[go: up one dir, main page]

Skip to main content
Log in

Fibonacci oscillators

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

We discuss the properties of oscillators whose spectrum is given by a generalized Fibonacci sequence. The properties include: invariance under the unitary quantum group, generalized angular momentum, coherent states and difference calculus, relativistic interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Fadeev, N.Y. Reshetikhin, L.A. Takhtajan: Quantization of Lie groups and Lie algebras, preprint LOMI, 1987; V.G. Drinfeld: Quantum groups, Proc. Int. Congr. Math., Berkeley 1 (1986) 798–820; M. Jimbo: Lett. Math. Phys. 11 (1986) 247; S.L. Woronowicz: Commun. Math. Phys. 111 (1987) 613

  2. A. Mcfarlane: J. Phys. A 22 (1989) 4581

    Google Scholar 

  3. A. Biedenharn: J. Phys. A 22 (1989) L873

    Google Scholar 

  4. M. Chaichian, P. Kulish: Phys. Lett. B234 (1990) 72

    Google Scholar 

  5. P. Kulish, E. Damaskinsky: J. Phys. A 23 (1990) L415

    Google Scholar 

  6. W. Pusz, S.L. Woronowicz: Rep. Math. Phys. 27 (1989) 231

    Google Scholar 

  7. M. Arik: Z. Phys. C—Particles and Fields 51 (1991) 627

    Google Scholar 

  8. F.H. Jackson, Q.J. Pure: Appl. Math. 41 (1910) 193

    Google Scholar 

  9. J. Wess, B. Zumino: Covariant differential cacculus on the quantum hyperplane, CERN preprint TH-5697/90 (1990). To be published in Nucl. Phys. B

  10. M. Arik, D.D. Coon: J. Math. Phys. 17 (1975) 524

    Google Scholar 

  11. M. Baker, D.D. Coon, S. Yu: Phys. Rev. D5 (1972) 1429; S.Yu: Phys. Rev. D7 (1973) 1871; Nuovo Cimento 28A (1975) 203; M. Arik, D.D. Coon, Y.M. Lam: J. Math. Phys. 16 (1975) 1776

    Google Scholar 

  12. M. Bicknell, V.E. Hoggatt, Jr. (eds.): A primer for the Fibonacci numbers, reprint of articles published in the Fibonacci Quarterly, The Fibonacci Associaton. San Jose: San Jose: San Jose State University Press 1972

    Google Scholar 

  13. R. Charkrabarti, R. Jagannathan: J. Phys. A (1991) L 711; G. Brodimas, A. Jannussis, R. Mignani: Two parameter quantum groups, Universita di Roma, preprint Nr. 820, 1991

  14. R.W. Gray, C.A. Nelson: J. Phys. A23 (1990) L945; A.J. Bracken, D.S. Anally, R.B. Zhang, M.D. Gould: J. Phys. A24 (1991) 1379; B. Jurco: Lett. Math. Phys. 21 (1991) 51

    Google Scholar 

  15. M. Arik, M. Mungan:q-Oscillators and relativistic position operators. Istanbul Technical Univ. preprint (1991), to be published in Phys. Lett. B

  16. R.M. Mir-Kasimov: J. Phys. A24 (1991) 4283; R.M. Mir-Kasimov, E. Kogramanov, Sh. Nagiev: J. Math. Phys. 31 (1990) 1733

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arik, M., Demircan, E., Turgut, T. et al. Fibonacci oscillators. Z. Phys. C - Particles and Fields 55, 89–95 (1992). https://doi.org/10.1007/BF01558292

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01558292

Keywords

Navigation