Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss
<p>Visual abstract of our work: We train a vertebrae Detection and Identification module simultaneously on a publicly available data set (source domain) and a second custom data set (target domain). We require only a few labels from the custom data set. With the help of a loss function that is inspired by anatomical domain knowledge the proposed model is able to identify vertebrae centroids with state-of-the-art performance, reducing the need for target-domain labels by a factor of 20. We see its main application within ML-pipelines to extract representative 2D slices out of 3D volumes, representing a step towards fully automated systems for downstream 2D slice analysis.</p> "> Figure 2
<p>2-way training process of the Detection module: In step one, L1 distance is used to calculate the loss of a mini-batch of source domain samples. In step two, several “sanity checks” (see <a href="#jimaging-08-00222-f003" class="html-fig">Figure 3</a> for an overview) are calculated to form the loss of a mini-batch of target-domain data. The sanity-check-based DSL loss only considers spine pixels by multiplying the output of the Identification module with the output of the Detection module and employs the Felzenszwalb-Huttenlocher algorithm [<a href="#B26-jimaging-08-00222" class="html-bibr">26</a>] to create a weak segmentation mask of vertebrae location in an unsupervised way (c.f. <a href="#sec3dot2-jimaging-08-00222" class="html-sec">Section 3.2</a>).</p> "> Figure 3
<p>Visual representation of the sanity checks performed by the proposed Domain Sanity Loss (DSL) function; the displayed cases show failures for each check, indicated by the white arrows. Specifically, the DSL loss checks for (<b>i</b>) monotonous ascend of predicted vertebrae numbers along the spine; (<b>ii</b>) all spine pixels in one column of the image having the same vertebra number; (<b>iii</b>) predicted vertebrae centroids having a reasonable distance to each other, based on average distances from the literature; and (<b>iv</b>) predictions not being shifted along the spine, based on an unsupervised weak segmentation of the vertebrae (c.f. <a href="#jimaging-08-00222-f002" class="html-fig">Figure 2</a>).</p> "> Figure 4
<p>Four randomly selected samples from the target data set (COVID-19 CT) with overlayed predictions for the spine detection with (<b>bottom row</b>) and without (<b>top row</b>) post-processing. To provide a better grasp of the post-processing’s effect, we visualize all predictions within the 3D mask along the sagittal plane (<b>left</b>) and along the coronal plane (<b>right</b>).</p> "> Figure 5
<p>Random samples of prediction from the Identification module on the target data set (COVID-19 CT), showing satisfactory results even when the spine is not well aligned on the coronal and sagittal axis.</p> ">
Abstract
:1. Introduction
2. Related Work
3. A Method for Unsupervised Domain Adaptation of CT Scans of the Spine
3.1. Detection Module
3.2. Identification Module and Domain Sanity Loss
3.3. Data Sets
4. Results
4.1. Detection Results with and without Post-Processing
4.2. Identification Results per Spinal Pixel
4.3. Identification Results per Vertebra
5. Conclusions
5.1. Discussion
5.2. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esmaeilzadeh, P. Use of AI-based tools for healthcare purposes: A survey study from consumer’s perspectives. BMC Med Informatics Decis. Mak. 2020, 20, 170. [Google Scholar] [CrossRef] [PubMed]
- Paris, M. Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning. Lifestyle Genom. 2019, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Koitka, S.; Kroll, L.; Malamutmann, E.; Oezcelik, A.; Nensa, F. Fully automated body composition analysis in routine CT imaging using 3D semantic segmentation convolutional neural networks. Eur. Radiol. 2021, 31, 1795–1804. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ippolito, J.E.; Ludwig, D.R.; Nizamuddin, R.; Li, H.H.; Yang, D. Automatic segmentation of CT images for ventral body composition analysis. Med. Phys. 2020, 47, 5723–5730. [Google Scholar] [CrossRef]
- Weston, A.D.; Korfiatis, P.; Kline, T.L.; Philbrick, K.A.; Kostandy, P.; Sakinis, T.; Sugimoto, M.; Takahashi, N.; Erickson, B.J. Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning. Radiology 2019, 290, 669–679. [Google Scholar] [CrossRef]
- Schweitzer, L.; Geisler, C.; Pourhassan, M.; Braun, W.; Glüer, C.C.; Bosy-Westphal, A.; Müller, M.J. Estimation of Skeletal Muscle Mass and Visceral Adipose Tissue Volume by a Single Magnetic Resonance Imaging Slice in Healthy Elderly Adults. J. Nutr. 2016, 146, 2143–2148. [Google Scholar] [CrossRef]
- Tolonen, A.; Pakarinen, T.; Sassi, A.; Kyttä, J.; Cancino, W.; Rinta-Kiikka, I.; Pertuz, S.; Arponen, O. Methodology, clinical applications, and future directions of body composition analysis using computed tomography (CT) images: A review. Eur. J. Radiol. 2021, 145, 109943. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Wang, Z.; Gallagher, D.; St-Onge, M.P.; Albu, J.; Heymsfield, S.B.; Heshka, S. Total body skeletal muscle and adipose tissue volumes: Estimation from a single abdominal cross-sectional image. J. Appl. Physiol. 2004, 97, 2333–2338. [Google Scholar] [CrossRef]
- Popuri, K.; Cobzas, D.; Esfandiari, N.; Baracos, V.; Jagersand, M. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle. IEEE Trans. Med Imaging 2016, 35, 512–520. [Google Scholar] [CrossRef]
- Nowak, S.; Theis, M.; Wichtmann, B.D.; Faron, A.; Froelich, M.F.; Tollens, F.; Geißler, H.L.; Block, W.; Luetkens, J.A.; Attenberger, U.I.; et al. End-to-end automated body composition analyses with integrated quality control for opportunistic assessment of sarcopenia in CT. Eur. Radiol. 2021, 32, 3142–3151. [Google Scholar] [CrossRef]
- Stadelmann, T.; Klamt, T.; Merkt, P.H. Data Centrism and the Core of Data Science as a Scientific Discipline. Arch. Data Sci. Ser. A (Online First) 2022, 8, 1–16. [Google Scholar] [CrossRef]
- Simmler, N.; Sager, P.; Andermatt, P.; Chavarriaga, R.; Schilling, F.P.; Rosenthal, M.; Stadelmann, T. A Survey of Un-, Weakly-, and Semi-Supervised Learning Methods for Noisy, Missing and Partial Labels in Industrial Vision Applications. In Proceedings of the 8th Swiss Conference on Data Science (SDS), Lucerne, Switzerland, 9 June 2021; pp. 26–31, ISBN 978-1-6654-3874-2. [Google Scholar] [CrossRef]
- McCouat, J.; Glocker, B. Vertebrae Detection and Localization in CT with Two-Stage CNNs and Dense Annotations. arXiv 2019, arXiv:1910.05911. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Chen, Q.; Gu, G.; Sui, X. Automatic Lumbar MRI Detection and Identification Based on Deep Learning. J. Digit. Imaging 2019, 32, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Wu, P.; Huang, Q.; Qu, H.; Metaxas, D.N. Vertebra-Focused Landmark Detection for Scoliosis Assessment. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 736–740, ISBN 978-1-5386-9330-8. [Google Scholar] [CrossRef]
- Altini, N.; De Giosa, G.; Fragasso, N.; Coscia, C.; Sibilano, E.; Prencipe, B.; Hussain, S.M.; Brunetti, A.; Buongiorno, D.; Guerriero, A.; et al. Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN. Informatics 2021, 8, 40. [Google Scholar] [CrossRef]
- Glocker, B.; Feulner, J.; Criminisi, A.; Haynor, D.R.; Konukoglu, E. Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Nice, France, 1–5 October 2012; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7512, pp. 590–598, ISBN 978-3-642-33454-2,. [Google Scholar] [CrossRef]
- Glocker, B.; Zikic, D.; Konukoglu, E.; Haynor, D.R.; Criminisi, A. Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Nagoya, Japan, 22–26 September 2013; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7908, pp. 262–270, ISBN 978-3-642-40763-5,. [Google Scholar] [CrossRef]
- Yang, D.; Xiong, T.; Xu, D.; Huang, Q.; Liu, D.; Zhou, S.K.; Xu, Z.; Park, J.; Chen, M.; Tran, T.D.; et al. Automatic Vertebra Labeling in Large-Scale 3D CT using Deep Image-to-Image Network with Message Passing and Sparsity Regularization. In Proceedings of the International Conference on Information Processing in Medical Imaging, Boone, NC, USA, 25–30 June 2017; Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.T., Shen, D., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 633–644, ISBN 978-3-319-59050-9,. [Google Scholar] [CrossRef]
- Liao, H.; Mesfin, A.; Luo, J. Joint Vertebrae Identification and Localization in Spinal CT Images by Combining Short- and Long-Range Contextual Information. IEEE Trans. Med. Imaging 2018, 37, 1266–1275. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241, ISBN 978-3-319-24574-4. [Google Scholar] [CrossRef]
- Stadelmann, T.; Tolkachev, V.; Sick, B.; Stampfli, J.; Dürr, O. Beyond ImageNet: Deep learning in industrial practice. In Applied Data Science: Lessons Learned for the Data-Driven Business; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 205–232. ISBN 978-3-030-118200-4. [Google Scholar] [CrossRef]
- Amirian, M.; Montoya-Zegarra, J.A.; Gruss, J.; Stebler, Y.D.; Bozkir, A.S.; Calandri, M.; Schwenker, F.; Stadelmann, T. PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for Cross-Dataset Medical Image Analysis. In Proceedings of the 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 23–25 October 2021; pp. 1–7, ISBN 978-1-6654-0004-6. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient Graph-Based Image Segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Busscher, I.; Ploegmakers, J.J.W.; Verkerke, G.J.; Veldhuizen, A.G. Comparative anatomical dimensions of the complete human and porcine spine. Eur. Spine J. 2010, 19, 1104–1114. [Google Scholar] [CrossRef]
- Biomedical Image Analysis Group, Imperial College London. BioMedIA Spine Dataset. Available online: https://biomedia.doc.ic.ac.uk/data/spine/ (accessed on 15 November 2021).
- Shakouri, S.; Bakhshali, M.A.; Layegh, P.; Kiani, B.; Masoumi, F.; Ataei Nakhaei, S.; Mostafavi, S.M. COVID19-CT-dataset: An open-access chest CT image repository of 1000+ patients with confirmed COVID-19 diagnosis. BMC Res. Notes 2021, 14, 1–3. [Google Scholar] [CrossRef]
- Mostafavi, S.M. COVID19-CT-Dataset: An Open-Access Chest CT Image Repository of 1000+ Patients with Confirmed COVID-19 Diagnosis. BMC Res. Notes 2021, 14, 178. [Google Scholar] [CrossRef]
- Chen, H.; Shen, C.; Qin, J.; Ni, D.; Shi, L.; Cheng, J.C.Y.; Heng, P.A. Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9349, pp. 515–522, ISBN 978-3-319-24553-9. [Google Scholar] [CrossRef]
- Ma, D.; Chow, V.; Popuri, K.; Beg, M.F. Comprehensive Validation of Automated Whole Body Skeletal Muscle, Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition Analysis: Towards Extended Body Composition. arXiv 2021, arXiv:arXiv:2106.00652. [Google Scholar] [CrossRef]
- Cheplygina, V.; de Bruijne, M.; Pluim, J.P.W. Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med Image Anal. 2019, 54, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Tuggener, L.; Satyawan, Y.P.; Pacha, A.; Schmidhuber, J.; Stadelmann, T. The DeepScoresV2 dataset and benchmark for music object detection. In Proceedings of the 25th International Conference on Pattern Recognition (ICPR), Milan, Italy, 10–15 January 2021; pp. 9188–9195, ISBN 978-1-7281-8808-9. [Google Scholar] [CrossRef]
BioMedIA (Source Data Set) | ||
---|---|---|
Metric | without Post-Processing | with Post-Processing |
Accuracy (overall) | 99.2% | 99.5% |
Recall (overall/vertebrae) | 99.2%/94.3% | 99.5%/94.1% |
IoU (overall/vertebrae) | 98.3%/67.4% | 99.0%/78.7% |
Dice (overall/vertebrae) | 99.2%/80.2% | 99.5%/88.0% |
COVID-19 CT (Target Data Set) | ||
Metric | without Post-Processing | with Post-Processing |
Accuracy (overall) | 99.6% | 99.9% |
Recall (overall/vertebrae) | 99.6%/95.1% | 99.9%/95.1% |
IoU (overall/vertebrae) | 99.2%/46.4% | 99.8%/79.1% |
Dice (overall/vertebrae) | 99.6%/63.0% | 99.9%/88.0% |
Classification Rate on COVID-19 CT (Target Data Set) | ||
---|---|---|
Our Method without UDA | Our Method | Our Method (with 10 Labels) |
13.3% | 61.4% | 74.2% |
Thoracic Vertebrae BioMedIA (Source Data Set) | |||
---|---|---|---|
Method | ID | Mean | Std |
Chen et al. [31] | 76.4% | 11.4 mm | 16.5 mm |
Liao et al. [21] | 84.0% | 7.8 mm | 10.2 mm |
McCouat and Glocker [14] | 79.8% | 6.6 mm | 7.4 mm |
Our method | 67.0% | 8.4 mm | 8.7 mm |
Our method (with 10 labels) | 80.1% | 6.2 mm | 7.2 mm |
Thoracic Vertebrae COVID-19 CT (Target Data Set) | |||
Method | ID | Mean | Std |
Our method without UDA | 45.6% | 17.4 mm | 24.2 mm |
Our method | 72.8% | 11.1 mm | 20.8 mm |
Our method (with 10 labels) | 89.2% | 8.1 mm | 20.3 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sager, P.; Salzmann, S.; Burn, F.; Stadelmann, T. Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss. J. Imaging 2022, 8, 222. https://doi.org/10.3390/jimaging8080222
Sager P, Salzmann S, Burn F, Stadelmann T. Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss. Journal of Imaging. 2022; 8(8):222. https://doi.org/10.3390/jimaging8080222
Chicago/Turabian StyleSager, Pascal, Sebastian Salzmann, Felice Burn, and Thilo Stadelmann. 2022. "Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss" Journal of Imaging 8, no. 8: 222. https://doi.org/10.3390/jimaging8080222
APA StyleSager, P., Salzmann, S., Burn, F., & Stadelmann, T. (2022). Unsupervised Domain Adaptation for Vertebrae Detection and Identification in 3D CT Volumes Using a Domain Sanity Loss. Journal of Imaging, 8(8), 222. https://doi.org/10.3390/jimaging8080222