Evaluating Geospatial Data Adequacy for Integrated Risk Assessments: A Malaria Risk Use Case
<p>The ROI for the case study. The region exhibits significant variations in both topographic features and population distribution.</p> "> Figure 2
<p>Shows the development of diagnosed Pf cases. Each line represents one 5 × 5 km grid cell. The bright point marks the year 2013 after which a trend reversal is noticeable. Source data: Malaria Atlas Project.</p> "> Figure 3
<p>For each location, the months were categorized into three seasons based on their 30-year average rainfall: dry, transitional and rainy. To allocate months to the seasons, the annual precipitation at each location was divided by 12 to establish the average monthly rainfall without seasonal variation. Months with an average rainfall exceeding one or more standard deviations above this average were labeled as rainy season and assigned 1 point. Conversely, months with an average rainfall of one standard deviation or more below this average were classified as dry season and assigned −1 point. Months falling in between were designated as transitional season and assigned 0 points.</p> "> Figure 4
<p>In the ECMWF precipitation forecast data, negative values denote below-average anticipated precipitation, while positive values indicate above-average expectations. To identify areas with expected above-average precipitation relative to the anomalies projected throughout the ROI, we first calculated the global mean of the forecast data for the ROI. Locations with expected anomalies exceeding one standard deviation from the global mean were assigned 1 point, whereas areas with expected anomalies one standard deviation or more below the global mean received −1 points. Locations that fall in between were assigned 0 points.</p> "> Figure 5
<p>The distribution of Pf malaria in 2013 and 2020 (<b>left</b>), and the percentage change of the two years integrated into our grid (<b>right</b>).</p> "> Figure 6
<p>The integrated indicator that combines historical precipitation data with precipitation forecasts.</p> "> Figure 7
<p>The map on the left displays the original data as provided by the MAP. The map on the right shows the same data after we integrated them into our hexagonal reporting grid.</p> "> Figure 8
<p>The map on the left displays the healthcare service areas we derived from the accessibility surface, overlaid with WorldPop population estimates. The map on the right shows the number (#) of people per individual healthcare facility, integrated into our grid.</p> "> Figure 9
<p>The map on the left displays the original data as provided by ACLED. The map on the right shows our hexagonal grid classification into different types of hotspots based on events’ locations and timing.</p> ">
Abstract
:1. Introduction
2. Problem Statement
2.1. Evaluating Data Adequacy
2.2. Aim
3. Background and Methods
3.1. Development of the Geodata Evaluation Framework
3.2. Use Case Scoping and Indicators
- The seasonal malaria pattern during a normal year;
- The climate in the upcoming months being particularly conductive to mosquito breeding, i.e., expectations of above-average precipitation;
- Limited access to healthcare;
- Ongoing conflicts.
3.3. Malaria in the Region of Interest
3.4. Applying the Framework to the Use Case
3.4.1. The Seasonal Malaria Pattern
3.4.2. Precipitation Being Conductive to Mosquito Breeding
3.4.3. Limited Access to Healthcare
3.4.4. Ongoing Conflicts
3.5. Data Integration
3.6. Code Availability
4. Results
4.1. Percentage Change in Malaria between 2013 and 2020
4.1.1. Quality by Design
4.1.2. Quality of Conformance
4.2. The Climate in the Upcoming Months Being Particularly Conductive to Mosquito Breeding, i.e., Expectations of Above-Average Precipitation
4.2.1. Quality by Design
4.2.2. Quality of Conformance
4.2.3. Quality by Design
4.2.4. Quality of Conformance
4.3. Limited Access to Healthcare—Walking Time to Closest Healthcare Facility and Population per Healthcare Service Area
4.3.1. Quality by Design
4.3.2. Quality of Conformance
4.3.3. Quality by Design
4.3.4. Quality of Conformance
4.4. Ongoing Conflicts
4.4.1. Quality by Design
4.4.2. Quality of Conformance
5. Discussion
5.1. The Evaluation Framework
5.2. Use Case
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EFSA; Jijón, A.F.; Costa, R.; Nicova, K.; Furnari, G. Review of the Use of GIS in Public Health and Food Safety; Wiley Online Library: Hoboken, NJ, USA, 2022; p. 80. [Google Scholar]
- Kienberger, S.; Hagenlocher, M. Spatial-Explicit Modeling of Social Vulnerability to Malaria in East Africa. Int. J. Health Geogr. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Hagenlocher, M.; Castro, M.C. Mapping Malaria Risk and Vulnerability in the United Republic of Tanzania: A Spatial Explicit Model. Popul. Health Metr. 2015, 13, 2. [Google Scholar] [CrossRef] [PubMed]
- Boenecke, J.; Brinkel, J.; Belau, M.; Himmel, M.; Ströbele, J. Harnessing the Potential of Digital Data for Infectious Disease Surveillance in Sub-Saharan Africa. Eur. J. Public Health 2022, 32, ckac131.569. [Google Scholar] [CrossRef]
- Weiss, D.J.; Bertozzi-Villa, A.; Rumisha, S.F.; Amratia, P.; Arambepola, R.; Battle, K.E.; Cameron, E.; Chestnutt, E.; Gibson, H.S.; Harris, J.; et al. Indirect Effects of the COVID-19 Pandemic on Malaria Intervention Coverage, Morbidity, and Mortality in Africa: A Geospatial Modelling Analysis. Lancet Infect. Dis. 2021, 21, 59–69. [Google Scholar] [CrossRef]
- Messina, J.P.; Pigott, D.M.; Golding, N.; Duda, K.A.; Brownstein, J.S.; Weiss, D.J.; Gibson, H.; Robinson, T.P.; Gilbert, M.; William Wint, G.R.; et al. The Global Distribution of Crimean-Congo Hemorrhagic Fever. Trans. R. Soc. Trop. Med. Hyg. 2015, 109, 503–513. [Google Scholar] [CrossRef]
- Chi, G.; Fang, H.; Chatterjee, S.; Blumenstock, J.E. Microestimates of Wealth for All Low- and Middle-Income Countries. Proc. Natl. Acad. Sci. USA 2022, 119, e2113658119. [Google Scholar] [CrossRef]
- Garber, K.; Fox, C.; Abdalla, M.; Tatem, A.; Qirbi, N.; Lloyd-Braff, L.; Al-Shabi, K.; Ongwae, K.; Dyson, M.; Hassen, K. Estimating Access to Health Care in Yemen, a Complex Humanitarian Emergency Setting: A Descriptive Applied Geospatial Analysis. Lancet Glob. Health 2020, 8, e1435–e1443. [Google Scholar] [CrossRef]
- Greenough, P.G.; Nelson, E.L. Beyond Mapping: A Case for Geospatial Analytics in Humanitarian Health. Confl. Health 2019, 13, 50. [Google Scholar] [CrossRef]
- Ahmed, B.; Rahman, M.S.; Sammonds, P.; Islam, R.; Uddin, K. Application of Geospatial Technologies in Developing a Dynamic Landslide Early Warning System in a Humanitarian Context: The Rohingya Refugee Crisis in Cox’s Bazar, Bangladesh. Geomat. Nat. Hazards Risk 2020, 11, 446–468. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Hay, S.I.; Pigott, D.M.; Smith, D.L.; Wint, G.R.W.; Golding, N. Progress and Challenges in Infectious Disease Cartography. Trends Parasitol. 2016, 32, 19–29. [Google Scholar] [CrossRef]
- Weiss, D.J.; Lucas, T.C.; Nguyen, M.; Nandi, A.K.; Bisanzio, D.; Battle, K.E.; Cameron, E.; Twohig, K.A.; Pfeffer, D.A.; Rozier, J.A. Mapping the Global Prevalence, Incidence, and Mortality of Plasmodium Falciparum, 2000–2017: A Spatial and Temporal Modelling Study. Lancet 2019, 394, 322–331. [Google Scholar] [CrossRef]
- Vincent, K.; Cull, T. Using Indicators to Assess Climate Change Vulnerabilities: Are There Lessons to Learn for Emerging Loss and Damage Debates? Geogr. Compass 2014, 8, 1–12. [Google Scholar] [CrossRef]
- Hammond, A.L. Environmental Indicators: A Systematic Approach to Measuring and Reporting on Environmental Policy Performance in the Context of Sustainable Development; World Resources Institute: Washington, DC, USA, 1995; Volume 36. [Google Scholar]
- Jollands, N.; Patterson, M. The Holy Grail of Sustainable Development Indicators: An Approach to Aggregating Indicators with Applications. In Proceedings of the US Society for Ecological Economics Conference, Saratoga Springs, NY, USA, 3 August 2003. [Google Scholar]
- Waters, N. Motivations and Methods for Replication in Geography: Working with Data Streams. Ann. Am. Assoc. Geogr. 2021, 111, 1291–1299. [Google Scholar] [CrossRef]
- Barocas, S.; Crawford, K.; Shapiro, A.; Wallach, H. The Problem with Bias: Allocative versus Representational Harms in Machine Learning. In Proceedings of the 9th Annual Conference of the Special Interest Group for Computing, Information and Society, Philadelphia, PA, USA, 29 October 2017. [Google Scholar]
- Angwin, J.; Larson, J.; Mattu, S.; Kirchner, L. Machine Bias. Available online: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (accessed on 18 October 2023).
- Sun, C.; Asudeh, A.; Jagadish, H.V.; Howe, B.; Stoyanovich, J. Mithralabel: Flexible Dataset Nutritional Labels for Responsible Data Science. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 18 November 2019; pp. 2893–2896. [Google Scholar]
- Sharma, P.; Joshi, A. Challenges of Using Big Data for Humanitarian Relief: Lessons from the Literature. J. Humanit. Logist. Supply Chain Manag. 2019, 10, 423–446. [Google Scholar] [CrossRef]
- Meyer, H.; Pebesma, E. Machine Learning-Based Global Maps of Ecological Variables and the Challenge of Assessing Them. Nat. Commun. 2022, 13, 2208. [Google Scholar] [CrossRef] [PubMed]
- Ploton, P.; Mortier, F.; Réjou-Méchain, M.; Barbier, N.; Picard, N.; Rossi, V.; Dormann, C.; Cornu, G.; Viennois, G.; Bayol, N. Spatial Validation Reveals Poor Predictive Performance of Large-Scale Ecological Mapping Models. Nat. Commun. 2020, 11, 4540. [Google Scholar] [CrossRef] [PubMed]
- Wadoux, A.M.-C.; Heuvelink, G.B.; De Bruin, S.; Brus, D.J. Spatial Cross-Validation Is Not the Right Way to Evaluate Map Accuracy. Ecol. Model. 2021, 457, 109692. [Google Scholar] [CrossRef]
- Flyverbom, M.; Madsen, A.K.; Rasche, A. Big Data as Governmentality in International Development: Digital Traces, Algorithms, and Altered Visibilities. Inf. Soc. 2017, 33, 35–42. [Google Scholar] [CrossRef]
- Thomson, D.R.; Leasure, D.R.; Bird, T.; Tzavidis, N.; Tatem, A.J. How Accurate Are WorldPop-Global-Unconstrained Gridded Population Data at the Cell-Level? A Simulation Analysis in Urban Namibia. PLoS ONE 2022, 17, e0271504. [Google Scholar] [CrossRef]
- Anticipation Hub. What Is Anticipatory Action? Available online: https://www.anticipation-hub.org/about/what-is-anticipatory-action (accessed on 3 November 2023).
- JRC, Joint Research Centre-European Commission. INFORM Global Risk Index. 2019 Mid Year; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2022.
- Marin-Ferrer, M.; Vernaccini, L.; Poljansek, K. Index for Risk Management INFORM Concept and Methodology Report—Version 2017; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Nightingale, J.; Mittaz, J.P.; Douglas, S.; Dee, D.; Ryder, J.; Taylor, M.; Old, C.; Dieval, C.; Fouron, C.; Duveau, G. Ten Priority Science Gaps in Assessing Climate Data Record Quality. Remote Sens. 2019, 11, 986. [Google Scholar] [CrossRef]
- Riedler, B.; Lang, S. Integrating geospatial datasets for urban structure assessment in humanitarian action. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 4, 293–300. [Google Scholar] [CrossRef]
- Weiss, D.J.; Nelson, A.; Vargas-Ruiz, C.A.; Gligorić, K.; Bavadekar, S.; Gabrilovich, E.; Bertozzi-Villa, A.; Rozier, J.; Gibson, H.S.; Shekel, T. Global Maps of Travel Time to Healthcare Facilities. Nat. Med. 2020, 26, 1835–1838. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Lloyd, C.T.; Chamberlain, H.; Kerr, D.; Yetman, G.; Pistolesi, L.; Stevens, F.R.; Gaughan, A.E.; Nieves, J.J.; Hornby, G.; MacManus, K. Global Spatio-Temporally Harmonised Datasets for Producing High-Resolution Gridded Population Distribution Datasets. Big Earth Data 2019, 3, 108–139. [Google Scholar] [CrossRef]
- Maina, J.; Ouma, P.O.; Macharia, P.M.; Alegana, V.A.; Mitto, B.; Fall, I.S.; Noor, A.M.; Snow, R.W.; Okiro, E.A. A Spatial Database of Health Facilities Managed by the Public Health Sector in Sub Saharan Africa. Sci. Data 2019, 6, 134. [Google Scholar] [CrossRef]
- Raleigh, C.; Kishi, R. Comparing Conflict Data—Similarities and Differences across Conflict Datasets 2019; ACLED: Madison, NY, USA, 2019. [Google Scholar]
- Johnson, S.J.; Stockdale, T.N.; Ferranti, L.; Balmaseda, M.A.; Molteni, F.; Magnusson, L.; Tietsche, S.; Decremer, D.; Weisheimer, A.; Balsamo, G. SEAS5: The New ECMWF Seasonal Forecast System. Geosci. Model. Dev. 2019, 12, 1087–1117. [Google Scholar] [CrossRef]
- HDX. A Roadmap for the Evolution of HDX. Available online: https://centre.humdata.org/a-roadmap-for-the-evolution-of-hdx/ (accessed on 3 November 2023).
- André, K.; Gerger Swartling, Å.; Englund, M.; Petutschnig, L.; Attoh, E.M.; Milde, K.; Lückerath, D.; Cauchy, A.; Botnen Holm, T.; Hanssen Korsbrekke, M. Improving Stakeholder Engagement in Climate Change Risk Assessments: Insights from Six Co-Production Initiatives in Europe. Front. Clim. 2023, 5, 1120421. [Google Scholar] [CrossRef]
- Menk, L.; Terzi, S.; Zebisch, M.; Rome, E.; Lückerath, D.; Milde, K.; Kienberger, S. Climate Change Impact Chains: A Review of Applications, Challenges, and Opportunities for Climate Risk and Vulnerability Assessments. Weather. Clim. Soc. 2022, 14, 619–636. [Google Scholar] [CrossRef]
- Murnane, R.; Simpson, A.; Jongman, B. Understanding Risk: What Makes a Risk Assessment Successful? Int. J. Disaster Resil. Built Environ. 2016, 17, 1871–1892. [Google Scholar] [CrossRef]
- Nightingale, J.; Boersma, K.F.; Muller, J.-P.; Compernolle, S.; Lambert, J.-C.; Blessing, S.; Giering, R.; Gobron, N.; De Smedt, I.; Coheur, P. Quality Assurance Framework Development Based on Six New ECV Data Products to Enhance User Confidence for Climate Applications. Remote Sens. 2018, 10, 1254. [Google Scholar] [CrossRef]
- GRID3. Core Spatial Data for Sub-Saharan Africa: A Report on Key Spatial Data Available for Development Practitioners; GRID3: New York, NY, USA, 2021. [Google Scholar]
- DublinCore Dublin CoreTM Metadata Element Set. Available online: https://www.dublincore.org/specifications/dublin-core/dces/ (accessed on 9 August 2023).
- Heinrich, B.; Kaiser, M.; Klier, M. How to Measure Data Quality? A Metric-Based Approach. In Proceedings of the International Conference on Information Systems, ICIS 2007, Montreal, QC, Canada, 9–12 December 2007; University of Augsburg: Augsburg, Germany, 2007. [Google Scholar]
- WHO. High Burden to High Impact: A Targeted Malaria Response; World Health Organization: Geneva, Switzerland, 2018.
- WHO. World Malaria Report 2022; WHO: Geneva, Switzerland, 2022.
- Wongsrichanalai, C.; Sibley, C.H. Fighting Drug-Resistant Plasmodium Falciparum: The Challenge of Artemisinin Resistance. Clin. Microbiol. Infect. 2013, 19, 908–916. [Google Scholar] [CrossRef]
- White, N.J.; Pukrittayakamee, S.; Hien, T.T. WHO: Global Technical Strategy for Malaria 2016–2030; WHO: Geneva, Switzerland, 2018.
- Poljanšek, K.; Marin-Ferrer, M.; Vernaccini, L.; Messina, L. Incorporating Epidemics Risk in the INFORM Global Risk Index: INFORM Epidemic GRI and Enhanced INFORM GRI; European Commission, Joint Research Centre (JRC): Ispra, Italy, 2020. [Google Scholar]
- MSF. International Activity Report 2022; MSF: Paris, France, 2022. [Google Scholar]
- Odhiambo, J.N.; Kalinda, C.; Macharia, P.M.; Snow, R.W.; Sartorius, B. Spatial and Spatio-Temporal Methods for Mapping Malaria Risk: A Systematic Review. BMJ Glob. Health 2020, 5, e002919. [Google Scholar] [CrossRef]
- MAP. Malaria Atlas Project—Analytics for A Malaria Free World. Available online: https://malariaatlas.org/ (accessed on 3 November 2023).
- Copernicus Climate Change Service (C3S) Climate Data Store. Seasonal Forecast Anomalies on Single Levels. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.7e37c951?tab=overview (accessed on 3 November 2023).
- Hay, S.I.; Snow, R.W. The Malaria Atlas Project: Developing Global Maps of Malaria Risk. PLoS Med. 2006, 3, e473. [Google Scholar] [CrossRef]
- Dal-Bianco, M.P.; Köster, K.B.; Kombila, U.D.; Kun, J.F.; Grobusch, M.P.; Ngoma, G.M.; Matsiegui, P.B.; Supan, C.; Salazar, C.L.O.; Missinou, M.A. High Prevalence of Asymptomatic Plasmodium Falciparum Infection in Gabonese Adults. Am. J. Trop. Med. Hyg. 2007, 77, 939–942. [Google Scholar] [CrossRef]
- Weiss, D.J.; Nelson, A.; Gibson, H.S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N. A Global Map of Travel Time to Cities to Assess Inequalities in Accessibility in 2015. Nature 2018, 553, 333–336. [Google Scholar] [CrossRef]
- WorldPop. WorldPop—Population Counts. Available online: https://hub.worldpop.org/geodata/listing?id=75 (accessed on 3 November 2023).
- Olaya, V. Module Accumulated Cost. Available online: https://saga-gis.sourceforge.io/saga_tool_doc/2.2.6/grid_analysis_0.html (accessed on 3 November 2023).
- Ashby, M. Sthotspot: Hot-Spot Analysis with Simple Features 2023. Available online: https://cran.r-project.org/web/packages/sfhotspot/sfhotspot.pdf (accessed on 3 November 2023).
- H3 Tables of Cell Statistics Across Resolutions. Available online: https://h3geo.org/docs/core-library/restable (accessed on 10 August 2023).
- Peterson, P.R. Discrete Global Grid Systems. In International Encyclopedia of Geography: People, the Earth, Environment and Technology: People, the Earth, Environment and Technology; Wiley: Hoboken, NJ, USA, 2016; pp. 1–10. [Google Scholar] [CrossRef]
- Purss, M.B.; Gibb, R.; Samavati, F.; Peterson, P.; Ben, J. The OGC®® Discrete Global Grid System Core Standard: A Framework for Rapid Geospatial Integration. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3610–3613. [Google Scholar]
- Purss, M.B.J.; Peterson, P.R.; Strobl, P.; Dow, C.; Sabeur, Z.A.; Gibb, R.G.; Ben, J. Datacubes: A Discrete Global Grid Systems Perspective. Cartographica 2019, 54, 63–71. [Google Scholar] [CrossRef]
- Lang, S.; Kienberger, S.; Tiede, D.; Hagenlocher, M.; Pernkopf, L. Geons—Domain-Specific Regionalization of Space. Cartogr. Geogr. Inf. Sci. 2014, 41, 214–226. [Google Scholar] [CrossRef]
- Petutschnig, L. Malaria Risk Mapping. Available online: https://github.com/Menkli/malaria_risk (accessed on 3 November 2023).
- Shen, Z.; Yong, B.; Gourley, J.J.; Qi, W.; Lu, D.; Liu, J.; Ren, L.; Hong, Y.; Zhang, J. Recent Global Performance of the Climate Hazards Group Infrared Precipitation (CHIRP) with Stations (CHIRPS). J. Hydrol. 2020, 591, 125284. [Google Scholar] [CrossRef]
- CHIRPS, Climate Hazards Center, UC Santa Barbara. CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations. Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 3 November 2023).
- CHIRPS. CHIRPS FAQ. Available online: https://wiki.chc.ucsb.edu/CHIRPS_FAQ (accessed on 3 November 2023).
- López-Bermeo, C.; Montoya, R.D.; Caro-Lopera, F.J.; Díaz-García, J.A. Validation of the Accuracy of the CHIRPS Precipitation Dataset at Representing Climate Variability in a Tropical Mountainous Region of South America. Phys. Chem. Earth Parts A/B/C 2022, 127, 103184. [Google Scholar] [CrossRef]
- Gessesse, A.A.; Melesse, A.M. Chapter 8—Temporal Relationships between Time Series CHIRPS-Rainfall Estimation and eMODIS-NDVI Satellite Images in Amhara Region, Ethiopia. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 81–92. ISBN 978-0-12-815998-9. [Google Scholar]
- Aksu, H.; Akgül, M.A. Performance Evaluation of CHIRPS Satellite Precipitation Estimates over Turkey. Theor. Appl. Climatol. 2020, 142, 71–84. [Google Scholar] [CrossRef]
- Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G. A Global Satellite-Assisted Precipitation Climatology. Earth Syst. Sci. Data 2015, 7, 275–287. [Google Scholar] [CrossRef]
- C3S, Copernicus Climate Change Service Data Store, Seasonal Forecast Anomalies on Single Levels—Short Description of the Methodology, Including How Uncertainties Are Dealt with. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-postprocessed-single-levels?tab=eqc (accessed on 3 November 2023).
- Flahault, A.; de Castaneda, R.R.; Bolon, I. Climate Change and Infectious Diseases. Public. Health Rev. 2016, 37, 21. [Google Scholar] [CrossRef]
- ECMWF. Description of the C3S Seasonal Multi-System. Available online: https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system (accessed on 3 November 2023).
- Stockdale, T.; Balmaseda, M.; Johnson, S.; Ferranti, L.; Molteni, F.; Magnusson, L.; Tietsche, S.; Vitart, F.; Decremer, D.; Weisheimer, A. SEAS5 and the Future Evolution of the Long-Range Forecast System; European Centre for Medium Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- WHO. WHO Global Health Facilities Database: Ensuring Access to Primary Healthcare and UHC. Available online: https://www.who.int/news/item/10-03-2022-who-global-health-facilities-database-ensuring-access-to-primary-healthcare-and-uhc (accessed on 10 October 2023).
- WHO. Geolocated Health Facilities Data Initiative; WHO: Geneva, Switzerland, 2023.
- HDX Team. Comparing Sources of Health Facility Data on HDX—The Centre for Humanitarian Data. Available online: https://centre.humdata.org/comparing-sources-of-health-facility-data-on-hdx/ (accessed on 10 October 2023).
- UN Population Division. U.N. 2022 Revision of World Population Prospects. Available online: https://population.un.org/wpp/ (accessed on 3 November 2023).
- WorldPop. WorldPop Gridded Population Estimate Datasets and Tools. How Are They Different and Which Should I Use? 2023. Available online: https://www.worldpop.org/methods/populations/ (accessed on 3 November 2023).
- Stevens, F.R.; Gaughan, A.E.; Linard, C.; Tatem, A.J. Disaggregating Census Data for Population Mapping Using Random Forests with Remotely-Sensed and Ancillary Data. PLoS ONE 2015, 10, e0107042. [Google Scholar] [CrossRef] [PubMed]
- WorldPop. Top-Down Estimation Modelling: Constrained vs. Unconstrained. Available online: https://www.worldpop.org/methods/top_down_constrained_vs_unconstrained/ (accessed on 3 November 2023).
- ACLED. Armed Conflict Location & Event Data Project (ACLED). Available online: https://acleddata.com/ (accessed on 3 November 2023).
- ACLED. Armed Conflict Location & Event Data Project Codebook; ACLED: Madison, NY, USA, 2023. [Google Scholar]
- ACLED. Resource Library. Available online: https://acleddata.com/resources/#1643629422092-66d84798-46d7 (accessed on 3 November 2023).
- ACLED. FAQs: ACLED Sourcing Methodology 2023; ACLED: Madison, NY, USA, 2023. [Google Scholar]
- ACLED. Quick Guide to ACLED Data. Available online: https://acleddata.com/resources/quick-guide-to-acled-data/#s2 (accessed on 3 November 2023).
- ACLED ACLED Data Columns. Available online: https://acleddata.com/acleddatanew/wp-content/uploads/2021/11/ACLED_Data-Columns_v1_April-2019.pdf (accessed on 3 November 2023).
- Sadler, J.; Griffin, D.; Gilchrist, A.; Austin, J.; Kit, O.; Heavisides, J. GeoSRM—Online Geospatial Safety Risk Model for the GB Rail Network. IET Intell. Transp. Syst. 2016, 10, 17–24. [Google Scholar] [CrossRef]
- Rumson, A.G.; Hallett, S.H.; Brewer, T.R. Coastal Risk Adaptation: The Potential Role of Accessible Geospatial Big Data. Mar. Policy 2017, 83, 100–110. [Google Scholar] [CrossRef]
- Paulik, R.; Horspool, N.; Woods, R.; Griffiths, N.; Beale, T.; Magill, C.; Wild, A.; Popovich, B.; Walbran, G.; Garlick, R. RiskScape: A Flexible Multi-Hazard Risk Modelling Engine. Nat. Hazards 2023, 119, 1073–1090. [Google Scholar] [CrossRef]
- Holland, S.; Hosny, A.; Newman, S.; Joseph, J.; Chmielinski, K. The Dataset Nutrition Label. In Data Protection and Privacy; Bloomsbury Publishing: London, UK, 2020; Volume 12, p. 1. [Google Scholar]
- HDX. WFP Climate Data on HDX. Available online: https://centre.humdata.org/wfp-climate-data-on-hdx/ (accessed on 3 November 2023).
- Centre For Humanitarian Data. OCHA Climate Guidance Series—Precipitation Forecasts 2023. Available online: https://centre.humdata.org/climate-guidance-series-precipitation-forecasts/ (accessed on 3 November 2023).
Criteria | ||
---|---|---|
Quality by Design Criteria | ||
Coverage | Spatial coverage | The geographical extent covered by the resource |
Temporal extent | The earliest and latest times covered by the resource | |
Resolution | Spatial resolution | The level of detail in the resource’s spatial representation |
Temporal resolution | The time interval represented by the resource, e.g., daily, monthly | |
Quality of conformance criteria | ||
Methodology | Comprehensive method documentation | Availability of a detailed explanation of the resource’s content and origin by its creators |
Short and easy user guide | Availability of a brief overview of the data’s content and origin by its creators | |
Availability of code | Availability of the model’s source code if applicable | |
Traceability of source data | Input/ancillary data | Traceability of datasets used as input or support for modeling resources |
Strengths and limitations of data | Limitations | Limitations of the resource as stated by its creators |
Strengths | Strengths of the resource as stated by its creators | |
Uncertainty characterization | Uncertainty characterization method | The approach used to express uncertainty in the resource |
Sources of uncertainty | Origins of uncertainty in the resource’s data | |
Temporal stability uncertainty | Addresses comparability issues due to changes in methodology over time | |
Geolocation accuracy | Precision of the resource’s spatial accuracy | |
Validation | Validation method | The method employed to validate modeled resources |
Intercomparison | Description of intercomparison activities | Availability of a document that compares resources with similar aims |
General metadata | ||
Dataset | Title | A name given to the resource |
Identifier | An unambiguous reference to the resource | |
Date published/produced | A time associated with an event in the resource’s lifecycle | |
Language | The language of the resource | |
Description | A description of the resource’s content | |
Creator | The main entity responsible for creating the resource | |
Citation | An official reference provided by creators/publishers | |
Associated project | The project name where the resource was or is being developed | |
Publisher | An entity responsible for making the resource available | |
Capabilities | Access options | Methods available to access the resource, such as web scraping |
Login required | Indicates if access to the resource requires registration or access key | |
Format | The file format(s) in which the resource is available | |
Rights | Information about rights associated with the resource | |
Reputation of data producer | Background of data producer | A brief description of the data producer |
Indicator | Evaluated Data Source |
---|---|
The seasonal malaria pattern during a normal year | “Number of newly diagnosed Plasmodium falciparum cases per 1000 population, on a given year” datasets from the Malaria Atlas Project (MAP) [52] |
The climate in the upcoming months being particularly conductive to mosquito breeding, i.e., expectations of above-average precipitation | “Total precipitation anomalous rate of accumulation” from the “Seasonal forecast anomalies on single levels” dataset [53] |
30 years of monthly “CHIRPS—Rainfall Estimates from Rain Gauge and Satellite Observations” precipitation estimates [32] | |
Limited access to healthcare | “Walking-only Travel Time to Nearest Healthcare Facility without Access to Motorized Transport” from the MAP [31,34] |
“Population Counts—Unconstrained individual countries 2020 UN adjusted, 1 km resolution” by WorldPop [33] | |
Ongoing conflicts | Armed Conflict Location and Event Data (ACLED 2023) |
Input/ancillary data |
|
Strengths |
|
Limitations |
|
Uncertainty |
|
Validation |
|
Input/ancillary data |
|
Strengths | |
Limitations | |
Uncertainty |
|
Validation |
|
Input/ancillary data |
|
Strengths |
|
Limitations |
|
Uncertainty |
|
Validation |
Input/ancillary data |
|
Strengths | |
Limitations |
|
Uncertainty | |
Validation |
|
Input/ancillary data |
|
Strengths | |
Limitations | |
Uncertainty |
|
Validation |
Input/ancillary data |
|
Strengths |
|
Limitations |
|
Uncertainty |
|
Validation |
|
Input/ancillary data |
|
Strengths |
|
Limitations |
|
Uncertainty | |
Validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petutschnig, L.; Clemen, T.; Klaußner, E.S.; Clemen, U.; Lang, S. Evaluating Geospatial Data Adequacy for Integrated Risk Assessments: A Malaria Risk Use Case. ISPRS Int. J. Geo-Inf. 2024, 13, 33. https://doi.org/10.3390/ijgi13020033
Petutschnig L, Clemen T, Klaußner ES, Clemen U, Lang S. Evaluating Geospatial Data Adequacy for Integrated Risk Assessments: A Malaria Risk Use Case. ISPRS International Journal of Geo-Information. 2024; 13(2):33. https://doi.org/10.3390/ijgi13020033
Chicago/Turabian StylePetutschnig, Linda, Thomas Clemen, E. Sophia Klaußner, Ulfia Clemen, and Stefan Lang. 2024. "Evaluating Geospatial Data Adequacy for Integrated Risk Assessments: A Malaria Risk Use Case" ISPRS International Journal of Geo-Information 13, no. 2: 33. https://doi.org/10.3390/ijgi13020033