Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon
"> Figure 1
<p>Fourier transform infrared spectroscopy (FTIR) spectra of: (<b>a</b>) Carbon nanotubes (CNTs); (<b>b</b>) oxidised carbon nanotubes (OCNTs); (<b>c</b>) reduced graphene oxide (RGO) and (<b>d</b>) graphene oxide (GO).</p> "> Figure 2
<p>Raman spectra of: (<b>a</b>) CNTs; (<b>b</b>) OCNTs; (<b>c</b>) RGO and (<b>d</b>) GO.</p> "> Figure 3
<p>Transmission electron microscopy (TEM) images of: (<b>a</b>) CNTs; (<b>b</b>) OCNTs; (<b>c</b>) RGO and (<b>d</b>) GO.</p> "> Figure 4
<p>FTIR spectra of (<b>A</b>) zoom-in of ~935 cm<sup>−1</sup> peak; (<b>B</b>) zoom-in of ~1200 cm<sup>−1</sup> peak and (<b>C</b>) region of 900–3500 cm<sup>−1</sup> of the samples: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01CNTs; (<b>c</b>) PA66/05CNTs; (<b>d</b>) PA66/10CNTs; (<b>e</b>) PA66/01OCNTs; (<b>f</b>) PA66/05OCNTs and (<b>g</b>) PA66/10OCNTs.</p> "> Figure 5
<p>FTIR spectra of (<b>A</b>) zoom-in of ~935 cm<sup>−1</sup> peak<b>;</b> (<b>B</b>) zoom-in of ~1200 cm<sup>−1</sup> peak and (<b>C</b>) region of 900–3500 cm<sup>−1</sup> of the samples: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01RGO; (<b>c</b>) PA66/05RGO; (<b>d</b>) PA66/10RGO; (<b>e</b>) PA66/01GO; (<b>f</b>) PA66/05GO and (<b>g</b>) PA66/10GO.</p> "> Figure 6
<p>Nanofibres intramolecular bonding in the (<b>a</b>,<b>c</b>) PA66/OCNTs and the (<b>b</b>,<b>d</b>) PA66/GO nanocomposites.</p> "> Figure 7
<p>Raman spectra of the (<b>A</b>) 800–2000 cm<sup>−1</sup> region and (<b>B</b>) zoom-out of the 2800–3350 cm<sup>−1</sup> region of the samples: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01CNTs; (<b>c</b>) PA66/05CNTs; (<b>d</b>) PA66/10CNTs; (<b>e</b>) PA66/01OCNTs; (<b>f</b>) PA66/05OCNTs and (<b>g</b>) PA66/10OCNTs.</p> "> Figure 8
<p>Raman spectra of the (<b>A</b>) 800–2000 cm<sup>−1</sup> region and (<b>B</b>) zoom-out of the 2800–3350 cm<sup>−1</sup> region of the samples: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01RGO; (<b>c</b>) PA66/05RGO; (<b>d</b>) PA66/10RGO; (<b>e</b>) PA66/01GO; (<b>f</b>) PA66/05GO and (<b>g</b>) PA66/10GO.</p> "> Figure 9
<p>Scanning electron microscopy (SEM) and TEM images of: (<b>a</b>,<b>f</b>) pure PA66; (<b>b</b>,<b>g</b>) PA66/10CNTs; (<b>c</b>,<b>h</b>) PA66/10OCNTs; (<b>d</b>,<b>i</b>) PA66/10RGO and (<b>e</b>,<b>j</b>) PA66/10GO.</p> "> Figure 10
<p>Differential scanning calorimetry (DSC) (<b>A</b>) heating and (<b>B</b>) cooling thermograms of: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01CNTs; (<b>c</b>) PA66/05CNTs; (<b>d</b>) PA66/10CNTs; (<b>e</b>) PA66/01OCNTs; (<b>f</b>) PA66/05OCNTs and (<b>g</b>) PA66/10OCNTs.</p> "> Figure 11
<p>DSC (<b>A</b>) heating and (<b>B</b>) cooling thermograms of: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01RGO; (<b>c</b>) PA66/05RGO; (<b>d</b>) PA66/10RGO; (<b>e</b>) PA66/01GO; (<b>f</b>) PA66/05GO and (<b>g</b>) PA66/10GO.</p> "> Figure 12
<p>(<b>A</b>) WAXD patterns of: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01CNTs; (<b>c</b>) PA66/05CNTs; (<b>d</b>) PA66/10CNTs; (<b>e</b>) PA66/01OCNTs; (<b>f</b>) PA66/05OCNTs and (<b>g</b>) PA66/10OCNTs. (<b>B</b>) WAXD patterns of: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01RGO; (<b>c</b>) PA66/05RGO; (<b>d</b>) PA66/10RGO; (<b>e</b>) PA66/01GO; (<b>f</b>) PA66/05GO and (<b>g</b>) PA66/10GO.</p> "> Figure 13
<p>Dynamic mechanical analyser (DMA) results; (<b>A</b>) storage modulus and (<b>B</b>) Tanδ of: (<b>a</b>) pure PA66; (<b>b</b>) PA66/01CNTs; (<b>c</b>) PA66/05CNTs; (<b>d</b>) PA66/10CNTs; (<b>e</b>) PA66/01OCNTs; (<b>f</b>) PA66/05OCNTs and (<b>g</b>) PA66/10OCNTs.</p> "> Figure 14
<p>DMA results; (<b>A</b>) storage modulus and (<b>B</b>) Tanδ of: (<b>a</b>) pure PA66, (<b>b</b>) PA66/01RGO; (<b>c</b>) PA66/05RGO; (<b>d</b>) PA66/10RGO; (<b>e</b>) PA66/01GO; (<b>f</b>) PA66/05GO and (<b>g</b>) PA66/10GO.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
Type of nanofillers | Nanofiller content | ||
---|---|---|---|
0.1 wt % | 0.5 wt % | 1.0 wt % | |
Carbon nanotubes (CNTs) | PA66/01CNTs | PA66/05CNTs | PA66/10CNTs |
Oxidised carbon nanotubes (OCNTs) | PA66/01OCNTs | PA66/05OCNTs | PA66/10OCNTs |
Reduced graphene oxide (RGO) | PA66/01RGO | PA66/05RGO | PA66/10RGO |
Graphene oxide (GO) | PA66/01GO | PA66/05GO | PA66/10GO |
Band [cm−1] | Assignments |
---|---|
~934 | Crystalline peak, amide axial deformation (C–C=O) |
1033–1043 and 1063–1066 | Triclinic structure, skeleton axial elongation (C–C) |
1140–1146 | Angular deformation out of plane of carbonyl groups |
~1202 | Crystalline peak: symmetrical angular deformation out of plane, amide III. |
~1220 | Angular deformation out of plane,(H–N–C=O) |
1300–1305 | Angular deformation out of plane, N–H |
~1370 | C–N axial deformation |
~1440 | CH2 deformation |
1535–1555 | C–N axial deformation and CO–N–H angular deformation, amide II |
~1640 | C=O axial deformation, amide I |
~2858 | CH2 axial deformation |
~2950 | CH2 axial deformation |
~3080 | N–H angular deformation in the plane |
~3300 | Free N–H axial deformation |
Nanofiller wt % | PA66/CNTs [nm] | PA66/OCNTs [nm] | PA66/RGO [nm] | PA66/GO [nm] |
---|---|---|---|---|
0.1 | 243 | 427 | 315 | 306 |
0.5 | 332 | 357 | 260 | 271 |
1.0 | 410 | 325 | 428 | 302 |
Sample | Xc a [%] | CI b | L(100) c [nm] | L(010/110) d [nm] |
---|---|---|---|---|
Pure PA66 | 39.4 | 0.38 | 6.45 | 3.41 |
PA66/01CNTs | 39.0 | 0.39 | 6.32 | 3.18 |
PA66/05CNTs | 41.4 | 0.40 | 6.06 | 3.35 |
PA66/10CNTs | 41.8 | 0.42 | 6.00 | 3.14 |
PA66/01OCNTs | 40.8 | 0.39 | 6.12 | 3.09 |
PA66/05OCNTs | 41.3 | 0.40 | 5.63 | 3.15 |
PA66/10OCNTs | 42.1 | 0.44 | 5.61 | 3.11 |
PA66/01RGO | 41.5 | 0.42 | 5.44 | 2.89 |
PA66/05RGO | 42.5 | 0.43 | 5.43 | 2.98 |
PA66/10RGO | 43.5 | 0.44 | 5.18 | 2.92 |
PA66/01GO | 41.8 | 0.40 | 5.60 | 3.17 |
PA66/05GO | 42.6 | 0.42 | 5.10 | 3.08 |
PA66/10GO | 43.8 | 0.44 | 5.01 | 2.93 |
3. Experimental Section
3.1. Nanomaterials Functionalisation
3.2. Polymer Solution Preparation
3.3. Electrospinning
3.4. Carbon Materials Characterisation
3.5. Electrospun Nanocomposites Characterisation
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Martínez-Hernández, A.L.; Velasco-Santos, C.; Castaño, V.M. Carbon nanotubes composites: Processing, grafting and mechanical and thermal properties. Curr. Nanosci. 2010, 6, 12–39. [Google Scholar] [CrossRef]
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Park, S.; An, J.; Piner, R.D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S.T.; Ruoff, R.S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594. [Google Scholar] [CrossRef]
- Shen, X.; Jiang, L.; Ji, Z.; Wu, J.; Zhou, H.; Zhu, G. Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J. Colloid Interface Sci. 2011, 354, 493–497. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Yan, L.; Bangal, P.R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 2010, 48, 1146–1152. [Google Scholar] [CrossRef]
- Yeh, T.F.; Syu, J.M.; Cheng, C.; Chang, T.H.; Teng, H. Graphite oxide as a photocatalyst for hydrogen production from water. Adv. Funct. Mater. 2010, 20, 2255–2262. [Google Scholar] [CrossRef]
- Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Hu, Y.; Ye, M. Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf. Biointerfaces 2010, 81, 434–438. [Google Scholar] [CrossRef]
- Seredych, M.; Rossin, J.A.; Bandosz, T.J. Changes in graphite oxide texture and chemistry upon oxidation and reduction and their effect on adsorption of ammonia. Carbon 2011, 49, 4392–4402. [Google Scholar] [CrossRef]
- Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 2009, 47, 1723–1737. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Cheng, H.K.F.; Li, L.; Chan, S.H.; Judeh, Z.; Zhao, J. Specific functionalization of carbon nanotubes for advanced polymer composites. Adv. Funct. Mater. 2009, 19, 3962–3971. [Google Scholar] [CrossRef]
- Rong, C.; Ma, G.; Zhang, S.; Song, L.; Chen, Z.; Wang, G.; Ajayan, P.M. Effect of carbon nanotubes on the mechanical properties and crystallization behavior of poly(ether ether ketone). Compos. Sci. Technol. 2010, 70, 380–386. [Google Scholar] [CrossRef]
- Mago, G.; Velasco-Santos, C.; Martinez-Hernandez, A.L.; Kalyon, D.M.; Tisher, F.T. Effect of functionalization on the crystallization behavior of MWNT-PBT composites. Mater. Res. Soc. Symp. Proc. 2008, 1056, 295–300. [Google Scholar]
- Chen, X.; Chen, X.; Lin, M.; Zhong, W.; Chen, X.; Chen, Z. Functionalized multi-walled carbon nanotubes prepared by in situ polycondensation of polyurethane. Macromol. Chem. Phys. 2007, 208, 964–972. [Google Scholar] [CrossRef]
- Baji, A.; Mai, Y.W.; Wong, S.C.; Abtahi, M.; Du, X. Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers. Compos. Sci. Technol. 2010, 70, 1401–1409. [Google Scholar] [CrossRef]
- Zhang, F.; Peng, X.; Yan, W.; Peng, Z.; Shen, Y. Nonisothermal crystallization kinetics of in situ nylon 6/graphene composites by differential scanning calorimetry. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1381–1388. [Google Scholar] [CrossRef]
- Yun, Y.S.; Bae, Y.H.; Kim, D.H.; Lee, J.Y.; Chin, I.J.; Jin, HJ. Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon 2011, 49, 3553–3559. [Google Scholar] [CrossRef]
- Xu, J.Z.; Chen, T.; Yang, C.L.; Li, Z.M.; Mao, Y.M.; Zeng, B.Q.; Hsiao, B.S. Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 2010, 43, 5000–5008. [Google Scholar] [CrossRef]
- Navarro-Pardo, F.; Martínez-Barrera, G.; Martínez-Hernández, A.L.; Castaño, V.M.; Rivera-Armenta, J.L.; Medellín-Rodríguez, F.; Velasco-Santos, C. Nylon 6,6 electrospun fibres reinforced by amino functionalised 1D and 2D carbon. IOP Conf. Ser. Mater. Sci. Eng. 2012, 40, 012023:1–012023:6. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, X.; Hsuan, Y.G.; Li, C.Y. Reduced graphene oxide induced polyethylene crystallization in solution and composites. Macromolecules 2012, 45, 993–1000. [Google Scholar] [CrossRef]
- Song, L.; Hu, Y.; He, Q.; You, F. Study on crystallization, thermal and flame retardant properties of nylon 66/organoclay composites by in situ polymerization. J. Fire Sci. 2008, 26, 475–492. [Google Scholar] [CrossRef]
- Lin, D.J.; Chang, C.L.; Lee, C.K.; Cheng, L.P. Fine structure and crystallinity of porous nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system. Eur. Polym. J. 2006, 42, 356–367. [Google Scholar] [CrossRef]
- Suzuki, A.; Chen, Y.; Kunugi, T. Application of a continuous zone-drawing method to nylon 66 fibres. Polymer 1998, 39, 5335–5341. [Google Scholar] [CrossRef]
- Nirmala, R.; Navamathavan, R.; Kang, H.S.; El-Newehy, M.H.; Kim, H.Y. Preparation of polyamide-6/chitosan composite nanofibres by a single solvent system via electrospinning for biomedical applications. Colloids Surf. B Biointerfaces 2011, 83, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibres by electrospinning and their applications in composites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Guerrini, L.M.; Branciforti, M.C.; Canova, T.; Bretas, R.E.S. Electrospinning and characterization of polyamide 66 nanofibres with different molecular weights. Mater. Res. 2009, 12, 181–190. [Google Scholar] [CrossRef]
- Sengupta, R.; Tikku, V.K.; Somani, A.K.; Chaki, T.K.; Bhowmick, A.K. Electron beam irradiated polyamide-6,6 films-I: Characterization by wide angle X-ray scattering and infrared spectroscopy. Radiat. Phys. Chem. 2005, 72, 625–633. [Google Scholar] [CrossRef]
- Pant, H.R.; Bajgai, M.P.; Yi, C.; Nirmala, R.; Nam, K.T.; Baek, W. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibres. Colloids Surf. A Physicochem. Eng. Asp. 2010, 370, 87–94. [Google Scholar] [CrossRef]
- Linggawati, A.; Mohammad, A.W.; Ghazali, Z. Effect of electron beam irradiation on morphology and sieving characteristics of nylon-66 membranes. Eur. Polym. J. 2009, 45, 2797–2804. [Google Scholar] [CrossRef]
- Cho, L.L. Identification of textile fiber by Raman microspectroscopy. J. Forensic Sci. 2007, 6, 55–62. [Google Scholar]
- Lu, Y.; Zhang, Y.; Zhang, G.; Yang, M.; Yan, S.; Shen, D. Influence of thermal processing on the perfection of crystals in polyamide 66 and polyamide 66/clay composites. Polymer 2004, 45, 8999–9009. [Google Scholar] [CrossRef]
- Ishisue, T.; Okamoto, M.; Tashino, K. Real-time investigation of crystallization in nylon 6-clay nano-composite probed by infrared spectroscopy. Polymer 2010, 51, 5585–5591. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Navarro-Pardo, F.; Martínez-Barrera, G.; Martínez-Hernández, A.L.; Castaño, V.M.; Rivera-Armenta, J.L.; Medellín-Rodríguez, F.; Velasco-Santos, C. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials 2013, 6, 3494-3513. https://doi.org/10.3390/ma6083494
Navarro-Pardo F, Martínez-Barrera G, Martínez-Hernández AL, Castaño VM, Rivera-Armenta JL, Medellín-Rodríguez F, Velasco-Santos C. Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials. 2013; 6(8):3494-3513. https://doi.org/10.3390/ma6083494
Chicago/Turabian StyleNavarro-Pardo, Fabiola, Gonzalo Martínez-Barrera, Ana Laura Martínez-Hernández, Víctor M. Castaño, José Luis Rivera-Armenta, Francisco Medellín-Rodríguez, and Carlos Velasco-Santos. 2013. "Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon" Materials 6, no. 8: 3494-3513. https://doi.org/10.3390/ma6083494
APA StyleNavarro-Pardo, F., Martínez-Barrera, G., Martínez-Hernández, A. L., Castaño, V. M., Rivera-Armenta, J. L., Medellín-Rodríguez, F., & Velasco-Santos, C. (2013). Effects on the Thermo-Mechanical and Crystallinity Properties of Nylon 6,6 Electrospun Fibres Reinforced with One Dimensional (1D) and Two Dimensional (2D) Carbon. Materials, 6(8), 3494-3513. https://doi.org/10.3390/ma6083494