A Simple Model of Knowledge Scaffolding Applied to Wikipedia Growth
<p>The fundamental knowledge scaffolding model. (<b>left</b>) Knowledge bits are represented as nodes of a network, where different colors represent different levels and nodes at a certain level only depend on a certain number of nodes at lower levels. Green (basic) nodes represent axioms. (<b>right</b>) Observing the filling of the network (here with fixed width <span class="html-italic">W</span> and with fixed number of dependencies <span class="html-italic">K</span>), one can detect holes that are filled after the appearance of nodes at higher levels.</p> "> Figure 2
<p>The linear scaffolding model. In this version, there are no well-defined levels. Known items are denoted by ones in a linear array of elements (<span class="html-italic">X</span>), and unknown ones by zeros. The “highest” known item is at position <span class="html-italic">m</span>. New items (<span class="html-italic">i</span>) become known (<math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) if all random prerequisites <math display="inline"><semantics> <msub> <mi>j</mi> <mi>k</mi> </msub> </semantics></math> are known. The maximum knowledge jump <span class="html-italic">L</span> limits the choice of <span class="html-italic">i</span> so that <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>≤</mo> <mi>i</mi> <mo>−</mo> <msub> <mi>j</mi> <mi>M</mi> </msub> <mo>≤</mo> <mi>L</mi> </mrow> </semantics></math>, where <math display="inline"><semantics> <msub> <mi>j</mi> <mi>M</mi> </msub> </semantics></math> is the highest of prerequisites <math display="inline"><semantics> <msub> <mi>j</mi> <mi>k</mi> </msub> </semantics></math>. In the figure, the proposed new item <span class="html-italic">i</span> is based on prerequisites <math display="inline"><semantics> <msub> <mi>j</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>j</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>J</mi> <mi>M</mi> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>j</mi> <mn>3</mn> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>).</p> "> Figure 3
<p>Comparison, between the evolution of the knowledge corpus (<span class="html-italic">c</span>) and maximum knowledge (<span class="html-italic">m</span>) vs. time for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> </mrow> </semantics></math> 10,000, <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Logarithmic plot of the knowledge corpus <span class="html-italic">c</span> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> </mrow> </semantics></math> 10,000. (<b>a</b>) Fixed <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> and five values of <span class="html-italic">K</span>. (<b>b</b>) Fixed <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> and five values of <span class="html-italic">L</span>.</p> "> Figure 5
<p>Logarithmic plot of knowledge corpus <span class="html-italic">c</span> for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> </mrow> </semantics></math> 10,000 and <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>. It is possible to numerically rescale the function with different <span class="html-italic">L</span> to obtain an asymptotic convergence. The same results could be obtained by varying <span class="html-italic">K</span>.</p> "> Figure 6
<p>Time evolution of the number of holes (<span class="html-italic">h</span>) for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> </mrow> </semantics></math> 10,000 and different values of <span class="html-italic">K</span> and <span class="html-italic">L</span>.</p> "> Figure 7
<p>Time evolution of number of pages created by users of some of the biggest Wikipedia editions. Codes: Du = Dutch, En = English, Fr = French, De = German, It = Italian, Ru = Russian, Es = Spanish, Se = Swedish. Data collected from [<a href="#B33-futureinternet-15-00067" class="html-bibr">33</a>].</p> "> Figure 8
<p>(<b>a</b>) Evolution over time of the total number of articles present in the English (En) and Swedish (Se) Wikipedias and the corresponding bot-created items. (<b>b</b>) Number of articles edited, excluding redirect pages, by users and by bots in the Swedish Wikipedia. We can see how the discontinuity in the trend for both counts is due to bot activity. Data collected from [<a href="#B33-futureinternet-15-00067" class="html-bibr">33</a>].</p> "> Figure 9
<p>Logarithmic trend of the growth of pages created by users of some of the biggest Wikipedia editions. Codes: Du = Dutch, En = English, Fr = French, De = German, It = Italian, Ru = Russian, Es = Spanish, Se = Swedish. Data collected from [<a href="#B33-futureinternet-15-00067" class="html-bibr">33</a>].</p> "> Figure 10
<p>Log–log plot of the number of Wikipedia pages from 1 January 2001 (recorded each month). The initial growth can be approximated by a power law with an exponent of about <math display="inline"><semantics> <mrow> <mn>2.4</mn> </mrow> </semantics></math>, but there is a marked change in growth around 1 January 2009, with an exponent of about <math display="inline"><semantics> <mrow> <mn>0.8</mn> </mrow> </semantics></math> and decreasing.</p> "> Figure 11
<p>(<b>a</b>) Number of pages edited by users in hundreds of thousands (<math display="inline"><semantics> <msup> <mn>10</mn> <mn>5</mn> </msup> </semantics></math>), excluding redirect pages of some of the biggest Wikipedia editions. Codes: Du = Dutch, En = English, Fr = French, De = German, It = Italian, Ru = Russian, Es = Spanish, Se = Swedish. Data collected from [<a href="#B33-futureinternet-15-00067" class="html-bibr">33</a>]. (<b>b</b>) Zoom of the first part of <a href="#futureinternet-15-00067-f006" class="html-fig">Figure 6</a>, where for <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> the trend has not stabilized yet.</p> "> Figure 12
<p>Plot of the average value of the maximum height of corpus (approximating the corpus site) <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> versus time <span class="html-italic">t</span> (continuous line), and the logistic growth of the user base <math display="inline"><semantics> <mrow> <mi>M</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> (dotted line).</p> "> Figure 13
<p>(<b>a</b>) Log–log plot of the maximum height of corpus (approximating the corpus site) <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> versus time <span class="html-italic">t</span> for early times. (<b>b</b>) The log–log plot of <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> versus <span class="html-italic">t</span>. The dotted line marks the exponent 1/2.</p> ">
Abstract
:1. Introduction—Knowledge Scaffolding
2. Introduction—Application to Wikipedia
3. Related Work
4. The Model
5. Simulation Results
6. Comparison with Wikipedia
7. Growing User Community
8. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nonaka, I. A Dynamic Theory of Organizational Knowledge Creation. Organ. Sci. 1994, 5, 14–37. [Google Scholar] [CrossRef]
- Yan, E. Finding knowledge paths among scientific disciplines. J. Assoc. Inf. Sci. Technol. 2014, 65, 2331–2347. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Xiang, Y. A review: Knowledge reasoning over knowledge graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Bresciani, S.; Eppler, M.J. Knowledge scaffolding visualizations: A guiding framework. Knowl. Manag. E-Learn. Int. J. 2015, 7, 179–198. [Google Scholar] [CrossRef]
- Orlikowski, W.J. Material knowing: The scaffolding of human knowledgeability. Eur. J. Inf. Syst. 2006, 15, 460–466. [Google Scholar] [CrossRef]
- Thulasiraman, K.; Swamy, M.N.S. Graphs: Theory and Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1992. [Google Scholar]
- Bagnoli, F.; de Bonfioli Cavalcabo’, G. A Simple Model of Knowledge Scaffolding. In Complex Networks and Their Applications XI; Springer International Publishing: Cham, Switzerland, 2023; pp. 41–49. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Wikipedia (accessed on 8 December 2022).
- Konieczny, P. From Adversaries to Allies? The Uneasy Relationship between Experts and the Wikipedia Community. She Ji J. Des. Econ. Innov. 2021, 7, 151–170. [Google Scholar] [CrossRef]
- Jemielniak, D. Wikipedia: Why is the common knowledge resource still neglected by academics? GigaScience 2019, 8, giz139. [Google Scholar] [CrossRef] [PubMed]
- Suh, B.; Convertino, G.; Chi, E.H.; Pirolli, P. The singularity is not near. In Proceedings of the 5th International Symposium on Wikis and Open Collaboration, Orlando, FL, USA, 25–27 October 2009. [Google Scholar] [CrossRef]
- Wikipedians. Wikipedia: Wikipedians. Available online: https://en.wikipedia.org/wiki/Wikipedia:Wikipedians (accessed on 7 December 2022).
- Wikimedia Foundation. Wikimedia Statistics. Available online: https://en.wikipedia.org/wiki/Wikipedia:Splitting (accessed on 7 December 2022).
- Kaltenbrunner, A.; Laniado, D. There is no deadline: Time evolution of Wikipedia discussions. In Proceedings of the Eighth Annual International Symposium on Wikis and Open Collaboration, Linz, Austria, 27–29 August 2012. [Google Scholar] [CrossRef]
- Gonzaga, F.B.; Barbosa, V.C.; Xexéo, G.B. The network structure of mathematical knowledge according to the Wikipedia, MathWorld, and DLMF online libraries. Netw. Sci. 2014, 2, 367–386. [Google Scholar] [CrossRef]
- Muchnik, L.; Itzhack, R.; Solomon, S.; Louzoun, Y. Self-emergence of knowledge trees: Extraction of the Wikipedia hierarchies. Phys. Rev. E 2007, 76, 016106. [Google Scholar] [CrossRef] [PubMed]
- Wikipedia. List of Wikipedias. Available online: https://en.wikipedia.org/wiki/List_of_Wikipedias (accessed on 5 December 2022).
- Wikipedia. Wikipedia: Size of Wikipedia. Available online: https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia (accessed on 10 January 2023).
- Chiew, L.S.; Shahabuddin, A.; Zainab, M.Y. A Review of Simulation and Application of Agent-Based Model Approaches. J. Phys. Conf. Ser. 2021, 2129, 012053. [Google Scholar] [CrossRef]
- Wikipedia. Wikipedia: Modelling Wikipedia’s Growth. Available online: https://en.wikipedia.org/wiki/Wikipedia:Modelling_Wikipedia’s_growth (accessed on 6 December 2022).
- Giles, J. Internet encyclopaedias go head to head. Nature 2005, 438, 900–901. [Google Scholar] [CrossRef] [PubMed]
- Thompson, N.; Hanley, D. Science Is Shaped by Wikipedia: Evidence from a Randomized Control Trial. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Almeida, R.B.; Mozafari, B.; Cho, J. On the Evolution of Wikipedia. In Proceedings of the ICWSM’2007, Boulder, CO, USA, 26–28 March 2007. [Google Scholar]
- Capocci, A.; Servedio, V.D.P.; Colaiori, F.; Buriol, L.S.; Donato, D.; Leonardi, S.; Caldarelli, G. Preferential attachment in the growth of social networks: The internet encyclopedia Wikipedia. Phys. Rev. E 2006, 74, 036116. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Riedl, J. Is Wikipedia growing a longer tail? In Proceedings of the 2009 ACM International Conference on Supporting Group Work, Sanibel Island, FL, USA, 10–13 May 2009. [CrossRef]
- Lam, S.K.; Riedl, J. The past, present, and future of Wikipedia. Computer 2011, 44, 87–90. [Google Scholar] [CrossRef]
- Zlatić, V.; Štefančić, H. Model of Wikipedia growth based on information exchange via reciprocal arcs. EPL Europhys. Lett. 2011, 93, 58005. [Google Scholar] [CrossRef]
- Jullien, N. What We Know about Wikipedia: A Review of the Literature Analyzing the Project(s); HAL Open Science: Lyon, France, 2012. [Google Scholar]
- Ju, H.; Zhou, D.; Blevins, A.S.; Lydon-Staley, D.M.; Kaplan, J.; Tuma, J.R.; Bassett, D.S. Historical growth of concept networks in Wikipedia. Collect. Intell. 2022, 1, 263391372211098. [Google Scholar] [CrossRef]
- Zhang, N. Growth Rates of Knowledge. arXiv 2022. [Google Scholar] [CrossRef]
- Barabási, A.L. Network Science: Luck or reason. Nature 2012, 489, 507–508. [Google Scholar] [CrossRef] [PubMed]
- Karlin, S. A First Course in Stochastic Processes; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Wikimedia Foundation. Wikimedia Statistics. Available online: https://stats.wikimedia.org (accessed on 9 December 2022).
- Wikimedia Foundation. Wikistats 2. Available online: https://wikitech.wikimedia.org/wiki/Data_Engineering/Systems/Wikistats_2 (accessed on 11 January 2023).
- Johansson, S. Lsjbot. Available online: http://lsjbot.se (accessed on 7 December 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagnoli, F.; de Bonfioli Cavalcabo’, G. A Simple Model of Knowledge Scaffolding Applied to Wikipedia Growth. Future Internet 2023, 15, 67. https://doi.org/10.3390/fi15020067
Bagnoli F, de Bonfioli Cavalcabo’ G. A Simple Model of Knowledge Scaffolding Applied to Wikipedia Growth. Future Internet. 2023; 15(2):67. https://doi.org/10.3390/fi15020067
Chicago/Turabian StyleBagnoli, Franco, and Guido de Bonfioli Cavalcabo’. 2023. "A Simple Model of Knowledge Scaffolding Applied to Wikipedia Growth" Future Internet 15, no. 2: 67. https://doi.org/10.3390/fi15020067
APA StyleBagnoli, F., & de Bonfioli Cavalcabo’, G. (2023). A Simple Model of Knowledge Scaffolding Applied to Wikipedia Growth. Future Internet, 15(2), 67. https://doi.org/10.3390/fi15020067