Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean (Vicia faba L.) Ingredients
"> Figure 1
<p><b>Fluorescence/PARAFAC Components</b>: Illustration of the separation of the PARAFAC components based on their maximum excitation and emission wavelengths.</p> "> Figure 2
<p><b>Principal Component Analysis</b>: PCA biplot of fava ingredients (1 fava bean initial concentrate + 36 modified concentrates) evaluated at two conditions (pH 4 and pH 7) as scores, with the foam and emulsion functionalities and other ingredient attributes as loadings. The effect of pH during modification is shown by different symbols. The pH during utilization process is indicated with confidence ellipses (α = 0.95). PR and NPR are the PARAFAC components (at 0.1% and 1%, <a href="#foods-10-02489-t001" class="html-table">Table 1</a>) based on the protein and non-protein regions of the fluorescence landscape.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredient Modification
2.2. Foaming
2.3. Emulsification
2.4. Nitrogen Solubility
2.5. Absolute Zeta Potential
2.6. Intrinsic Fluorescence
2.7. Correlation Analysis
2.8. Principle Component Analysis (PCA)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Multari, S.; Stewart, D.; Russell, W.R. Potential of Fava Bean as Future Protein Supply to Partially Replace Meat Intake in the Human Diet. Compr. Rev. Food Sci. Food Saf. 2015, 14, 511–522. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.N. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. Compr. Rev. Food Sci. Food Saf. 2020, 20, 401–428. [Google Scholar] [CrossRef]
- Damodaran, S. Protein Stabilization of Emulsions and Foams. J. Food Sci. 2006, 70, R54–R66. [Google Scholar] [CrossRef]
- Wang, M.-P.; Chen, X.-W.; Guo, J.; Yang, J.; Wang, J.-M.; Yang, X.-Q. Stabilization of foam and emulsion by subcritical water-treated soy protein: Effect of aggregation state. Food Hydrocoll. 2018, 87, 619–628. [Google Scholar] [CrossRef]
- Mirmoghtadaie, L.; Alibadi, S.S.; Hosseini, S.M. Recent approaches in physical modification of protein functionality. Food Chem. 2016, 199, 619–627. [Google Scholar] [CrossRef]
- Arntfield, S.; Murray, E. The Influence of Processing Parameters on Food Protein Functionality I. Differential Scanning Calorimetry as an Indicator of Protein Denaturation. Can. Inst. Food Sci. Technol. J. 1981, 14, 289–294. [Google Scholar] [CrossRef]
- Schneider, C.; Muschiolik, G.; Schultz, M.; Schmandke, H. The influence of process conditions and acetylation on functional properties of protein isolates from broad beans (Vicia faba L. minor). Food/Nahrung 1986, 30, 429–431. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Felix, M.; Lopez-Osorio, A.; Romero, A.; Guerrero, A. Faba bean protein flour obtained by densification: A sustainable method to develop protein concentrates with food applications. LWT 2018, 93, 563–569. [Google Scholar] [CrossRef]
- Karaca, A.C.; Low, N.; Nickerson, M. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. Food Res. Int. 2011, 44, 2742–2750. [Google Scholar] [CrossRef]
- Makri, E.; Papalamprou, E.; Doxastakis, G. Study of functional properties of seed storage proteins from indigenous European legume crops (lupin, pea, broad bean) in admixture with polysaccharides. Food Hydrocoll. 2005, 19, 583–594. [Google Scholar] [CrossRef]
- Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.V.; Burke, M.; Jiji, R.D. Application of EEM fluorescence in combination with PARAFAC analysis to simultaneously monitor quercetin in its deprotonated, aggregated, and protein bound states. J. Chemom. 2010, 25, 101–108. [Google Scholar] [CrossRef]
- Steiner-Browne, M.; Elcoroaristizabal, S.; Ryder, A.G. Using polarized Total Synchronous Fluorescence Spectroscopy (pTSFS) with PARAFAC analysis for characterizing intrinsic protein emission. Chemom. Intell. Lab. Syst. 2019, 194, 103871. [Google Scholar] [CrossRef]
- Bruun, S.; Holm, J.; Hansen, S.I.; Andersen, C.M.; Nørgaard, L. A Chemometric Analysis of Ligand-Induced Changes in Intrinsic Fluorescence of Folate Binding Protein Indicates a Link between Altered Conformational Structure and Physico-Chemical Characteristics. Appl. Spectrosc. 2009, 63, 1315–1322. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Rinnan, A.; Lund, M.N. Investigating challenges with scattering and inner filter effects in front-face fluorescence by PARAFAC. J. Chemom. 2020, 34, e3286. [Google Scholar] [CrossRef]
- Thygesen, L.G.; Rinnan, Å.; Barsberg, S.; Møller, J.K. Stabilizing the PARAFAC decomposition of fluorescence spectra by insertion of zeros outside the data area. Chemom. Intell. Lab. Syst. 2004, 71, 97–106. [Google Scholar] [CrossRef]
- Royer, C.A. Probing Protein Folding and Conformational Transitions with Fluorescence. Chem. Rev. 2006, 106, 1769–1784. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Acković, L.L.; Zeković, I.; Dramićanin, T.; Bro, R.; Dramićanin, M.D. Modeling Food Fluorescence with PARAFAC BT—Reviews in Fluorescence 2017; Geddes, C.D., Ed.; Springer International Publishing: New York, NY, USA, 2018; pp. 161–197. [Google Scholar] [CrossRef]
- Siah, S.D. Health Benefits of Australian Grown Faba Beans (Vicia faba L.): Effects of Food Processing. Ph.D. Thesis, Charles Sturt University (Bathurst), Bathurst, Australia, 2012. [Google Scholar]
- Lenhardt, L.; Zeković, I.; Dramićanin, T.; Milićević, B.; Burojević, J.; Dramićanin, M.D. Characterization of cereal flours by fluorescence spectroscopy coupled with PARAFAC. Food Chem. 2017, 229, 165–171. [Google Scholar] [CrossRef]
- Friedman, M. Food Browning and Its Prevention: An Overview†. J. Agric. Food Chem. 1996, 44, 631–653. [Google Scholar] [CrossRef]
- Lv, C.; Zhao, G.; Ning, Y. Interactions between plant proteins/enzymes and other food components, and their effects on food quality. Crit. Rev. Food Sci. Nutr. 2015, 57, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Kosińska, A.; Karamać, M.; Penkacik, K.; Urbalewicz, A.; Amarowicz, R.; Kosinska-Cagnazzo, A. Interactions between tannins and proteins isolated from broad bean seeds (Vicia faba Major) yield soluble and non-soluble complexes. Eur. Food Res. Technol. 2011, 233, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Cabrera-Bañegil, M.; Rodas, N.L.; Losada, M.H.P.; Cipollone, F.B.; Espino, M.J.M.; de la Peña, A.M.; Durán-Merás, I. Evolution of polyphenols content in plum fruits (Prunus salicina) with harvesting time by second-order excitation-emission fluorescence multivariate calibration. Microchem. J. 2020, 158, 105299. [Google Scholar] [CrossRef]
- Sęczyk, Ł.; Świeca, M.; Kapusta, I.; Gawlik-Dziki, U. Protein–Phenolic Interactions as a Factor Affecting the Physicochemical Properties of White Bean Proteins. Molecules 2019, 24, 408. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- McClements, D.J.; Newman, E.; McClements, I.F. Plant-based Milks: A Review of the Science Underpinning Their Design, Fabrication, and Performance. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Karaca, A.C.; Nickerson, M.T.; Low, N.H. Lentil and Chickpea Protein-Stabilized Emulsions: Optimization of Emulsion Formulation. J. Agric. Food Chem. 2011, 59, 13203–13211. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Kaur, A.; Rana, J.C. Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocoll. 2015, 43, 679–689. [Google Scholar] [CrossRef]
- Lam, A.C.Y.; Warkentin, T.; Tyler, R.T.; Nickerson, M.T. Physicochemical and Functional Properties of Protein Isolates Obtained from Several Pea Cultivars. Cereal Chem. J. 2017, 94, 89–97. [Google Scholar] [CrossRef]
- Boye, J.; Zare, F.; Pletch, A. Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Res. Int. 2010, 43, 414–431. [Google Scholar] [CrossRef]
Foaming | Emulsification | |||
---|---|---|---|---|
Ingredient Properties | FC | FS | D(4;3)Day0 | D(4;3)Day7 |
Nitrogen Solubility | 0.284 * | 0.495 * | −0.291 * | −0.271 |
Absolute Zeta Potential | 0.343 * | 0.693 * | −0.357 * | −0.366 * |
PR1 (0.1%) | 0.288 * | −0.004 | 0.240 * | 0.227 |
PR2 (0.1%) | −0.305 * | 0.035 | −0.199 * | −0.187 * |
PR3 (0.1%) | 0.367 * | 0.166 | 0.339 * | 0.312 * |
PR1 (1%) | 0.203 | 0.447 * | −0.277 * | −0.286 * |
PR2 (1%) | −0.137 | −0.271 * | 0.221 | 0.213 |
PR3 (1%) | 0.223 | 0.404 * | −0.436 * | −0.455 * |
NPR1 (0.1%) | −0.078 | −0.040 | −0.041 | −0.030 |
NPR2 (0.1%) | 0.197 | 0.493 * | −0.370 * | −0.321 * |
NPR3 (0.1%) | 0.274 * | 0.149 | 0.058 | 0.066 |
NPR4 (0.1%) | 0.324 * | 0.678 * | −0.515 * | −0.477 * |
NPR5 (0.1%) | −0.228 * | −0.096 | −0.428 * | −0.378 * |
NPR6 (0.1%) | 0.093 | −0.015 | −0.254 * | −0.233 * |
NPR7 (0.1%) | 0.207 | 0.329 * | −0.184 | −0.149 |
NPR1 (1%) | −0.261 * | −0.543 * | 0.162 | 0.121 |
NPR2 (1%) | −0.015 | −0.123 | −0.066 | −0.073 |
NPR3 (1%) | 0.339 * | 0.119 | 0.184 | 0.187 |
NPR4 (1%) | 0.196 | 0.526 * | −0.578 * | −0.543 * |
NPR5 (1%) | −0.276 * | −0.016 | −0.453 * | −0.394 * |
NPR6 (1%) | −0.170 | −0.309 * | −0.009 | −0.015 |
Foam Capacity | Foam Stability | |
---|---|---|
Emulsion Capacity, D(4;3)Day0 | 0.165 | −0.099 |
Emulsion Stability, D(4;3)Day7 | 0.172 | −0.054 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharan, S.; Zotzel, J.; Stadtmüller, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.-N.; Olsen, K.; Rinnan, Å.; Orlien, V. Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean (Vicia faba L.) Ingredients. Foods 2021, 10, 2489. https://doi.org/10.3390/foods10102489
Sharan S, Zotzel J, Stadtmüller J, Bonerz D, Aschoff J, Saint-Eve A, Maillard M-N, Olsen K, Rinnan Å, Orlien V. Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean (Vicia faba L.) Ingredients. Foods. 2021; 10(10):2489. https://doi.org/10.3390/foods10102489
Chicago/Turabian StyleSharan, Siddharth, Jens Zotzel, Johannes Stadtmüller, Daniel Bonerz, Julian Aschoff, Anne Saint-Eve, Marie-Noëlle Maillard, Karsten Olsen, Åsmund Rinnan, and Vibeke Orlien. 2021. "Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean (Vicia faba L.) Ingredients" Foods 10, no. 10: 2489. https://doi.org/10.3390/foods10102489
APA StyleSharan, S., Zotzel, J., Stadtmüller, J., Bonerz, D., Aschoff, J., Saint-Eve, A., Maillard, M.-N., Olsen, K., Rinnan, Å., & Orlien, V. (2021). Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean (Vicia faba L.) Ingredients. Foods, 10(10), 2489. https://doi.org/10.3390/foods10102489