Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure
<p>(<b>a</b>) An optical micrograph of a microsystem for locally synthesizing and direct integrating of carbon nanotubes (CNTs); (<b>b</b>) An SEM micrograph of the microsystem; (<b>c</b>) An illustration of the scanning electron microscopy [S(T)EM] characterization of locally grown CNTs; and (<b>d</b>) An S(T)EM image of the region for CNT growth in (<b>b</b>).</p> "> Figure 2
<p>(<b>a</b>) Schematic illustration of the local synthesis and direct integration of CNTs into microsystems; (<b>b</b>) Simulated temperature profile on the growth microstructure; and (<b>c</b>) The local electric field between the two microstructures prior to the synthesis of CNTs (Finite element (FEM) simulation).</p> "> Figure 3
<p>An SEM micrograph of the locally grown CNTs in the gap between the two microstructures. The marked regions were selected for further investigations, because the growth temperature varies. The density of CNTs is lowest at the highest-temperature Region (<b>C</b>), and highest at the lowest-temperature Region (<b>A</b>). Temperature in each region is estimated from simulation and one-time experimental calibration.</p> "> Figure 4
<p>(<b>a</b>) and (<b>b</b>) S(T)EM images of CNTs at the highest-temperature Region (C, ∼900 °C); inset: FFT power spectrum of (<b>a</b>), indicating that the resolution of the image is ∼0.8 nm; and (<b>c</b>) Illustration of a CNT with carbon contamination deposited on the sidewall.</p> "> Figure 5
<p>“Bamboo-like" CNTs are mainly produced at the lowest-temperature Region (A1 & A2, ∼800 °C). The “bamboo-like" CNT consists of hollow, capped compartments along the length. Two types of compartments were observed: “off-axis" (<span class="html-italic">i.e.</span>, the axis of the compartment is non-parallel to the main axis of the CNT) and “on-axis" (<span class="html-italic">i.e.</span>, the axis of the compartment is parallel to the main axis of the CNT). CNT-(i) is “off-axis"; CNT-(ii and iii) are “on-axis". The arrows indicate the compartments.</p> "> Figure 6
<p>S(T)EM images of a CNT at the intermediate-temperature Region (B). The CNT has a fairly uniform diameter, but has several broken sites along the tube length. From left to right are the images presenting different segments along the CNT, in the order from the growth microstructure to the secondary microstructure. (<b>a</b>) At the segment closest to the growth microstructure: a compartment with a hemispherical cap inside the CNT was observed, but this is not a common case; (<b>b</b>)–(<b>d</b>) At further segments of the CNT: there are several broken and bent sites. Broken sites cause the CNT to bend towards one side. The arrows indicate the broken sites; and (<b>e</b>) At the furthest segment from the growth microstructure: the broken sites are larger and more defects are present.</p> ">
Abstract
:1. Introduction
2. Experimental Section
2.1. The Synthesis Process
2.2. The Characterization Process
3. Results
4. Discussion
5. Conclusions
Acknowledgements
Conflict of Interest
References
- Chen, Z.; Appenzeller, J.; Lin, Y.M.; Sippel-Oakley, J.; Rinzler, A.G.; Tang, J.; Wind, S.J.; Solomon, P.M.; Avouris, P. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.F.; Rueckes, T.; Konsek, S.; Ward, J.W.; Brock, D.K.; Segal, B.M. Carbon Nanotube Based Memory Using CMOS Production Techniques. In Proceedings of 2006 IEEE Compound Semiconductor Integrated Circuit Symposium, San Antonio, TX, USA, 12–15 November 2006; pp. 47–50.
- Star, A.; Joshi, V.; Skarupo, S.; Thomas, D.; Gabriel, J.C.P. Gas sensor array based on metal-decorated carbon nanotubes. J. Phys. Chem. B 2006, 110, 21014–21020. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.; Englander, O.; Jongbaeg, K.; Liwei, L. Room Temperature Local Synthesis of Carbon Nanotubes. In Proceedings of 2003 3rd IEEE Conference on Nanotechnology (IEEE NANO 2003), San Francisco, CA, USA, 12–14 August 2003; Volume 2, pp. 581–584.
- Ta, B.Q.; Hoivik, N.; Halvorsen, E.; Aasmundtveit, K.E. Electrical Control of Synthesis Conditions for Locally Grown CNTs on Polysilicon Microstructure. In Proceedings of 2011 11th IEEE Conference on Nanotechnology (IEEE NANO 2011), Portland, ON, USA, 15–18 August 2011; pp. 374–377.
- Aasmundtveit, K.E.; Ta, B.Q.; Lin, L.; Halvorsen, E.; Hoivik, N. Direct integration of carbon nanotubes in Si microstructures. J. Micromech. Microeng. 2012, 22. [Google Scholar] [CrossRef]
- Englander, O.; Christensen, D.; Lin, L. Local synthesis of silicon nanowires and carbon nanotubes on microbridges. Appl. Phys. Lett. 2003, 82, 4797–4799. [Google Scholar] [CrossRef]
- Englander, O.; Christensen, D.; Lin, L. The integration of nanowires and nanotubes with microstructures. Int. J. Mater. Prod. Technol. 2009, 34, 77–94. [Google Scholar] [CrossRef]
- Chopra, N.G.; Benedict, L.X.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. Fully collapsed carbon nanotubes. Nature 1995, 377, 135–138. [Google Scholar] [CrossRef]
- Kiang, C.H.; Goddard, W.A.; Beyers, R.; Bethune, D.S. Structural modification of single-layer carbon nanotubes with an electron beam. J. Phys. Chem. 1996, 100, 3749–3752. [Google Scholar] [CrossRef]
- Bursill, L.A.; Peng, J.L.; Fan, X.D. Cross-sectional high-resolution transmission electron microscopy study of the structures of carbon nanotubes. Philos. Mag. A 1995, 71, 1161–1176. [Google Scholar] [CrossRef]
- Haugen, T.B.; Ta, B.Q.; Halvorsen, E.; Hoivik, N.; Aasmundtveit, K.E. Integration of carbon nanotubes in microsystems: Local growth and electrical properties of contacts. Materials 2013, 6, 3094–3107. [Google Scholar] [CrossRef]
- Ramappa, D.A.; Henley, W.B. Diffusion of Iron in Silicon Dioxide. J. Electrochem. Soc. 1999, 146, 3773–3777. [Google Scholar] [CrossRef]
- Ta, B.Q.; Halvorsen, E.; Hoivik, N.; Aasmundtveit, K.E. Diameter dependency for the electric-field-assisted growth of carbon nanotubes. Appl. Phys. Lett. 2013. submitted for publication. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, J.; Jana, A.; Singh, N.P.; Jacob, C. Effect of growth temperature on the CVD grown Fe filled multi-walled carbon nanotubes using a modified photoresist. Mater. Res. Bull. 2010, 45, 1189–1193. [Google Scholar] [CrossRef]
- Lee, C.J.; Park, J.; Huh, Y.; Lee, J.Y. Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition. Chem. Phys. Lett. 2001, 343, 33–38. [Google Scholar] [CrossRef]
- Harris, P.J.F.; Green, M.L.H.; Tsang, S.C. High-resolution electron microscopy of tubule-containing graphitic carbon. J. Chem. Soc. Faraday Trans. 1993, 89, 1189–1192. [Google Scholar] [CrossRef]
- Collins, P.G. Defects and Disorders in Carbon Nanotubes. In Oxford Handbook of Nanoscience and Technology: Frontiers and Advances; Narlikar, A.V., Fu, Y., Eds.; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Cantalini, C.; Valentini, L.; Lozzi, L.; Armentano, I.; Kenny, J.; Santucci, S. NO2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sens. Actuators B Chem. 2003, 93, 333–337. [Google Scholar] [CrossRef]
- Cui, H.; Zhou, O.; Stoner, B.R. Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. J. Appl. Phys. 2000, 88, 6072–6074. [Google Scholar] [CrossRef]
- Saito, Y. Nanoparticles and filled nanocapsules. Carbon 1995, 33, 979–988. [Google Scholar] [CrossRef]
- Kovalevski, V.; Safronov, A. Pyrolysis of hollow carbons on melted catalyst. Carbon 1998, 36, 963–968. [Google Scholar] [CrossRef]
- Terrones, M.; Grobert, N. Controlled production of aligned-nanotube bundles. Nature 1997, 388, 52–55. [Google Scholar]
- Li, W.Z.; Xie, S.S.; Qian, L.X.; Chang, B.H.; Zou, B.S.; Zhou, W.Y.; Zhao, R.A.; Wang, G. Large-scale synthesis of aligned carbon nanotubes. Science 1996, 274, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; Provencio, P.N. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998, 282, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.; Jacques, D.; Rao, A.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E.; Chen, J. Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chem. Phys. Lett. 1999, 303, 467–474. [Google Scholar] [CrossRef]
- Cao, A.; Ci, L.; Wu, G.; Wei, B.; Xu, C.; Liang, J.; Wu, D. An effective way to lower catalyst content in well-aligned carbon nanotube films. Carbon 2001, 39, 152–155. [Google Scholar] [CrossRef]
- Fan, S.; Chapline, M.G.; Franklin, N.R.; Tombler, T.W.; Cassell, A.M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wen, J.; Tu, Y.; Ren, Z. Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Appl. Phys. A 2001, 73, 259–264. [Google Scholar] [CrossRef]
- Redcay, C.J.; Englander, O. Germanium nanowire synthesis using a localized heat source and a comparison to synthesis in a uniform temperature environment. J. Mater. Res. 2011, 26, 2215–2223. [Google Scholar] [CrossRef]
- Mendoza, E.; Rodriguez, J.; Li, Y.; Zhu, Y.; Poa, C.; Henley, S.; Romano-Rodriguez, A.; Morante, J.; Silva, S. Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes. Carbon 2007, 45, 83–88. [Google Scholar] [CrossRef]
- Khalap, V.R.; Sheps, T.; Kane, A.A.; Collins, P.G. Hydrogen sensing and sensitivity of palladium-decorated single-walled carbon nanotubes with defects. Nano Lett. 2010, 10, 896–901. [Google Scholar] [CrossRef] [PubMed]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ta, B.Q.; Haugen, T.B.; Hoivik, N.; Halvorsen, E.; Aasmundtveit, K.E. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure. Materials 2013, 6, 3160-3170. https://doi.org/10.3390/ma6083160
Ta BQ, Haugen TB, Hoivik N, Halvorsen E, Aasmundtveit KE. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure. Materials. 2013; 6(8):3160-3170. https://doi.org/10.3390/ma6083160
Chicago/Turabian StyleTa, Bao Q., Tormod B. Haugen, Nils Hoivik, Einar Halvorsen, and Knut E. Aasmundtveit. 2013. "Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure" Materials 6, no. 8: 3160-3170. https://doi.org/10.3390/ma6083160
APA StyleTa, B. Q., Haugen, T. B., Hoivik, N., Halvorsen, E., & Aasmundtveit, K. E. (2013). Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure. Materials, 6(8), 3160-3170. https://doi.org/10.3390/ma6083160