Measuring Urban Greenspace Distribution Equity: The Importance of Appropriate Methodological Approaches
<p>Comparison of areas within network buffers (solid lines) and straight-line buffers (dotted lines) of access points for a greenspace (purple points and boundary), at 100 m (red), 300 m (yellow) and 500 m (blue).</p> "> Figure 2
<p>The urbanised Output Areas (OAs) of Sheffield (classed as ‘urban’), with locations of households (coloured according to Carstairs deprivation index decile) and greenspaces.</p> "> Figure 3
<p>Variation in greenspace accessibility by decile of Carstairs Deprivation Index. Accessibility quantified at household scale by network analysis at 100 m (a), 300 m (b) and 500 m (c) and by straight-line buffer at 100 m (d), 300 m (e) and 500 m (f); and at Output Area scale by network analysis at 100 m (g), 300 m (h) and 500 m (i) and by straight-line buffer at 100 m (j), 300 m (k) and 500 m (l). Different letters indicate significant differences among deciles, e.g., ‘a’ indicates a decile that is significantly different to ‘b’ but not different to other deciles marked ‘a’; while a decile marked ‘ab’ is not significantly different to those marked either ‘a’ or ‘b’ (Tukey’s test at α = 0.05; multiple comparisons are shown only where the overall ANOVA <span class="html-italic">p</span> < 0.05 and significant differences were found).</p> "> Figure 4
<p>Variation in greenspace accessibility (a), provision (b) and population pressure (c) by decile of Carstairs Deprivation Index, quantified at the OA scale according to areal coverage by greenspaces. Positive error bars show one standard deviation. Different letters indicate significant differences among deciles, e.g., ‘a’ indicates a decile that is significantly different to ‘b’ but not different to other deciles marked ‘a’; while a decile marked ‘ab’ is not significantly different to those marked either ‘a’ or ‘b’ (Tukey’s test at α = 0.05).</p> "> Figure 5
<p>Variation in greenspace provision by decile of Carstairs Deprivation Index, for areas with access to at least one greenspace. Provision quantified at household scale by network analysis at 100 m (a), 300 m (b) and 500 m (c) and by straight-line buffer at 100 m (d), 300 m (e) and 500 m (f); and at Output Area scale by network analysis at 100 m (g), 300 m (h) and 500 m (i) and by straight-line buffer at 100 m (j), 300 m (k) and 500 m (l). Positive error bars show one standard deviation. Different letters indicate significant differences among deciles, e.g., ‘a’ indicates a decile that is significantly different to ‘b’ but not different to other deciles marked ‘a’; while a decile marked ‘ab’ is not significantly different to those marked either ‘a’ or ‘b’ (Tukey’s test at α = 0.05; multiple comparisons are shown only where the overall ANOVA <span class="html-italic">p</span> < 0.05 and significant differences were found).</p> "> Figure 6
<p>Variation in greenspace population pressure by decile of Carstairs Deprivation Index, for areas with access to at least one greenspace. Population pressure quantified at household scale by network analysis at 100 m (a), 300 m (b) and 500m (c) and by straight-line buffer at 100 m (d), 300 m (e) and 500 m (f); and at Output Area scale by network analysis at 100 m (g), 300 m (h) and 500 m (i) and by straight-line buffer at 100 m (j), 300 m (k) and 500 m (l). Positive error bars show one standard deviation. Different letters indicate significant differences among deciles, e.g., ‘a’ indicates a decile that is significantly different to ‘b’ but not different to other deciles marked ‘a’; while a decile marked ‘ab’ is not significantly different to those marked either ‘a’ or ‘b’ (Tukey’s test at α = 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Units of Analysis
2.2.2. Area Deprivation
2.2.3. Greenspace Data
2.2.4. Transport Network
2.3. Accessibility Measure
2.4. Provision Measure
2.5. Population Pressure Measure
2.6. Statistical Analysis
3. Results
3.1. Accessibility
3.2. Provision
3.3. Population Pressure
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- James, P.; Banay, R.F.; Hart, J.E.; Laden, F. A Review of the health benefits of greenness. Curr. Epidemiol. Rep. 2015, 2, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Keniger, L.E.; Gaston, K.J.; Irvine, K.N.; Fuller, R.A. What are the benefits of interacting with nature? Int. J. Environ. Res. Pub. Health 2013, 10, 913–935. [Google Scholar] [CrossRef] [PubMed]
- Natural England. Nature Nearby: Accessible Natural Greenspace Guidance; Natural England: Peterborough, UK, 2010.
- Sugiyama, T.; Carver, A.; Koohsari, M.J.; Veitch, J. Advantages of public green spaces in enhancing population health. Landsc. Urban. Plan. 2018, 178, 12–17. [Google Scholar] [CrossRef]
- World Health Organization. Urban. Green Spaces and Health—A Review of the Evidence; World Health Organization: Copenhagen, Denmark, 2016. [Google Scholar]
- Brown, S.C.; Lombard, J.; Wang, K.; Byrne, M.M.; Toro, M.; Plater-Zyberk, E.; Feaster, D.J.; Kardys, J.; Nardi, M.I.; Perez-Gomez, G.; et al. Neighborhood greenness and chronic health conditions in Medicare beneficiaries. Am. J. Prev. Med. 2016, 51, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.C.; Perrino, T.; Lombard, J.; Wang, K.; Toro, M.; Rundek, T.; Gutierrez, C.M.; Dong, C.; Plater-Zyberk, E.; Nardi, M.I.; et al. Health disparities in the relationship of neighborhood greenness to mental health outcomes in 249,405 U.S. Medicare beneficiaries. Int. J. Environ. Res. Pub. Health 2018, 15, 430. [Google Scholar] [CrossRef] [PubMed]
- Browning, M.; Lee, K. Within what distance does “greenness” best predict physical health? A systematic review of articles with GIS buffer analyses across the lifespan. Int. J. Environ. Res. Pub. Health 2017, 14, 675. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.; Verheij, R.A.; de Vries, S.; Spreeuwenberg, P.; Schellevis, F.G.; Groenewegen, P.P. Morbidity is related to a green living environment. J. Epidemiol. Community Health 2009, 63, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Popham, F. Effect of exposure to natural environment on health inequalities: An observational population study. Lancet 2008, 372, 1655–1660. [Google Scholar] [CrossRef]
- Rigolon, A.; Browning, M.; Jennings, V. Inequities in the quality of urban park systems: An environmental justice investigation of cities in the United States. Landsc. Urban. Plan. 2018, 178, 156–169. [Google Scholar] [CrossRef]
- Whitehead, M. The concepts and principles of equity and health. Great Britain: Health promotion international. Int. J. Health Serv. 1992, 22, 429–445. [Google Scholar] [CrossRef]
- Boone, C.G.; Buckley, G.L.; Grove, J.M.; Sister, C. Parks and people: An environmental justice inquiry in Baltimore, Maryland. Ann. Assoc. Am. Geogr. 2009, 99, 767–787. [Google Scholar] [CrossRef]
- Sister, C.; Wolch, J.; Wilson, J. Got green? Addressing environmental justice in park provision. GeoJournal 2010, 75, 229–248. [Google Scholar] [CrossRef]
- Wolch, J.; Wilson, J.P.; Fehrenbach, J. Parks and park funding in Los Angeles: An equity-mapping analysis. Urban. Geogr. 2005, 26, 4–35. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities “just green enough”. Landsc. Urban. Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Office for National Statistics. 2011 Census: Population and Household Estimates for Small Areas in England and Wales, March 2011. Available online: https://www.ons.gov.uk/peoplepopulationandco mmunity/populationandmigration/populationestimates/bulletins/2011censuspopulationandhouseholdestimatesforsmallareasinenglandandwales/2012-11-23 (accessed on 7 March 2019).
- Markevych, I.; Schoierer, J.; Hartig, T.; Chudnovsky, A.; Hystad, P.; Dzhambov, A.M.; De Vries, S.; Triguero-mas, M.; Brauer, M.; Nieuwenhuijsen, M.J.; et al. Exploring pathways linking greenspace to health: Theoretical and methodological guidance. Environ. Res. 2017, 158, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Marceau, D.J. The scale issue in the social and natural sciences. Can. J. Remote Sens. 1999, 25, 347–356. [Google Scholar] [CrossRef]
- Weigand, M.; Wurm, M.; Dech, S.; Taubenböck, H. Remote Sensing in Environmental Justice Research—A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 20. [Google Scholar] [CrossRef]
- Lee, A.C.K.; Jordan, H.C.; Horsley, J. Value of urban green spaces in promoting healthy living and wellbeing: Prospects for planning. Risk Manag. Healthc. Policy 2015, 2015, 131–137. [Google Scholar] [CrossRef]
- Kwan, M.P. The uncertain geographic context problem. Ann. Assoc. Am. Geogr. 2012, 102, 958–968. [Google Scholar] [CrossRef]
- Kwan, M.P. How GIS can help address the uncertain geographic context problem in social science research. Ann. GIS 2012, 18, 245–255. [Google Scholar] [CrossRef]
- Erhan, L.; Ndubuaku, M.; Ferrara, E.; Richardson, M.; Sheffield, D.; Ferguson, F.J.; Brindley, P.; Liotta, A. Analyzing objective and subjective data in social sciences: Implications for smart cities. IEEE Access 2019, 7, 19890–19906. [Google Scholar] [CrossRef]
- McEwan, K.; Richardson, M.; Brindley, P.; Sheffield, D.; Tait, C.; Johnson, S.; Sutch, H.; Ferguson, F.J. Shmapped: Development of an app to record and promote the well-being benefits of noticing urban nature. Transl. Behav. Med. 2019, ibz027. [Google Scholar] [CrossRef] [PubMed]
- Kimpton, A. A spatial analytic approach for classifying greenspace and comparing greenspace social equity. Appl. Geogr. 2017, 82, 129–142. [Google Scholar] [CrossRef]
- Mears, M.; Brindley, P.; Maheswaran, R.; Jorgensen, A. Understanding the socioeconomic equity of publicly accessible greenspace distribution: The example of Sheffield, UK. Geoforum 2019. [Google Scholar] [CrossRef]
- Shen, Y.; Sun, F.; Che, Y. Public green spaces and human wellbeing: Mapping the spatial inequity and mismatching status of public green space in the Central City of Shanghai. Urban. For. Urban. Green. 2017, 27, 59–68. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban. Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Barbosa, O.; Tratalos, J.A.; Armsworth, P.R.; Davies, R.G.; Fuller, R.A.; Johnson, P.; Gaston, K.J. Who benefits from access to green space? A case study from Sheffield, UK. Landsc. Urban. Plan. 2007, 83, 187–195. [Google Scholar] [CrossRef]
- Dai, D. Racial/ethnic and socioeconomic disparities in urban green space accessibility: Where to intervene? Landsc. Urban. Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Heckert, M. Access and equity in greenspace provision: A comparison of methods to assess the impacts of greening vacant land. Trans. GIS 2013, 17, 808–827. [Google Scholar] [CrossRef]
- Hoffimann, E.; Barros, H.; Ribeiro, A.I. Socioeconomic inequalities in green space quality and Accessibility—Evidence from a Southern European city. Int. J. Environ. Res. Pub. Health 2017, 14, 916. [Google Scholar] [CrossRef]
- Jones, A.; Hillsdon, M.; Coombes, E. Greenspace access, use, and physical activity: Understanding the effects of area deprivation. Prev. Med. 2009, 49, 500–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessel, A.; Green, J.; Pinder, R.; Wilkinson, P.; Grundy, C.; Lachowycz, K. Multidisciplinary research in public health: A case study of research on access to green space. Pub. Health 2009, 123, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Mavoa, S.; Koohsari, M.J.; Badland, H.M.; Davern, M.; Feng, X.; Astell-Burt, T.; Giles-Corti, B. Area-level disparities of public open space: A geographic information systems analysis in metropolitan Melbourne. Urban. Policy Res. 2015, 33, 306–323. [Google Scholar] [CrossRef]
- Apparicio, P.; Pham, T.T.H.; Séguin, A.M.; Dubé, J. Spatial distribution of vegetation in and around city blocks on the Island of Montreal: A double environmental inequity? Appl. Geogr. 2016, 76, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Astell-Burt, T.; Feng, X.; Mavoa, S.; Badland, H.M.; Giles-Corti, B. Do low-income neighbourhoods have the least green space? A cross-sectional study of Australia’s most populous cities. BMC Pub. Health 2014, 14, 292. [Google Scholar] [CrossRef] [PubMed]
- Talen, E. The social EQUITY of Urban Service Distribution: An Exploration of Park Access in Pueblo, Colorado, and Macon, Georgia. Urban. Geogr. 1997, 18, 521–541. [Google Scholar] [CrossRef]
- Wheeler, B.W.; Lovell, R.; Higgins, S.L.; White, M.P.; Alcock, I.; Osborne, N.J.; Husk, K.; Sabel, C.E.; Depledge, M.H. Beyond greenspace: An ecological study of population general health and indicators of natural environment type and quality. Int. J. Health Geogr. 2015, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bosch, M.A.; Egorov, A.I.; Mudu, P.; Uscila, V.; Barrdahl, M.; Kruize, H.; Kulinkina, A.; Staatsen, B.; Swart, W.; Zurlyte, I. Development of an urban green space indicator and the public health rationale. Scand. J. Pub. Health 2016, 44, 159–167. [Google Scholar] [CrossRef]
- Cheesbrough, A.E.; Garvin, T.; Nykiforuk, C.I.J. Everyday wild: Urban natural areas, health, and well-being. Health Place 2019, 56, 43–52. [Google Scholar] [CrossRef]
- De Sousa Silva, C.; Viegas, I.; Panagopoulos, T.; Bell, S. Environmental justice in accessibility to green infrastructure in two European cities. Land 2018, 7, 134. [Google Scholar] [CrossRef]
- Martins, B.; Nazaré Pereira, A. Index for evaluation of public parks and gardens proximity based on the mobility network: A case study of Braga, Braganza and Viana do Castelo (Portugal) and Lugo and Pontevedra (Spain). Urban. For. Urban. Green. 2018, 34, 134–140. [Google Scholar] [CrossRef]
- Moseley, D.; Marzano, M.; Chetcuti, J.; Watts, K. Green networks for people: Application of a functional approach to support the planning and management of greenspace. Landsc. Urban. Plan. 2013, 116, 1–12. [Google Scholar] [CrossRef]
- Grahn, P.; Stigsdotter, U.A. Landscape planning and stress. Urban. For. Urban. Green. 2003, 2, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, T.S.; Hansen, K.B. Do green areas affect health? Results from a Danish survey on the use of green areas and health indicators. Health Place 2007, 13, 839–850. [Google Scholar] [CrossRef]
- Schipperijn, J.; Ekholm, O.; Stigsdotter, U.K.; Toftager, M.; Bentsen, P.; Kamper-Jørgensen, F.; Randrup, T.B. Factors influencing the use of green space: Results from a Danish national representative survey. Landsc. Urban. Plan. 2010, 95, 130–137. [Google Scholar] [CrossRef]
- Tan, P.Y.; Samsudin, R. Effects of spatial scale on assessment of spatial equity of urban park provision. Landsc. Urban. Plan. 2017, 158, 139–154. [Google Scholar] [CrossRef]
- Department for Communities and Local Government. The English indices of deprivation 2010. In Neighbourhoods Statistical Release; Department for Communities and Local Government: London, UK, 2011. [Google Scholar]
- Crompton, J.L. The health rationale for urban parks in the nineteenth century in the USA. World Leis. J. 2013, 55, 333–346. [Google Scholar] [CrossRef]
- Office for National Statistics. Census Geography. Available online: https://www.ons.gov.uk/methodology/geo graphy/ukgeographies/censusgeography#output-area-oa (accessed on 11 January 2019).
- Morgan, O.; Baker, A. Measuring deprivation in England and Wales using 2001 Carstairs scores. Health Stat. Q. 2006, 31, 28–33. [Google Scholar]
- Strategic Leisure Limited. Sheffield City Council: Assessment of Open Space, Outdoor Sports and Recreational Provision for Sheffield; Strategic Leisure Limited: Bridgnorth, UK, 2008. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. Version 3.5.1. Available online: https://www.r-project.org (accessed on 18 June 2019).
- Fox, J.; Weisberg, S. An. {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Lenth, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 18 June 2019).
- Forsyth, A.; Van Riper, D.; Larson, N.; Wall, M.; Neumark-Sztainer, D. Creating a replicable, valid cross-platform buffering technique: The sausage network buffer for measuring food and physical activity built environments. Int. J. Health Geogr. 2012, 11, 14. [Google Scholar] [CrossRef]
- Oliver, L.N.; Schuurman, N.; Hall, A.W. Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. Int. J. Health Geogr. 2007, 6, 41. [Google Scholar] [CrossRef]
- Wakefield, J.; Lyons, H. Spatial Aggregation and the Ecological Fallacy. In Chapman & Hall/CRC Handbooks of Modern Statistical Methods: Handbook of Spatial Statistics; Gelfand, A.E., Diggle, P.J., Fuentes, M., Guttorp, P., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 541–558. ISBN 9781420072884. [Google Scholar]
- Ruijsbroek, A.; Droomers, M.; Kruize, H.; Van Kempen, E.; Gidlow, C.J.; Hurst, G.; Andrusaityte, S.; Nieuwenhuijsen, M.J.; Maas, J.; Hardyns, W.; et al. Does the health impact of exposure to neighbourhood green space differ between population groups? An explorative study in four European cities. Int. J. Env. Res. Pub. Health 2017, 14, 618. [Google Scholar] [CrossRef] [PubMed]
- Bedimo-Rung, A.L.; Mowen, A.J.; Cohen, D.A. The significance of parks to physical activity and public health: A conceptual model. Am. J. Prev. Med. 2005, 28, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Seaman, P.J.; Jones, R.; Ellaway, A. It’s not just about the park, it’s about integration too: Why people choose to use or not use urban greenspaces. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Zanon, D.; Doucouliagos, C.; Hall, J.; Lockstone-Binney, L. Constraints to park visitation: A meta-analysis of North American studies. Leis. Sci. 2013, 35, 475–493. [Google Scholar] [CrossRef]
Model | % with Access | Accessibility | Provision | Population Pressure | ||||
---|---|---|---|---|---|---|---|---|
Deviance Explained | p | Deviance Explained | p | Deviance Explained | p | |||
Households | ||||||||
Network | 100 m | 21 | 4 | <0.001 | 2 | <0.001 | 8 | <0.001 |
300 m | 74 | 5 | <0.001 | 2 | <0.001 | 4 | <0.001 | |
500 m | 95 | 5 | <0.001 | 2 | <0.001 | 3 | <0.001 | |
Buffer | 100 m | 51 | 2 | <0.001 | 2 | <0.001 | 6 | <0.001 |
300 m | 95 | 3 | <0.001 | 1 | <0.001 | 3 | <0.001 | |
500 m | 100 | 12 | <0.001 | 1 | <0.001 | 3 | <0.001 | |
Output Areas | ||||||||
Network | 100 m | 18 | 5 | <0.001 | 5 | 0.041 | 5 | 0.041 |
300 m | 74 | 6 | <0.001 | 1 | 0.076 | 2 | <0.001 | |
500 m | 95 | 7 | <0.001 | 2 | <0.001 | 2 | <0.001 | |
Buffer | 100 m | 51 | 2 | <0.001 | 3 | 0.001 | 4 | <0.001 |
300 m | 95 | 4 | <0.001 | 1 | 0.026 | 2 | <0.001 | |
500 m | 100 | 16 | 0.613 | 1 | 0.029 | 3 | <0.001 | |
Areal | 55 | 2 | <0.001 | 3 | 0.003 | 3 | 0.002 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mears, M.; Brindley, P. Measuring Urban Greenspace Distribution Equity: The Importance of Appropriate Methodological Approaches. ISPRS Int. J. Geo-Inf. 2019, 8, 286. https://doi.org/10.3390/ijgi8060286
Mears M, Brindley P. Measuring Urban Greenspace Distribution Equity: The Importance of Appropriate Methodological Approaches. ISPRS International Journal of Geo-Information. 2019; 8(6):286. https://doi.org/10.3390/ijgi8060286
Chicago/Turabian StyleMears, Meghann, and Paul Brindley. 2019. "Measuring Urban Greenspace Distribution Equity: The Importance of Appropriate Methodological Approaches" ISPRS International Journal of Geo-Information 8, no. 6: 286. https://doi.org/10.3390/ijgi8060286