomial of the second kind and (p,q)-others polynomials. J. Appl. Math. Inform. 2019, 37, 219–234. [Google Scholar]
- Kang, J.Y.; Ryoo, C.S. A research on the some properties and distribution of zeros for Stirling polynomials. J. Nonlinear Sci. Appl. 2016, 9, 1735–1747. [Google Scholar] [CrossRef]
- Luo, Q.M.; Srivastava, H.M. q-extension of some relationships between the Bernoulli and Euler polynomials. Taiwanese J. Math. 2011, 15, 241–257. [Google Scholar] [CrossRef]
- Mahmudov, N.I. A new class of generalized Bernoulli polynomials and Euler polynomials. arXiv 2012, arXiv:1201.6633v1. [Google Scholar]
- Mason, T.E. On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Rassias, M.T. (Eds.) Analytic number theory, Approximation Theory and Special Functions. In Honor of Hari M. Srivastava; Springer: Basel, Switzerland, 2014; ISBN 978-4939-4538-2. [Google Scholar]
- Floreanini, R.; Vinet, L. q-orthogonal polynomials and the oscillator quantum group. Lett. Math. Phys 1991, 22, 45–54. [Google Scholar] [CrossRef]
- Ryoo, C.S. A numerical investigation on the zeros of the tangent polynomials. J. Appl. Math. Inform. 2014, 32, 315–322. [Google Scholar] [CrossRef]
- Ryoo, C.S. A note on the zeros of the q-Bernoulli polynomials. J. Appl. Math. Inform. 2010, 28, 805–811. [Google Scholar]
- Ryoo, C.S.; Kim, T.; Agarwal, R.P. A numerical investigation of the roots of q-polynomials. Int. J. Comput. Math. 2006, 83, 223–234. [Google Scholar] [CrossRef]
- Rademacher, H. Bernoulli Polynomials and Bernoulli Numbers; Topics in Analytic Number Theory: Part of the Die Grundlehren der mathematischenWissenschaften Book Series (GL, 169); Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–13. ISBN 978-3-642-80617-9. [Google Scholar]
- Srivastava, H.M. Some formulae for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Trjitzinsky, W.J. Analytic theory of linear q-difference equations. Acta Math. 1933, 61, 1–38. [Google Scholar] [CrossRef]
- Wang, N.; LI, H.; Liu, G. Cosine higher-order Euler number congruences and Dirichlet L-function values. Kyushu J. Math. 2017, 71, 197–209. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.Y.; Ryoo, C.S. Various Structures of the Roots and Explicit Properties of q-cosine Bernoulli Polynomials and q-sine Bernoulli Polynomials. Mathematics 2020, 8, 463. https://doi.org/10.3390/math8040463
Kang JY, Ryoo CS. Various Structures of the Roots and Explicit Properties of q-cosine Bernoulli Polynomials and q-sine Bernoulli Polynomials. Mathematics. 2020; 8(4):463. https://doi.org/10.3390/math8040463
Chicago/Turabian StyleKang, Jung Yoog, and Chen Seoung Ryoo. 2020. "Various Structures of the Roots and Explicit Properties of q-cosine Bernoulli Polynomials and q-sine Bernoulli Polynomials" Mathematics 8, no. 4: 463. https://doi.org/10.3390/math8040463