Exploring the Relationship between the Spatial Distribution of Different Age Populations and Points of Interest (POI) in China
<p>Locations of provinces and cities in China.</p> "> Figure 2
<p>Spatial pattern of the total population in the county-level administrative regions on the Chinese mainland.</p> "> Figure 3
<p>Spatial patterns of the different age populations in the county-level administrative regions on the Chinese mainland. POPA1, POPA2, POPA3, and POPA4 represent populations aged 0–14 years old, 15–34 years old, 35–59 years old, and 60 years old and older, respectively.</p> "> Figure 4
<p>The proportion of the different age populations.</p> "> Figure 5
<p>The spatial pattern of POIall in the county-level administrative regions on the Chinese mainland in 2015.</p> "> Figure 6
<p>The proportion of different POIs. (<b>a</b>–<b>h</b>) represent POIall, POIF, POIT, POIL, POIO, POIA, POIE, and POIH, respectively.</p> "> Figure 7
<p>Scatter plots of POI and population in different regions. In each subgraph, the red line represents the univariate linear regression line, and the POI in the x-axis is the POI with the highest correlation to the population indicators. All correlation coefficients were significantly different from zero (<span class="html-italic">p</span> < 0.01).</p> "> Figure 8
<p>Scatter plots of POI and population in differently sized cities. In each subgraph, the red line represents the univariate linear regression line, and the POI in the x-axis is the POI with the highest correlation to the population indicators.</p> "> Figure 9
<p>Scatter plots of POI and population in different regions. In each subgraph, the red line represents the univariate linear regression line, and the POI in the x-axis is the POI with the highest correlation to the population indicators.</p> "> Figure 10
<p>Factor detector (<b>a</b>) and interaction detector (<b>b</b>) of POI to population indicators in different regions. Max_Q represents the q value of the POI indicator with the strongest explanatory power for the population indicator in the Geodetector. All of the results were significantly different from zero (<span class="html-italic">p</span> < 0.01). ‘All’ denotes all regions.</p> "> Figure 11
<p>Factor detector (<b>a</b>) and interaction detector (<b>b</b>) of POI to population indicators in differently sized cities.</p> "> Figure 12
<p>Factor detector (<b>a</b>) and interaction detector (<b>b</b>) of POI to population indicators in different economic zones.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Area
2.2. Methods
2.2.1. Pearson Correlation Coefficient
2.2.2. Geodetector Analysis
3. Results
3.1. Descriptive Statistics of the Spatial Distribution of Different Age Populations in China
3.2. Pearson Correlation Coefficient
3.3. Geodetector Analysis
3.3.1. Factor Detector and Interaction Detector for Different Regions
3.3.2. Factor Detector and Interaction Detector for Differently Sized Cities
3.3.3. Factor Detector and Interaction Detector for Population Indicators in Different Economic Zones
4. Discussion
4.1. Complex Relationships between the POI and Different Age Populations Exist at Various Spatial Scales
4.2. POI Can Be Applied to Predict the Spatial Distributions of Different Age Populations
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, X.; Ye, T.; Zhao, N.; Chen, Q.; Yue, W.; Qi, J.; Zeng, B.; Jia, P. Population Mapping with Multisensor Remote Sensing Images and Point-Of-Interest Data. Remote Sens. 2019, 11, 574. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, Y.; Zhang, R.; Fu, B. China’s population spatialization based on three machine learning models. J. Clean. Prod. 2020, 256, 120644. [Google Scholar] [CrossRef]
- Dmowska, A.; Stepinski, T.F. A high resolution population grid for the conterminous United States: The 2010 edition. Comput. Environ. Urban Syst. 2017, 61, 13–23. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, W.; Zhou, C.; Li, M.; Wang, N.; Liu, Q. GDP Spatialization and Economic Differences in South China Based on NPP-VIIRS Nighttime Light Imagery. Remote Sens. 2017, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Xu, Y.; Li, N. Population Spatialization in Beijing City Based on Machine Learning and Multisource Remote Sensing Data. Remote Sens. 2020, 12, 1910. [Google Scholar] [CrossRef]
- Langford, M.; Higgs, G.; Radcliffe, J.; White, S. Urban population distribution models and service accessibility estimation. Comput. Environ. Urban Syst. 2008, 32, 66–80. [Google Scholar] [CrossRef]
- Aubrecht, C.; Oezceylan, D.; Steinnocher, K.; Freire, S. Multi-level geospatial modeling of human exposure patterns and vulnerability indicators. Nat. Hazards 2013, 68, 147–163. [Google Scholar] [CrossRef]
- Zeng, J.; Zhu, Z.Y.; Zhang, J.L.; Ouyang, T.P.; Qiu, S.F.; Zou, Y.; Zeng, T. Social vulnerability assessment of natural hazards on county-scale using high spatial resolution satellite imagery: A case study in the Luogang district of Guangzhou, South China. Environ. Earth Sci. 2012, 65, 173–182. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, X.; Li, X.; Zhang, J.; Liang, Z.; Mai, K.; Zhang, Y. Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 2017, 31, 1220–1244. [Google Scholar] [CrossRef]
- Bakillah, M.; Liang, S.; Mobasheri, A.; Arsanjani, J.J.; Zipf, A. Fine-resolution population mapping using OpenStreetMap points-of-interest. Int. J. Geogr. Inf. Sci. 2014, 28, 1940–1963. [Google Scholar] [CrossRef]
- Xiong, G.; Cao, X.; Hamm, N.A.S.; Lin, T.; Zhang, G.; Chen, B. Unbalanced Development Characteristics and Driving Mechanisms of Regional Urban Spatial Form: A Case Study of Jiangsu Province, China. Sustainability 2021, 13, 3121. [Google Scholar] [CrossRef]
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A global population database for estimating populations at risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Jia, P.; Sankoh, O.; Tatem, A.J. Mapping the environmental and socioeconomic coverage of the INDEPTH international health and demographic surveillance system network. Health Place 2015, 36, 88–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, S.I.; Noor, A.M.; Nelson, A.; Tatem, A.J. The accuracy of human population maps for public health application. Trop. Med. Int. Health 2005, 10, 1073–1086. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.; Deichmann, U.; Gottsegen, J.; Maloy, K. World population in a grid of spherical quadrilaters. Int. J. Popul. Geogr. IJPG 1997, 3, 203–225. [Google Scholar] [CrossRef]
- Tobler, W.R. Smooth Pycnophylactic Interpolation for Geographical Regions: Rejoinder. J. Am. Stat. Assoc. 1979, 74, 535–536. [Google Scholar] [CrossRef]
- Mennis, J. Generating surface models of population using dasymetric mapping. Prof. Geogr. 2003, 55, 31–42. [Google Scholar]
- Zandbergen, P.A.; Ignizio, D.A. Comparison of Dasymetric Mapping Techniques for Small-Area Population Estimates. Cartogr. Geogr. Inf. Sci. 2010, 37, 199–214. [Google Scholar] [CrossRef]
- Mennis, J.; Hultgren, T. Intelligent Dasymetric Mapping and Its Application to Areal Interpolation. Cartogr. Geogr. Inf. Sci. 2006, 33, 179–194. [Google Scholar] [CrossRef]
- Kraus, S.P.; Senger, L.W.; Ryerson, J.M. Estimating population from photographically determined residential land use types. Remote Sens. Environ. 1974, 3, 35–42. [Google Scholar] [CrossRef]
- Jia, P.; Gaughan, A. Dasymetric modeling: A hybrid approach using land cover and tax parcel data for mapping population in Alachua County, Florida. Appl. Geogr. 2016, 66, 100–108. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Guo, X.Y. Study on population simulation based on NPP/VIIRS night light. Territ. Nat. Resour. Study 2019, 3, 56–58. (In Chinese) [Google Scholar]
- Linard, C.; Gilbert, M.; Tatem, A.J. Assessing the use of global land cover data for guiding large area population distribution modelling. GeoJournal 2010, 76, 525–538. [Google Scholar] [CrossRef] [Green Version]
- Lung, T.; Lübker, T.; Ngochoch, J.; Schaab, G. Human population distribution modelling at regional level using very high resolution satellite imagery. Appl. Geogr. 2013, 41, 36–45. [Google Scholar] [CrossRef]
- Zhao, Y.; Ovando-Montejo, G.; Frazier, A.; Mathews, A.; Flynn, K.C.; Ellis, E. Estimating work and home population using lidar-derived building volumes. Int. J. Remote Sens. 2017, 38, 1180–1196. [Google Scholar] [CrossRef]
- Lu, Z.; Im, J.; Quackenbush, L.; Halligan, K. Population estimation based on multi-sensor data fusion. Int. J. Remote Sens. 2010, 31, 5587–5604. [Google Scholar] [CrossRef]
- Patel, N.; Stevens, F.; Huang, Z.; Gaughan, A.; Elyazar, I.; Tatem, A. Improving Large Area Population Mapping Using Geotweet Densities: Improving Large Area Population Mapping Using Geotweet Densities. Trans. GIS 2016, 21, 317–331. [Google Scholar] [CrossRef]
- Martín, Y.; Li, Z.; Ge, Y. Towards real-time population estimates: Introducing Twitter daily estimates of residents and non-residents at the county level. arXiv 2020, arXiv:2011.13482. [Google Scholar]
- Douglass, R.; Meyer, D.; Ram, M.; Rideout, D.; Song, D. High resolution population estimates from telecommunications data. EPJ Data Sci. 2015, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Deville, P.; Linard, C.; Martin, S.; Gilbert, M.; Stevens, F.; Gaughan, A.; Blondel, V.; Tatem, A. Dynamic population mapping using mobile phone data. Proc. Natl. Acad. Sci. USA 2014, 111, 15888–15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Zhang, P.; Li, Y.; Feng, J. Context-aware real-time population estimation for metropolis. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016. [Google Scholar]
- Zhang, C.; Qiu, F. A Point-Based Intelligent Approach to Areal Interpolation. Prof. Geogr. 2011, 63, 262–276. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on location-based social networks: GAO et al. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Ty, H.; Yang, J.; Xuecao, L.; Gong, P. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote Sens. 2016, 8, 151. [Google Scholar]
- Jiang, S.; Alves, A.; Rodrigues, F.; Ferreira, J.; Pereira, F. Mining point-of-interest data from social networks for urban land use classification and disaggregation. Comput. Environ. Urban Syst. 2015, 53, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Fu, P.; Hamm, N.A.S.; Li, Z.; You, N.; He, Y.; Cheshmehzangi, A.; Dong, J. Decision-Level and Feature-Level Integration of Remote Sensing and Geospatial Big Data for Urban Land Use Mapping. Remote Sens. 2021, 13, 1579. [Google Scholar] [CrossRef]
- Stathakis, D.; Baltas, P. Seasonal population estimates based on night-time lights. Comput. Environ. Urban Syst. 2017, 68, 133–141. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, J.; Chen, Y.; Wen, J.; Chen, J.; Yin, Z.E. Supply–Demand Analysis of Urban Emergency Shelters Based on Spatiotemporal Population Estimation. Int. J. Disaster Risk Sci. 2020, 11, 519–537. [Google Scholar] [CrossRef]
- Alegana, V.; Atkinson, P.; Pezzulo, C.; Sorichetta, A.; Weiss, D.; Bird, T.; Erbach-Schoenberg, E.; Tatem, A. Fine resolution mapping of population age-structures for health and development applications. J. R. Soc. Interface 2015, 12, 20150073. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, Y.; Wang, H.; Du, X.; Li, Q.; Zhu, J. Intraday Variation Mapping of Population Age Structure via Urban-Functional-Region-Based Scaling. Remote Sens. 2021, 13, 805. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, Y.; Xie, X. Discovering regions of different functions in a city using human mobility and POIs. In Book Discovering Regions of Different Functions in a City Using Human Mobility and POIs; Association for Computing Machinery: New York, NY, USA, 2012; pp. 186–194. [Google Scholar]
- Gao, Y.; Guo, X.; Li, C.; Ding, H.; Meryem, B.; Zhang, Y. Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmos. Res. 2016, 178, 6–16. [Google Scholar] [CrossRef]
- Shi, J.; Gao, H.; Cheng, H.; Sun, H.; Huang, D. Study on the exposure risk based on the PM2.5 pollution characteristics of POIs and their attractiveness to the crowd. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 980–998. [Google Scholar] [CrossRef]
- Population Census Office under the State Council Department of Population and Employment Statistics National Bureau of Statistics. Tabulation on the 2010 Population Census of the People’s Republic of China by Township; China Statistics Press: Beijing, China, 2012.
- Yin, J.; Dong, J.; Hamm, N.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating remote sensing and geospatial big data for urban land use mapping: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Dou, Y.Y.; Kuang, W.H. A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Sci. Total Environ. 2020, 706, 135828. [Google Scholar] [CrossRef]
- National Bureau of Statistics. Division Method of East, West, Central and Northeast Zones. 2011. Available online: http://www.stats.gov.cn/english/ (accessed on 16 October 2021).
- Chen, D.; Zhang, Y.; Yao, Y.; Hong, Y.; Guan, Q.; Tu, W. Exploring the spatial differentiation of urbanization on two sides of the Hu Huanyong Line-based on nighttime light data and cellular automata. Appl. Geogr. 2019, 112, 102081. [Google Scholar] [CrossRef]
- Chen, M.; Gong, Y.; Li, Y.; Lu, D.; Zhang, H. Population distribution and urbanization on both sides of the Hu Huanyong Line: Answering the Premier’s question. J. Geogr. Sci. 2016, 26, 1593–1610. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models; McGraw-Hill: New York, NY, USA, 2005. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Wang, J.-F.; Hu, Y. Environmental health risk detection with GeogDetector. Environ. Model. Softw. 2012, 33, 114–115. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Zhao, M.; Hou, J.; Zhang, Y.; Gu, J. Mapping the Population Density in Mainland China Using NPP/VIIRS and Points-Of-Interest Data Based on a Random Forests Model. Remote Sens. 2020, 12, 3645. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X. Study on the Transition of Fertillity and Influences in 1949–2019. Northwest Popul. J. 2021, 42, 107–116. (In Chinese) [Google Scholar]
Type | Code | Count | Description |
---|---|---|---|
General | POPG0 | 1,345,011,291 | Total population |
Age | POPA1 | 222,896,304 | 0~14 years old population (Child) |
POPA2 | 429,961,497 | 15~34 years old population (Young) | |
POPA3 | 513,273,500 | 35~59 years old population (Middle-aged) | |
POPA4 | 178,879,990 | 60 years old and older population (Old) |
Code | Count | Category |
---|---|---|
POIall | 16,030,423 | All POI |
POIF | 457,612 | Finance |
POIF1 | 80,905 | Insurance companies, financial and insurance institutions |
POIF2 | 202,934 | Bank |
POIF3 | 173,771 | Bank-related, ATM, securities company |
POIT | 1,118,565 | Traffic |
POIT1 | 518,681 | Transportation facilities (airports, train stations, bridge, traffic place-name, road ancillary facilities, transport facilities services) |
POIT2 | 536,872 | Vehicle services (motorcycle service, car service, car maintenance) |
POIT3 | 63,012 | Automobile sales |
POIA | 1,022,010 | Administration |
POIA1 | 889,289 | Administrative management (regional and municipal governments, district and county governments, government agencies, and social organizations) |
POIA2 | 132,719 | Public security organs |
POIE | 614,441 | Education |
POIE1 | 215,371 | Primary schools and kindergartens |
POIE2 | 58,769 | High school |
POIE3 | 82,375 | Colleges and universities |
POIE4 | 257,923 | Scientific and cultural services |
POIH | 686,630 | Health |
POIH1 | 136,979 | Hospital (general hospitals, specialized hospitals) |
POIH2 | 549,650 | Health care services |
POIL | 6,703,828 | Life |
POIL1 | 495,144 | Residential communities |
POIL2 | 5,808,468 | Shopping services, catering services, life service |
POIL3 | 400,214 | Sports leisure services, scenic spots |
POIO | 1,564,313 | Office |
POIO1 | 1,445,752 | Company enterprise |
POIO2 | 60,843 | Business residence |
POIO3 | 57,717 | Office building |
Criterion | Interaction |
---|---|
q (A∩B) > q (A) and q (B) | Enhance, bivariate |
q (A∩B) > q (A) + q (B) | Enhance, nonlinear |
q (A∩B) < q (A) + q (B) | Weaken |
q (A∩B) < q (A) or q (B) | Weaken, univariate |
q (A∩B) < q (A) and q (B) | Weaken, nonlinear |
q (A∩B) = q (A) + q (B) | Independent |
Indicator Name | Observation | Mean | S.D. | Min | Median | Max |
---|---|---|---|---|---|---|
POPG0 | 2846 | 466,062 | 397,625.8 | 0 | 380,106 | 8,220,207 |
POPA1 | 2846 | 77,341 | 64,692.96 | 0 | 62,388 | 804,756 |
POPA2 | 2846 | 149,189 | 169,257.2 | 0 | 113,880 | 4,756,885 |
POPA3 | 2846 | 178,096 | 143,897.5 | 0 | 147,425 | 2,492,729 |
POPA4 | 2846 | 62,068 | 50,592.06 | 0 | 49,679 | 705,947 |
Indicator Name | No. of Counties | Mean No. POIs of All Counties | S.D. | Min | Median | Max |
---|---|---|---|---|---|---|
POIall | 2846 | 5562 | 6653.18 | 0 | 3836 | 168,085 |
POIF | 2846 | 158.8 | 228.17 | 0 | 95 | 4703 |
POIF1 | 2846 | 28.07 | 51.90 | 0 | 16 | 1112 |
POIF2 | 2846 | 70.41 | 74.89 | 0 | 52 | 1535 |
POIF3 | 2846 | 60.3 | 112.84 | 0 | 26 | 2383 |
POIT | 2846 | 388.1 | 665.08 | 0 | 206 | 13,832 |
POIT1 | 2846 | 180 | 441.11 | 0 | 69 | 8756 |
POIT2 | 2846 | 186.3 | 240.76 | 0 | 117 | 5700 |
POIT3 | 2846 | 21.86 | 34.31 | 0 | 9 | 457 |
POIA | 2846 | 354.6 | 321.61 | 0 | 272 | 6505 |
POIA1 | 2846 | 308.6 | 277.33 | 0 | 237 | 5452 |
POIA2 | 2846 | 46.05 | 48.17 | 0 | 34 | 1053 |
POIE | 2846 | 213.2 | 292.79 | 0 | 133 | 5275 |
POIE1 | 2846 | 74.73 | 74.01 | 0 | 57 | 1112 |
POIE2 | 2846 | 20.39 | 16.99 | 0 | 16 | 249 |
POIE3 | 2846 | 28.58 | 58.66 | 0 | 10 | 1337 |
POIE4 | 2846 | 89.49 | 177.06 | 0 | 41 | 3531 |
POIH | 2846 | 238.2 | 290.80 | 0 | 155 | 8545 |
POIH1 | 2846 | 47.53 | 48.07 | 0 | 33 | 799 |
POIH2 | 2846 | 190.7 | 251.97 | 0 | 119 | 7746 |
POIL | 2846 | 2326.1 | 3661.81 | 0 | 1184.5 | 95,130 |
POIL1 | 2846 | 171.8 | 376.76 | 0 | 49 | 6296 |
POIL2 | 2846 | 2015.4 | 3160.66 | 0 | 1059.5 | 88,530 |
POIL3 | 2846 | 138.9 | 199.10 | 0 | 72 | 3328 |
POIO | 2846 | 542.8 | 1323.04 | 0 | 207 | 22,994 |
POIO1 | 2846 | 501.65 | 1211.88 | 0 | 194 | 31,514 |
POIO2 | 2846 | 21.11 | 82.74 | 0 | 3 | 1624 |
POIO3 | 2846 | 20.03 | 56.23 | 0 | 4 | 1235 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Lin, T.; Zhang, G.; Zhu, W.; Hamm, N.A.S.; Liu, Y.; Zhang, J.; Yao, X. Exploring the Relationship between the Spatial Distribution of Different Age Populations and Points of Interest (POI) in China. ISPRS Int. J. Geo-Inf. 2022, 11, 215. https://doi.org/10.3390/ijgi11040215
Huang Y, Lin T, Zhang G, Zhu W, Hamm NAS, Liu Y, Zhang J, Yao X. Exploring the Relationship between the Spatial Distribution of Different Age Populations and Points of Interest (POI) in China. ISPRS International Journal of Geo-Information. 2022; 11(4):215. https://doi.org/10.3390/ijgi11040215
Chicago/Turabian StyleHuang, Yiyi, Tao Lin, Guoqin Zhang, Wei Zhu, Nicholas A. S. Hamm, Yuqin Liu, Junmao Zhang, and Xia Yao. 2022. "Exploring the Relationship between the Spatial Distribution of Different Age Populations and Points of Interest (POI) in China" ISPRS International Journal of Geo-Information 11, no. 4: 215. https://doi.org/10.3390/ijgi11040215
APA StyleHuang, Y., Lin, T., Zhang, G., Zhu, W., Hamm, N. A. S., Liu, Y., Zhang, J., & Yao, X. (2022). Exploring the Relationship between the Spatial Distribution of Different Age Populations and Points of Interest (POI) in China. ISPRS International Journal of Geo-Information, 11(4), 215. https://doi.org/10.3390/ijgi11040215