HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana
<p>The expression pattern analysis of <span class="html-italic">HPR1</span>, <span class="html-italic">HPR2</span> and <span class="html-italic">HPR3</span>. (<b>A</b>) <span class="html-italic">Cis</span>-acting regulatory elements analysis. The 2-kb DNA fragments at upstream of the ATG starting code of the <span class="html-italic">HPR1</span>, <span class="html-italic">HPR2</span> and <span class="html-italic">HPR3</span> genes were analyzed using PlantCARE. (PlantCARE address: <a href="http://bioinformatics.psb.ugent.be/webtools/plantcare/html/" target="_blank">http://bioinformatics.psb.ugent.be/webtools/plantcare/html/</a>, accessed on 17 December 2021). (<b>B</b>) Expression patterns of <span class="html-italic">HPR1</span>, <span class="html-italic">HPR2</span> and <span class="html-italic">HPR3</span> in various organs of four-week-old <span class="html-italic">Arabidopsis</span> analyzed via quantitative RT-PCR. Data shown are means ± SD, n = 3, with three independent replicates. <span class="html-italic">ACTIN</span> was used as an internal control. (<b>C</b>) Expression of <span class="html-italic">HPR1</span>, <span class="html-italic">HPR2</span> and <span class="html-italic">HPR3</span> in leaves of <span class="html-italic">Arabidopsis</span> plants exposed to continuous high light intensity 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>. Values represent means ± SD, n = 3, with three independent replicates. <span class="html-italic">ACTIN</span> was used as an internal control. (<b>D</b>) Subcellular localizations of HPR1. Confocal microscopic images of YFP-HPR1 fusion proteins expressed transiently in protoplasts of <span class="html-italic">Arabidopsis</span> wild types. Proteins fused with mCherry, which located in the peroxisome as the marker. Bars = 10 µm. (<b>E</b>) Subcellular localizations of HPR2 and HPR3. Confocal microscopic images of YFP-HPRs fusion proteins expressed transiently in protoplasts of <span class="html-italic">Arabidopsis</span> wild types. Free YFP of pUGW42 was used as a control. YFP fluorescence, chloroplast autofluorescence and merged images are shown. Bars = 10 µm. (<b>F</b>) Subcellular localizations of HPR2 and HPR3. Confocal microscopic images of HPRs-YFP fusion proteins expressed transiently in protoplasts of <span class="html-italic">Arabidopsis</span> wild types. Free YFP of pUGW41 was used as a control. YFP fluorescence, chloroplast autofluorescence and merged images are shown. Bars = 10 µm.</p> "> Figure 2
<p>Identification of <span class="html-italic">hpr1</span>. (<b>A</b>) Genomic structure model of <span class="html-italic">HPR1</span>. Gray rectangles show the open reading frame, the black line shows intron, white rectangles show untranslated regions, and the triangle represents T-DNA insertion. (<b>B</b>) PCR analysis of genomic DNA from the WT and <span class="html-italic">hpr1</span> plants. LB, RP and FP indicate primers which locations are shown in (<b>A</b>). (<b>C</b>) The expression of <span class="html-italic">HPR1</span> in WT and <span class="html-italic">hpr1</span> plants was analyzed by qRT-PCR. (<b>D</b>) Phenotypes of four-week-old WT and <span class="html-italic">hpr1</span> mutants. We transferred three-week-old plants grown in soil to growth light (GL, 80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light (HL, 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>) for another week, respectively. (<b>E</b>) Fresh weight (left), chlorophyll content (middle), and chlorophyll fluorescence (right) of WT and <span class="html-italic">hpr1</span> plants grown in soil. They were treated with the same light intensity in (<b>D</b>), respectively. Data shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span> test). (<b>F</b>) Molecular complementation assay by expressing full length CDS of <span class="html-italic">HPR1</span> in the <span class="html-italic">hpr1</span> mutants. WT, <span class="html-italic">hpr1</span>, and two complementary lines treated by growth light with 80 µmol·m<sup>−2</sup>·s<sup>−1</sup> and high light intensity with 350 µmol·m<sup>−2</sup>·s<sup>−1</sup> for one week. (<b>G</b>) The <span class="html-italic">HPR1</span> gene expression level, fresh weight, chlorophyll content and chlorophyll fluorescence of WT, <span class="html-italic">hpr1</span>, and two complementary lines grown under growth light (GL, 80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light intensity (HL, 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>). Data shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span>-test).</p> "> Figure 3
<p>Photosystem analysis in WT and <span class="html-italic">hpr1</span> mutants. (<b>A</b>) Slow chlorophyll fluorescence induction kinetics of four-week WT and <span class="html-italic">hpr1</span> cultivated at growth light (80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light (350 µmol·m<sup>−2</sup>·s<sup>−1</sup>). Y(II), quantum yield of PSII photochemistry; ETR, electron transport rate through PSII. Values shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: *, <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span>-test). (<b>B</b>) Light response curves of PSII of four-week-old WT and <span class="html-italic">hpr1</span> cultivated at growth light of 80 µmol·m<sup>−2</sup>·s<sup>−1</sup> and high light intensity of 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>. Values shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: * <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span>-test). (<b>C</b>) Western blot analysis of photosystem proteins in four-week-old WT and <span class="html-italic">hpr1</span> mutant plants under growth light (GL, 80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light intensity (HL, 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>). Immunoblot analysis was performed with antibodies against the indicated thylakoid membrane proteins. (<b>D</b>) Blue native gel analysis of photosynthetic complexes of four-week-old WT and <span class="html-italic">hpr1</span> mutant plants. Annotation of the different complexes: 1, NDH-PSI; 2, PSII supercomplexes; 3, PSI monomer, PSII dimer and PSII monomer with LHCII trimers; 4, PSI monomer and CF<sub>1</sub> complex; 5, PSII monomer; 6, LHCII assembly; 7, LHCII trimers; 8, LHCII monomers. (<b>E</b>) Thylakoid proteins separated by BN gel in (<b>D</b>) were further subjected to the second dimension SDS PAGE.</p> "> Figure 4
<p>PSII photoinhibition analysis. (<b>A</b>,<b>B</b>) Photoinhibition of PSII in wild-type and <span class="html-italic">hpr1</span> mutants was examined. Detached leaves from wild types and mutants were exposed to light at 1000 µmol·m<sup>−2</sup>·s<sup>−1</sup> in the absence or presence of 1 mM lincomycin. The maximal photochemical efficiency of PSII (<span class="html-italic">F<sub>v</sub></span>/<span class="html-italic">F<sub>m</sub></span>) was measured after dark adaptation for 15 min. Data shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span>-test). (<b>C</b>,<b>D</b>) Recovery of <span class="html-italic">F<sub>v</sub></span>/<span class="html-italic">F<sub>m</sub></span> after photoinhibition in wild-types and <span class="html-italic">hpr1</span> mutants. Detached leaves from wild types and mutants were exposed to light at 1000 µmol·m<sup>−2</sup>·s<sup>−1</sup> in the absence or presence of 1 mM lincomycin until the PSII activity was reduced to 60%, and then subsequently, shifted to low light (60 µmol·m<sup>−2</sup>·s<sup>−1</sup>) to recover. Data shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span>-test).</p> "> Figure 5
<p>Detection of ROS production and removal. (<b>A</b>,<b>B</b>) Detection of ROS production. Protoplasts from WT and <span class="html-italic">hpr1</span> mutants were treated with or without high light (1000 µmol·m<sup>−2</sup>·s<sup>−1</sup>) for 30 min, incubated with H<sub>2</sub>DCFDA (at a final concentration of 5 µM), and observed using LCSM as described in the Materials and Methods. (<b>C</b>) Superoxide dismutase (SOD) and catalase (CAT) activities in WT and <span class="html-italic">hpr1</span> grown under growth light (GL, 80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light (HL, 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>). Values shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span> test).</p> "> Figure 6
<p>Detection of photorespiratory enzymes and intermediates. (<b>A</b>) Expression of photorespiratory enzymes genes in WT and <span class="html-italic">hpr1</span> mutants cultivated under growth light (GL, 80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light (HL, 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>). <span class="html-italic">GOX1</span>, glycolate oxidase 1; <span class="html-italic">GGT1</span>, glutamic acid glyoxalate aminotransferase 1; <span class="html-italic">SHMT1</span>, serine hydroxymethyltransferase 1. Data shown are means ± SD, n = 3, with three independent replicates. (<b>B</b>) Selected photorespiratory intermediates in WT and <span class="html-italic">hpr1</span> mutants. Plants were grown in growth light (GL, 80 µmol·m<sup>−2</sup>·s<sup>−1</sup>) and high light (HL, 350 µmol·m<sup>−2</sup>·s<sup>−1</sup>) with a 16/8 h day/night cycle, and then leaf materials were harvested. Selected metabolites were quantified by GC–MS analysis. Data shown are means ± SD, n = 3, with three independent replicates. Asterisks show significant differences compared to WT under growth light: * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 (Student’s <span class="html-italic">t</span>-test).</p> ">
Abstract
:1. Introduction
2. Results
2.1. The Expression of HPRs Is Induced by High Light
2.2. HPR1 Functions in Plant Response to High Light Intensity
2.3. Loss of HPR1 Affects Photosynthetic Efficiency
2.4. Loss of HPR1 Accelerates PSII Photoinhibition by Suppressing Photorepair
2.5. HPR1 Functions in High Light Induced ROS Production
2.6. The Absence of HPR1 Causes Photorespiratory Metabolism Intermediates Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Growth Conditions and Chemicals
4.2. Chlorophyll Fluorescence and Chlorophyll Content Measurements
4.3. RNA Extraction, Reverse Transcription and Quantitative RT–PCR Assays
4.4. Blue-Native PAGE and Second-Dimension SDS–PAGE
4.5. Western Blot
4.6. Complementation of the hpr1
4.7. Detection of ROS
4.8. Measurement of Antioxidant Enzyme Activity
4.9. Isolation of Arabidopsis Mesophyll Protoplasts
4.10. Subcellular Localization
4.11. Analysis of PSII Photoinhibition and Recovery
4.12. Promoter Analysis
4.13. Chlorophyll Fluorescence of PSII with PAM-2500 (Walz, Effeltrich, Germany)
4.14. Metabolite Extraction, Gas Chromatography–Time of Flight–Mass Spectrometry Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, S.; Tuteja, N. Cold, salinity and drought stresses: An overview. Arch. Biochem. Biophys. 2005, 444, 139–158. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Khan, N.A.; Anjum, N.A.; Tuteja, N. Amelioration of Cadmium Stress in Crop Plants by Nutrient Management: Morphological, Physiological and Biochemical Aspects. Plant Stress 2011, 5, 1–23. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial ROS-induced ROS release: An update and review. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Triantaphylidès, C.; Havaux, M. Singlet oxygen in plants: Production, detoxification and signaling. Trends Plant Sci. 2009, 14, 219–228. [Google Scholar] [CrossRef]
- Foyer, C.H.; Bloom, A.J.; Queval, G.; Noctor, G. Photorespiratory Metabolism: Genes, Mutants, Energetics, and Redox Signaling. Annu. Rev. Plant Biol. 2009, 60, 455–484. [Google Scholar] [CrossRef]
- Pieuchot, L.; Jedd, G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu. Rev. Microbiol. 2012, 66, 237–263. [Google Scholar] [CrossRef]
- Hu, J.; Baker, A.; Bartel, B.; Linka, N.; Mullen, R.T.; Reumann, S.; Zolman, B.K. Plant Peroxisomes: Biogenesis and Function. Plant Cell 2012, 24, 2279–2303. [Google Scholar] [CrossRef] [Green Version]
- Bauwe, H.; Hagemann, M.; Fernie, A.R. Photorespiration: Players, partners and origin. Trends Plant Sci. 2010, 15, 330–336. [Google Scholar] [CrossRef]
- Timm, S.; Florian, A.; Jahnke, K.; Nunes-Nesi, A.; Fernie, A.R.; Bauwe, H. The Hydroxypyruvate-Reducing System in Arabidopsis: Multiple Enzymes for the Same End. Plant Physiol. 2011, 155, 694–705. [Google Scholar] [CrossRef] [Green Version]
- Timm, S.; Nunes-Nesi, A.; Pärnik, T.; Morgenthal, K.; Wienkoop, S.; Keerberg, O.; Weckwerth, W.; Kleczkowski, L.A.; Fernie, A.R.; Bauwe, H. A Cytosolic Pathway for the Conversion of Hydroxypyruvate to Glycerate during Photorespiration in Ara-bidopsis. Plant Cell 2008, 20, 2848–2859. [Google Scholar] [CrossRef] [Green Version]
- Mano, S.; Hayashi, M.; Kondo, M.; Nishimura, M. Hydroxypyruvate reductase with a carboxy-terminal targeting signal to microbodies is expressed in Arabidopsis. Plant Cell Physiol. 1997, 38, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Zushi, K.; Matsuzoe, N. Using of chlorophyll a fluorescence OJIP transients for sensing salt stress in the leaves and fruits of tomato. Sci. Hortic. 2017, 219, 216–221. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does It Make Any Difference the Fact to Be a C3 or C4 Species? Front Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Cohu, C.M.; Muller, O.; Adams, W.W. Modulation of photosynthetic energy conversion efficiency in nature: From seconds to seasons. Photosynth. Res. 2012, 113, 75–88. [Google Scholar] [CrossRef]
- Osmond, C.B. Photorespiration and photoinhibition: Some implications for the energetics of photosynthesis. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 1981, 639, 77–98. [Google Scholar] [CrossRef]
- Osmond, C.B.; Grace, S.C. Perspectives on photoinhibition and photorespiration in the field: Quintessential inefficiencies of the light and dark reactions of photosynthesis? J. Exp. Bot. 1995, 46, 1351–1362. [Google Scholar] [CrossRef]
- Wingler, A.; Lea, P.J.; Quick, W.P.; Leegood, R.C. Photorespiration: Metabolic pathways and their role in stress protection. Philos. Trans. R. Soc. B Biol. Sci. 2000, 355, 1517–1529. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, S.; Bauwe, H.; Badger, M. Impairment of the Photorespiratory Pathway Accelerates Photoinhibition of Photo-System II by Suppression of Repair but Not Acceleration of Damage Processes in Arabidopsis. Plant Physiol. 2007, 144, 487–494. [Google Scholar] [CrossRef] [Green Version]
- Dietzel, L.; Bräutigam, K.; Pfannschmidt, T. Photosynthetic acclimation: State transitions and adjustment of photosystem stoichiometry—Functional relationships between short-term and long-term light quality acclimation in plants. FEBS J. 2008, 275, 1080–1088. [Google Scholar] [CrossRef]
- Vainonen, J.P.; Sakuragi, Y.; Stael, S.; Tikkanen, M.; Allahverdiyeva, Y.; Paakkarinen, V.; Aro, E.; Suorsa, M.; Scheller, H.V.; Vener, A.V.; et al. Light regulation of CaS, a novel phosphoprotein in the thylakoid membrane of Arabidopsis thaliana. FEBS J. 2008, 275, 1767–1777. [Google Scholar] [CrossRef]
- Pesaresi, P.; Hertle, A.; Pribil, M.; Kleine, T.; Wagner, R.; Strissel, H.; Ihnatowicz, A.; Bonardi, V.; Scharfenberg, M.; Schneider, A.; et al. Arabidopsis STN7 Kinase Provides a Link between Short- and Long-Term Photosynthetic Acclimation. Plant Cell 2009, 21, 2402–2423. [Google Scholar] [CrossRef] [Green Version]
- Eisenhut, M.; Roell, M.; Weber, A.P.M. Mechanistic understanding of photorespiration paves the way to a new green revolution. New Phytol. 2019, 223, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Peterhansel, C.; Horst, I.; Niessen, M.; Blume, C.; Kebeish, R.; Kürkcüoglu, S.; Kreuzaler, F. Photorespiration. Arab. Book 2010, 8, e0130. [Google Scholar] [CrossRef]
- Reinholdt, O.; Schwab, S.; Zhang, Y.; Reichheld, J.-P.; Fernie, A.R.; Hagemann, M.; Timm, S. Redox-Regulation of Photorespiration through Mitochondrial Thioredoxin o1. Plant Physiol. 2019, 181, 442–457. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.Y.; Back, K. Melatonin induction and its role in high light stress tolerance in Arabidopsis thaliana. J. Pineal Res. 2018, 65, e12504. [Google Scholar] [CrossRef]
- Galvão, V.C.; Fankhauser, C. Sensing the light environment in plants: Photoreceptors and early signaling steps. Curr. Opin. Neurobiol. 2015, 34, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Roeber, V.M.; Bajaj, I.; Rohde, M.; Schmülling, T.; Cortleven, A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 2021, 44, 645–664. [Google Scholar] [CrossRef] [PubMed]
- Dietz, K.-J.; Turkan, I.; Krieger-Liszkay, A. Redox- and Reactive Oxygen Species-Dependent Signaling into and out of the Photosynthesizing Chloroplast. Plant Physiol. 2016, 171, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Gilroy, S.; Białasek, M.; Suzuki, N.; Górecka, M.; Devireddy, A.R.; Karpiński, S.; Mittler, R. ROS, Calcium, and Electric Signals: Key Mediators of Rapid Systemic Signaling in Plants. Plant Physiol. 2016, 171, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Van Aken, O.; Schwarzländer, M.; Belt, K.; Millar, A.H. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. Plant Physiol. 2016, 171, 1551–1559. [Google Scholar] [CrossRef] [Green Version]
- Kerchev, P.; Waszczak, C.; Lewandowska, A.; Willems, P.; Shapiguzov, A.; Li, Z.; Alseekh, S.; Mühlenbock, P.; Hoeberichts, F.A.; Huang, J.; et al. Lack of GLYCOLATE OXIDASE1, but Not GLYCOLATE OXIDASE2, Attenuates the Photorespiratory Phenotype of CATALASE2-Deficient Arabidopsis. Plant Physiol. 2016, 171, 1704–1719. [Google Scholar] [CrossRef]
- Rodríguez-Serrano, M.; Romero-Puertas, M.C.; Sanz-Fernández, M.; Hu, J.; Sandalio, L.M. Peroxisomes Extend Peroxules in a Fast Response to Stress via a Reactive Oxygen Species-Mediated Induction of the Peroxin PEX11a. Plant Physiol. 2016, 171, 1665–1674. [Google Scholar] [CrossRef] [Green Version]
- Takagi, D.; Takumi, S.; Hashiguchi, M.; Sejima, T.; Miyake, C. Superoxide and Singlet Oxygen Produced within the Thylakoid Membranes Both Cause Photosystem I Photoinhibition. Plant Physiol. 2016, 171, 1626–1634. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, D.R.; Crisp, P.A.; Eichten, S.R.; Pogson, B.J. Maintenance of pre-existing DNA methylation states through recurring excess-light stress. Plant Cell Environ. 2018, 41, 1657–1672. [Google Scholar] [CrossRef]
- Hodges, M.; Barber, J. Photosynthetic adaptation of pea plants grown at different light intensities: State 1-State 2 transitions and associated chlorophyll fluorescence changes. Planta 1983, 157, 166–173. [Google Scholar] [CrossRef]
- Adam, Z.; Clarke, A.K. Cutting edge of chloroplast proteolysis. Trends Plant Sci. 2002, 7, 451–456. [Google Scholar] [CrossRef]
- Sun, X.; Peng, L.; Guo, J.; Chi, W.; Ma, J.; Lu, C.; Zhang, L. Formation of DEG5 and DEG8 complexes and their involvement in the degradation of photodamaged photosystem II reaction center D1 protein in Arabidopsis. Plant Cell. 2007, 19, 1347–1361, Erratum in Plant Cell. 2018, 30, 510–512. [Google Scholar] [CrossRef] [Green Version]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Wang, Y.; Beaith, M.; Chalifoux, M.; Ying, J.; Uchacz, T.; Sarvas, C.; Griffiths, R.; Kuzma, M.; Wan, J.; Huang, Y. Shoot-Specific Down-Regulation of Protein Farnesyltransferase (α-Subunit) for Yield Protection against Drought in Canola. Mol. Plant 2009, 2, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Kügler, M.; Jansch, L.; Kruft, V.; Schmitz, U.K.; Braun, H.-P. Analysis of the chloroplast protein complexes by blue-native polyacrylamide gel electrophoresis (BN-PAGE). Photosynth. Res. 1997, 53, 35–44. [Google Scholar] [CrossRef]
- Chen, G.; Li, S. Plant Physiology Experiment; Higher Education Press: Beijing, China, 2016. [Google Scholar]
- Feng, R.; Wei, C. Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant. Plant Soil Environ. 2012, 58, 105–110. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Shan, L.; Sheen, J. The use of protoplasts to study innate immune responses. Methods Mol Biol. 2007, 354, 1–9. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Wang, Y.; Wang, Y.; Li, H.; Wen, Z.; Hou, X. HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 4444. https://doi.org/10.3390/ijms23084444
Wang Z, Wang Y, Wang Y, Li H, Wen Z, Hou X. HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana. International Journal of Molecular Sciences. 2022; 23(8):4444. https://doi.org/10.3390/ijms23084444
Chicago/Turabian StyleWang, Zi, Yetao Wang, Yukun Wang, Haotian Li, Zhiting Wen, and Xin Hou. 2022. "HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana" International Journal of Molecular Sciences 23, no. 8: 4444. https://doi.org/10.3390/ijms23084444
APA StyleWang, Z., Wang, Y., Wang, Y., Li, H., Wen, Z., & Hou, X. (2022). HPR1 Is Required for High Light Intensity Induced Photorespiration in Arabidopsis thaliana. International Journal of Molecular Sciences, 23(8), 4444. https://doi.org/10.3390/ijms23084444