Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement
<p>Study sites and overview of the images used in this research: (<b>a</b>) Geographic distribution of the study regions (Google Earth©); (<b>b</b>) Overview of the Istanbul region; (<b>c</b>) Overview of the Bursa region; (<b>d</b>) Overview of the Izmir region.</p> "> Figure 2
<p>Topographic characteristics of the study regions.</p> "> Figure 3
<p>Land cover (LC) characteristics of the study regions.</p> "> Figure 4
<p>Diagram of the Scale Invariant Feature Transform (SIFT)-based automated orthorectification.</p> "> Figure 5
<p>The steps of SIFT feature extraction: (<b>a</b>) scale space generation; (<b>b</b>) DOG image generation; (<b>c</b>) detection of local maximum and minimum; (<b>d</b>) gradient calculation; (<b>e</b>) histogram calculation and generation of 128 dimensional vectors.</p> "> Figure 6
<p>Comparison of the results of the orthorectification process for different study areas based on the RMSE (number of the validated Ground Control Points (GCPs) given over each bar).</p> "> Figure 7
<p>Accuracy of the results obtained using the original RPC model.</p> "> Figure 8
<p>Improvement ratio of the GCPs retrieved using SIFT to the results using the original RPC-based orthorectification results as a reference.</p> "> Figure 9
<p>Comparison of the process times for single and multithread approaches.</p> "> Figure A1
<p>Distribution of the SIFT-based GCPs and Independent Check Points (ICPs) for the arithmetic mean of the RGB channels.</p> ">
Abstract
:1. Introduction
2. Study Area and Data
3. Methodology
3.1. Geometric Correction (Orthorectification)
3.1.1. RPC Refinement
· Line + aL2 · Line2 + aS2 · Sample2 + …
· Line + bL2 · Line2 + bS2 · Sample2 + …
3.1.2. SIFT Algorithm
4. Results and Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
Region/Incidence Angle | Point Type | Spectral Band/Number of Points | Matching Ratio (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Istanbul | PAN | PSP_R | PSP_G | PSP_B | PSP_NIR | PSP_RGB | PSP_RGBN | PAN | PSP_R | PSP_G | PSP_B | PSP_NIR | PSP_RGB | PSP_RGBN | |
Low Incidence | Matching Points | 197 | 194 | 207 | 211 | 193 | 224 | 178 | 97% | 96% | 96% | 95% | 95% | 96% | 96% |
Validated GCPs | 191 | 186 | 199 | 200 | 183 | 215 | 170 | ||||||||
High Incidence | Matching Points | 44 | 52 | 50 | 51 | 38 | 37 | 49 | 64% | 56% | 68% | 47% | 42% | 59% | 59% |
Validated GCPs | 28 | 29 | 34 | 24 | 16 | 22 | 29 | ||||||||
Bursa | PAN | PSP_R | PSP_G | PSP_B | PSP_NIR | PSP_RGB | PSP_RGBN | PAN | PSP_R | PSP_G | PSP_B | PSP_NIR | PSP_RGB | PSP_RGBN | |
Low Incidence | Matching Points | 224 | 225 | 229 | 227 | 188 | 225 | 203 | 96% | 96% | 95% | 96% | 95% | 96% | 95% |
Validated GCPs | 214 | 216 | 217 | 217 | 179 | 216 | 192 | ||||||||
High Incidence | Matching Points | 62 | 66 | 65 | 82 | 49 | 71 | 58 | 92% | 91% | 89% | 89% | 86% | 87% | 86% |
Validated GCPs | 57 | 60 | 58 | 73 | 42 | 62 | 50 | ||||||||
Izmir | PAN | PSP_R | PSP_G | PSP_B | PSP_NIR | PSP_RGB | PSP_RGBN | PAN | PSP_R | PSP_G | PSP_B | PSP_NIR | PSP_RGB | PSP_RGBN | |
Low Incidence | Matching Points | 156 | 178 | 188 | 171 | 185 | 179 | 147 | 96% | 96% | 95% | 96% | 96% | 95% | 97% |
Validated GCPs | 150 | 170 | 178 | 164 | 177 | 170 | 142 | ||||||||
High Incidence | Matching Points | 92 | 100 | 56 | 73 | 101 | 99 | 98 | 87% | 91% | 71% | 79% | 76% | 89% | 89% |
Validated GCPs | 80 | 91 | 40 | 58 | 77 | 88 | 87 |
References
- Demirel, H.; Sertel, E.; Kaya, S.; Seker, D.Z. Exploring impacts of road transportation on environment: A spatial approach. Desalination 2008, 226, 279–288. [Google Scholar] [CrossRef]
- Alganci, U.; Sertel, E.; Ozdogan, M.; Ormeci, C. Parcel-level identification of crop types using different classification algorithms and multi-resolution imagery in southeastern turkey. Photogramm. Eng. Remote Sens. 2013, 79, 1053–1065. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, H.; Zhou, J. VHR object detection based on structural feature extraction and query expansion. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6508–6520. [Google Scholar]
- Gianinetto, M.; Aiello, M.; Marchesi, A.; Topputo, F.; Massari, M.; Lombardi, R.; Banda, F.; Tebaldini, S. Obia ship detection with multispectral and SAR images: A simulation for copernicus security applications. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1229–1232. [Google Scholar]
- Toutin, T. Geometric processing of remote sensing images: Models, algorithms and methods. Int. J. Remote Sens. 2004, 25, 1893–1924. [Google Scholar] [CrossRef]
- Sertel, E.; Kutoglu, S.H.; Kaya, S. Geometric correction accuracy of different satellite sensor images: Application of figure condition. Int. J. Remote Sens. 2007, 28, 4685–4692. [Google Scholar] [CrossRef]
- Di, K.; Ma, R.; Ma, R.X. Rational functions and potential for rigorous sensor model recovery. Photogramm. Eng. Remote Sens. 2003, 69, 33–41. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Elsevier: New York, NY, USA, 2006. [Google Scholar]
- Toutin, T. State-of-the-art of geometric correction of remote sensing data: A data fusion perspective. Int. J. Image Data Fusion 2011, 2, 3–5. [Google Scholar] [CrossRef]
- Poli, D.; Toutin, T. Review of developments in geometric modelling for high resolution satellite pushbroom sensors. Photogramm. Rec. 2012, 27, 58–73. [Google Scholar] [CrossRef]
- Tao, C.V.; Hu, Y. A comprehensive study of the rational function model for photogrammetric processing. Photogramm. Eng. Remote Sens. 2001, 67, 1347–1358. [Google Scholar]
- Fraser, C.S.; Hanley, H.B. Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogramm. Eng. Remote Sens. 2005, 71, 909–915. [Google Scholar] [CrossRef]
- Hu, Y.; Tao, V.; Croitoru, A. Understanding the rational function model: Methods and applications. Int. Arch. Photogramm. Remote Sens. 2004, 20, 119–124. [Google Scholar]
- Ehrlich, D.; Guo, H.D.; Molch, K.; Ma, J.W.; Pesaresi, M. Identifying damage caused by the 2008 Wenchuan earthquake from VHR remote sensing data. Int. J. Digit. Earth 2009, 2, 309–326. [Google Scholar] [CrossRef] [Green Version]
- Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Wong, A.; Clausi, D.A. ARRSI: Automatic registration of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1483–1493. [Google Scholar] [CrossRef]
- Paul, S.; Pati, U.C. Coarse-to-Fine Registration of Remote Sensing Optical Images Using SIFT and SPSA Optimization. Soft Comput. Theor. Appl. 2016, 1, 771. [Google Scholar]
- Misra, I.; Moorthi, S.M.; Dhar, D.; Ramakrishnan, R. An automatic satellite image registration technique based on Harris corner detection and Random Sample Consensus (RANSAC) outlier rejection model. In Proceedings of the 2012 1st International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 15–17 March 2012; pp. 68–73. [Google Scholar]
- Bentoutou, Y.; Taleb, N.; Kpalma, K.; Ronsin, J. An automatic image registration for applications in remote sensing. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2127–2137. [Google Scholar] [CrossRef]
- Teke, M.; Temizel, A. Multi-spectral satellite image registration using scale-restricted SURF. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2310–2313. [Google Scholar]
- Song, Z.L.; Zhang, J. Remote sensing image registration based on retrofitted SURF algorithm and trajectories generated from Lissajous figures. IEEE Geosci. Remote Sens. Lett. 2010, 7, 491–495. [Google Scholar] [CrossRef]
- Huo, C.; Pan, C.; Huo, L.; Zhou, Z. Multilevel SIFT matching for large-size VHR image registration. IEEE Geosci. Remote Sens. Lett. 2012, 9, 171–175. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, D.; Holden, E.J. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images. Comput. Geosci. 2008, 34, 838–848. [Google Scholar] [CrossRef]
- Hasan, M.; Jia, X.; Robles-Kelly, A.; Zhou, J.; Pickering, M.R. Multi-spectral remote sensing image registration via spatial relationship analysis on sift keypoints. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 1011–1014. [Google Scholar]
- Sedaghat, A.; Ebadi, H. Distinctive order based self-similarity descriptor for multi-sensor remote sensing image matching. ISPRS J. Photogramm. Remote Sens. 2015, 108, 62–71. [Google Scholar] [CrossRef]
- Long, T.; Jiao, W.; He, G.; Zhang, Z. A fast and reliable matching method for automated georeferencing of remotely-sensed imagery. Remote Sens. 2016, 8, 56. [Google Scholar] [CrossRef]
- Pareeth, S.; Delucchi, L.; Metz, M.; Rocchini, D.; Devasthale, A.; Raspaud, M.; Adrian, R.; Salmaso, N.; Neteler, M. New automated method to develop geometrically corrected time series of brightness temperatures from historical AVHRR LAC data. Remote Sens. 2016, 8, 169. [Google Scholar] [CrossRef]
- Liu, Y.; Mo, F.; Tao, P. Matching Multi-Source Optical Satellite Imagery Exploiting a Multi-Stage Approach. Remote Sens. 2017, 9, 1249. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [Google Scholar]
- Juan, L.; Gwun, O. A comparison of sift, pca-sift and surf. Int. J. Image Process. 2009, 3, 143–152. [Google Scholar]
- Sedaghat, A.; Mokhtarzade, M.; Ebadi, H. Uniform robust scale-invariant feature matching for optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4516–4527. [Google Scholar] [CrossRef]
- Airbus, Pleiades Products. 2017. Available online: http://www.intelligence-airbusds.com/en/3027-pleiades-50-cmresolution-products (accessed on 5 September 2017).
- Nasa, Jet Propulsion Laboratory, ASTER Global Digital Elevation Map Announcement. 2012. Available online: https://asterweb.jpl.nasa.gov/gdem.asp (accessed on 5 September 2017).
- European Environment Agency (EEA), CORINE Land Cover. 1995. Available online: https://www.eea.europa.eu/publications/COR0-landcover (accessed on 5 September 2017).
- Singh, G. Improved Geometric Modeling of Spaceborn Pushbroom Imagery Using Modified Rational Polynomial Coefficients and the Impact on DSM Generation. Master’s Thesis, The International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands, 2008. [Google Scholar]
- Grodecki, J.; Dial, G. Block adjustment of high-resolution satellite images described by rational polynomials. Photogramm. Eng. Remote Sens. 2003, 69, 59–68. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Z.; Chai, C.; Fu, H. Multiscale registration of remote sensing image using robust SIFT features in Steerable-Domain. Egypt. J. Remote Sens. Space Sci. 2011, 14, 63–72. [Google Scholar] [CrossRef]
- Wang, Y.; Du, L.; Dai, H. Unsupervised SAR image change detection based on SIFT keypoints and region information. IEEE Geosci. Remote Sens. Lett. 2016, 13, 931–935. [Google Scholar] [CrossRef]
- Cui, S.; Jiang, H.; Wang, Z.; Shen, C. Application of neural network based on sift local feature extraction in medical image classification. In Proceedings of the 2017 2nd International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 92–97. [Google Scholar]
Region | Istanbul | Bursa | Izmir | |||
---|---|---|---|---|---|---|
Date | Incidence Angle | Date | Incidence Angle | Date | Incidence Angle | |
Reference | 24 December 2015 | 2.03° | 25 September 2014 | 1.07° | 4 December 2015 | 8.90° |
Low | 9 December 2016 | 12.53° | 2 November 2015 | 1.36° | 29 January 2017 | 8.22° |
High | 29 April 2017 | 26.10° | 9 July 2014 | 18.74° | 28 March 2017 | 18.48° |
RMSE (±m) | ||||||
---|---|---|---|---|---|---|
Region | Istanbul | Bursa | İzmir | |||
Poly. Order | 1st | 2nd | 1st | 2nd | 1st | 2nd |
Low Incidence | 1.80 | 1.70 | 3.10 | 3.00 | 4.72 | 4.66 |
High Incidence | 5.13 | 4.90 | 4.86 | 4.71 | 4.96 | 4.95 |
Region/Incidence | 0–2% | 2–5% | 5–8% | 8–16% | 16–30% | 30–45% | 45+% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ct. | RMS | Ct. | RMS | Ct. | RMS | Ct. | RMS | Ct. | RMS | Ct. | RMS | Ct. | RMS | ||
Istanbul | Low | 3 | 1.135 | 14 | 1.328 | 19 | 1.367 | 70 | 1.406 | 65 | 1.348 | 18 | 1.305 | 3 | 1.720 |
High | 1 | 1.912 | 3 | 1.970 | 4 | 2.212 | 11 | 2.307 | 6 | 1.927 | 1 | 2.388 | 0 | 0.000 | |
Bursa | Low | 1 | 0.969 | 3 | 0.516 | 5 | 0.692 | 33 | 0.638 | 75 | 0.520 | 60 | 0.506 | 31 | 0.529 |
High | 0 | 0.000 | 1 | 1.240 | 2 | 1.454 | 12 | 1.793 | 24 | 1.507 | 12 | 1.937 | 5 | 2.043 | |
Izmir | Low | 8 | 1.744 | 19 | 1.586 | 22 | 1.409 | 44 | 1.510 | 44 | 1.642 | 19 | 1.737 | 8 | 2.741 |
High | 3 | 2.473 | 8 | 1.934 | 10 | 1.700 | 22 | 1.766 | 25 | 2.129 | 5 | 2.311 | 1 | 2.920 |
Region/Incidence | Artificial Surfaces | Agricultural Areas | Forest and S. Natural | Wetlands | Water Bodies | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ct. | RMS | Ct. | RMS | Ct. | RMS | Ct. | RMS | Ct. | RMS | ||
Istanbul | Low | 37 | 1.478 | 13 | 1.340 | 139 | 1.351 | 0 | 0 | 3 | 1.943 |
High | 11 | 2.181 | 5 | 1.688 | 9 | 2.517 | 0 | 0 | 1 | 1.136 | |
Bursa | Low | 2 | 0.573 | 38 | 0.615 | 167 | 0.522 | 0 | 0 | 0 | 0 |
High | 1 | 1.266 | 13 | 1.593 | 43 | 1.747 | 0 | 0 | 0 | 0 | |
Izmir | Low | 48 | 1.666 | 35 | 1.686 | 81 | 1.623 | 0 | 0 | 0 | 0 |
High | 19 | 1.821 | 23 | 2.162 | 33 | 1.951 | 0 | 0 | 0 | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kartal, H.; Alganci, U.; Sertel, E. Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement. ISPRS Int. J. Geo-Inf. 2018, 7, 229. https://doi.org/10.3390/ijgi7060229
Kartal H, Alganci U, Sertel E. Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement. ISPRS International Journal of Geo-Information. 2018; 7(6):229. https://doi.org/10.3390/ijgi7060229
Chicago/Turabian StyleKartal, Hakan, Ugur Alganci, and Elif Sertel. 2018. "Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement" ISPRS International Journal of Geo-Information 7, no. 6: 229. https://doi.org/10.3390/ijgi7060229
APA StyleKartal, H., Alganci, U., & Sertel, E. (2018). Automated Orthorectification of VHR Satellite Images by SIFT-Based RPC Refinement. ISPRS International Journal of Geo-Information, 7(6), 229. https://doi.org/10.3390/ijgi7060229