Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China
<p>The location of study area: (<b>a</b>) The study area location in China; (<b>b</b>) the western Hunan in Hunan province; and (<b>c</b>) a false color composite of Landsat 8 OLI band 6 in red, band 5 in green, and band 4 in blue.</p> "> Figure 2
<p>Spatial distribution of sampling plots corresponding to plots of aboveground biomass (AGB) values and crown density class across the western Hunan.</p> "> Figure 3
<p>The relationships between predicted AGB from different models in different crown density against observed AGB for different vegetation types.</p> "> Figure 4
<p>Residual boxplots of AGB of model 1, model 2, and model 3 for different vegetation types among different crown density classes: (<b>A</b>–<b>D</b>) represents pine forest, fir forest, mixed forest, and total vegetation, respectively (model 1—linear regression model; model 2—linear dummy variable model; model 3—linear mixed-effects model; ** indicates that the residuals were significantly different from 0 at the 0.01 level; * indicates that the residuals were significantly different from 0 at the 0.05 level).</p> "> Figure 5
<p>Comparison of root mean square error percent (RMSE%) and Bias percent (Bias%) results at different crown density classes of models 1–3 for pine forest, fir forest, mixed forest, and total vegetation. The significant differences between model 1 and model 2, and model 1 and model 3 for RMSE% and Bias% are expressed in capital letters (AA), and the lowercase letter (a) represents significant differences between model 2 and model 3.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey Data
2.3. Remote Sensing Data
2.4. Statistical Model
2.5. Model Fitting and Evaluating
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- West, P.W. Tree and Forest Measurement, 2nd ed.; Springer: Berlin, Germany, 2009; ISBN 9783540959656. [Google Scholar]
- Lieth, H.; Whittaker, R.H. Primary Productivity of the Biosphere; Springer-Verlag: Berlin, Germany, 1975; Volume 14, ISBN 978-3-642-80915-6. [Google Scholar]
- Tian, X.; Li, Z.; Su, Z.; Chen, E.; van der Tol, C.; Li, X.; Guo, Y.; Li, L.; Ling, F. Estimating montane forest above-ground biomass in the upper reaches of the Heihe River Basin using Landsat-TM data. Int. J. Remote Sens. 2014, 35, 7339–7362. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Coe, R.; van Noordwijk, M.; Ambagau, Y.; Palm, C.A. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For. Ecol. Manag. 2001, 146, 199–209. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Safari, A.; Sohrabi, H.; Powell, S.; Shataee, S. A comparative assessment of multi-temporal Landsat 8 and machine learning algorithms for estimating aboveground carbon stock in coppice oak forests. Int. J. Remote Sens. 2017, 38, 6407–6432. [Google Scholar] [CrossRef]
- Lu, D. Review Article The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Sun, H.; Qie, G.; Wang, G.; Tan, Y.; Li, J.; Peng, Y.; Ma, Z.; Luo, C. Increasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysis. Remote Sens. 2015, 7, 15114–15139. [Google Scholar] [CrossRef]
- Galidaki, G.; Zianis, D.; Gitas, I.; Radoglou, K.; Karathanassi, V.; Tsakiri–Strati, M.; Woodhouse, I.; Mallinis, G. Vegetation biomass estimation with remote sensing: Focus on forest and other wooded land over the Mediterranean ecosystem. Int. J. Remote Sens. 2017, 38, 1940–1966. [Google Scholar] [CrossRef]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [Google Scholar] [CrossRef] [Green Version]
- Qazi, W.A.; Baig, S.; Gilani, H.; Waqar, M.M.; Dhakal, A.; Ammar, A. Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over Kayar Khola watershed, Chitwan district, Nepal. J. Appl. Remote Sens. 2017, 11, 026038. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsi, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Zhu, C.; Lu, D.; Victoria, D.; Dutra, L.V. Mapping fractional cropland distribution in Mato Grosso, Brazil using time series MODIS enhanced vegetation index and Landsat Thematic Mapper data. Remote Sens. 2016, 8, 22. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Asner, G. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Ruimy, A.; Saugier, B.; Dedieu, G. Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. 1994, 99, 5263–5283. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I.; Rasmussen, M.S.; Stisen, S.; Diouf, A. Evaluation of satellite based primary production modelling in the semi-arid Sahel. Remote Sens. Environ. 2006, 105, 173–188. [Google Scholar] [CrossRef]
- Asner, G.P.; Levick, S.R.; Smit, I.P.J. Remote sensing of fractional cover and biochemistry in Savannas. In Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781439804711. [Google Scholar]
- Kumar, L.; Sinha, P.; Taylor, S.; Alqurashi, A.F. Review of the use of remote sensing for biomass estimation to support renewable energy generation. J. Appl. Remote Sens. 2015, 9, 097696. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S.; Cutler, M.E.J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Batistella, M. Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amaz. 2005, 35, 249–257. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. J. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Neff, J.C. Estimates of aboveground biomass from texture analysis of landsat imagery. Remote Sens. 2014, 6, 6407–6422. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, M.; Gertner, G.Z.; Oyana, T.; McRoberts, R.E.; Ge, H. Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scand. J. For. Res. 2011, 26, 360–373. [Google Scholar] [CrossRef]
- Fehrmann, L.; Lehtonen, A.; Kleinn, C.; Tomppo, E. Comparison of linear and mixed-effect regression models and a k-nearest neighbour approach for estimation of single-tree biomass. Can. J. For. Res. 2008, 38, 1–9. [Google Scholar] [CrossRef]
- Yang, X.; Xue, S. Geographic Features of Forestry Resource in Hunan. Econ. Geogr. 2001, 21, 736–739. (In Chinese) [Google Scholar]
- Xu, M.; Liu, C. Connotation and Evaluation of Regional Economic Transition Degree—A Case Study of the Western Hunan Area. J. Nat. Resour. 2015, 30, 1675–1685. (In Chinese) [Google Scholar]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, G. The forest biomass dynamics of Zhejiang Province. Acta Ecol. Sin. 2008, 28, 5665–5674. (In Chinese) [Google Scholar]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Hantson, S.; Chuvieco, E. Evaluation of different topographic correction methods for landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 691–700. [Google Scholar] [CrossRef]
- Boyd, D.S.; Foody, G.M.; Ripple, W.J. Evaluation of approaches for forest cover estimation in the Pacific Northwest, USA, using remote sensing. Appl. Geogr. 2002, 22, 375–392. [Google Scholar] [CrossRef]
- Tang, S.Z.; Li, Y. Statistical Foundation for Biomathematical Models; Science Press: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Fu, L.Y.; Zeng, W.S.; Tang, S.Z.; Sharma, R.P.; Li, H.K. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales—A case study for Masson pine in Southern China. J. For. Sci. 2012, 58, 101–115. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. Mixed-Effects Models in S and S-PLUS; Springer-Verlag: New York, NY, USA, 2000; ISBN 9780387989570. [Google Scholar]
- Fang, Z.; Bailey, R.L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. For. Sci. 2001, 47, 287–300. [Google Scholar]
- Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining spectral reflectance saturation in landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens. 2016, 8, 469. [Google Scholar] [CrossRef]
- Reese, H.; Nilsson, M.; Sandström, P.; Olsson, H. Applications using estimates of forest parameters derived from satellite and forest inventory data. Comput. Electron. Agric. 2002, 37, 37–55. [Google Scholar] [CrossRef] [Green Version]
- Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Moisen, G.G.; Healey, S.P.; Keeton, W.S.; Freeman, E.A.; Hostert, P. Evaluating the remote sensing and inventory-based estimation of biomass in the western carpathians. Remote Sens. 2011, 3, 1427–1446. [Google Scholar] [CrossRef]
- Jiao, X.M.; Xiang, W.H.; Tian, D.L. Carbon Storage of Forest Vegetation and Its Geographical Distribution in Hunan Province. J. Cent. South For. Univ. 2005, 25, 4–8. (In Chinese) [Google Scholar]
- Zeng, W.S.; Zhang, H.R.; Tang, S.Z. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales—A case study for Masson pine (Pinus massoniana) in southern China. Can. J. For. Res. 2011, 41, 1547–1554. [Google Scholar] [CrossRef]
- Wang, M.; Borders, B.E.; Zhao, D. An empirical comparison of two subject-specific approaches to dominant heights modeling: The dummy variable method and the mixed model method. For. Ecol. Manag. 2008, 255, 2659–2669. [Google Scholar] [CrossRef]
- Chen, D.; Huang, X.; Zhang, S.; Sun, X. Biomass modeling of larch (Larix spp.) plantations in China based on the mixed model, dummy variable model, and Bayesian hierarchical model. Forests 2017, 8, 268. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J. Seasonal variation of evergreen land coverage in poyang lake watershed using multi-temporal spot4-vegetation data. Resour. Environ. Yangtze Basin 2008, 17, 866–871. (In Chinese) [Google Scholar]
- Gaolong, Z. Spatial-temporal characteristics of foliage clumping index in China during 2000–2013. Chin. Sci. Bull. 2016, 61, 1595–1603. (In Chinese) [Google Scholar] [CrossRef]
- Liu, Y.B.; Ju, W.M.; Chen, J.M.; Zhu, G.L.; Xing, B.L.; Zhu, J.F.; He, M.Z. Spatial and temporal variations of forest LAI in China during 2000–2010. Chin. Sci. Bull. 2012, 57, 2846–2856. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Eckert, S. Improved forest biomass and carbon estimations using texture measures from worldView-2 satellite data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef]
- Du, H.; Cui, R.; Zhou, G.; Shi, Y.; Xu, X.; Fan, W.; Lü, Y. The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecol. Sin. 2010, 30, 257–263. [Google Scholar] [CrossRef]
- Wu, C.; Shen, H.; Wang, K.; Shen, A.; Deng, J.; Gan, M. Landsat imagery-based above ground biomass estimation and change investigation related to human activities. Sustainibility 2016, 8, 159. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping tree canopy cover and aboveground biomass in Sudano-Sahelian woodlands using Landsat 8 and random forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef]
Vegetation Type | Crown Density | AGB (Mg/ha) | ||||
---|---|---|---|---|---|---|
No. | Minimum | Mean | Maximum | Standard Deviation | ||
Pine | Thin | 41 | 1.05 | 16.40 | 47.33 | 10.61 |
Middle | 70 | 3.61 | 33.60 | 83.58 | 17.06 | |
Dense | 14 | 6.16 | 51.17 | 118.07 | 35.57 | |
Total | 125 | 1.05 | 29.65 | 118.07 | 20.94 | |
Fir | Thin | 54 | 22.76 | 31.11 | 57.46 | 8.70 |
Middle | 77 | 24.72 | 51.18 | 130.87 | 18.37 | |
Dense | 31 | 55.55 | 92.55 | 154.48 | 30.65 | |
Total | 162 | 22.76 | 52.41 | 154.48 | 28.68 | |
Mixed | Thin | 18 | 24.52 | 37.70 | 65.42 | 10.53 |
Middle | 53 | 31.74 | 62.13 | 131.03 | 24.02 | |
Dense | 19 | 41.28 | 92.57 | 171.53 | 37.06 | |
Total | 90 | 24.56 | 63.67 | 171.53 | 30.86 | |
Total | Thin | 113 | 1.05 | 26.65 | 65.42 | 12.77 |
Middle | 200 | 3.61 | 48.11 | 131.03 | 22.68 | |
Dense | 64 | 6.16 | 83.26 | 171.53 | 37.39 | |
Total | 377 | 1.05 | 47.70 | 171.53 | 30.06 |
Spectral Variables | Definitions of Spectral Variables | No. |
---|---|---|
Original Band | b1—coastal, b2—blue, b3—green (GRN), b4—red (RED), b5—near infrared (NIR), b6—shortwave infrared1 (SWIR1), b7—shortwave infrared2 (SWIR2) | 7 |
Inversions of bandi | , i = 1,…,7 | 7 |
Simple two-band ratios () | , i, j = 1,…7; i ≠ j | 42 |
Three-band ratios | , i, j, k = 1,…,7; i ≠ j ≠ k, j < k | 106 |
Vegetation indices | Normalized difference vegetation index (NDVI), atmospherically resistant vegetation index (ARVI), soil adjusted vegetation index ( l = 0.1), atmospherically resistant vegetation index (ARVI), enhance vegetation index (EVI), albedo, sum of three visible bands (, ) | 7 |
Principal component analysis | The first 3 PCs from principal component analysis (PCA1, PCA2, PCA3) | 3 |
Texture measures | Grey-level co-occurrence matrix-based texture measures of original bands (), including contrast (), correlation (), dissimilarity (), entropy (), homogeneity (), angular second moment (), mean (), and variance() with different window sizes j (3 × 3, 5 × 5, 7 × 7) | 168 |
Variables | Correlation Coefficients | Variables | Correlation Coefficients | Variables | Correlation Coefficients | Variables | Correlation Coefficients |
---|---|---|---|---|---|---|---|
b3 | −0.254 ** | −0.236 ** | −0.210 ** | −0.276 ** | |||
b4 | −0.233 ** | −0.207 ** | −0.215 ** | 0.258 ** | |||
−0.260 ** | −0.227 ** | −0.206 ** | −0.251 ** | ||||
ARVI | 0.162 * | 0.227 ** | −0.265 ** | −0.242 ** | |||
0.247 ** | 0.236 ** | −0.247 ** | 0.251 ** | ||||
0.232 ** | 0.210 ** | 0.272 ** | 0.230 ** | ||||
0.228 ** | 0.204 * | 0.260 ** | —— | —— | |||
−0.244 * | −0.229 ** | −0.279 ** | —— | —— |
Vegetation Type | Parameter | Estimate | Std.coef | p-Value | Vegetation Type | Parameter | Estimate | Std.coef | p-Value |
---|---|---|---|---|---|---|---|---|---|
Pine | 24.14 | 0.33 | <0.01 | Fir | 1.14 | 0.25 | <0.01 | ||
−165.54 | −0.27 | <0.01 | 1061.00 | 0.61 | <0.01 | ||||
19.47 | 0.17 | <0.01 | 36.49 | 0.24 | <0.01 | ||||
6.90 | 0.40 | <0.01 | |||||||
Mixed | 30.55 | 0.30 | <0.01 | Total vegetation | −3.62 | −0.25 | <0.01 | ||
−10.05 | −0.60 | <0.01 | 0.83 | 0.14 | <0.01 | ||||
9.00 | 0.36 | <0.01 | 15.36 | 0.09 | <0.05 |
Vegetation Type | Model 2 | Vegetation Type | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Parameter | Estimate | S.D. | p-Value | Parameter | Estimate | S.D. | p-Value | ||
Pine | 16.70 | 4.77 | <0.01 | Pine | 13.35 | 3.77 | <0.01 | ||
−113.52 | 48.43 | <0.05 | −118.00 | 21.87 | <0.01 | ||||
16.85 | 6.86 | <0.05 | 12.67 | 6.15 | <0.05 | ||||
Fir | 0.62 | 0.22 | <0.01 | Fir | 0.16 | 0.20 | <0.05 | ||
732.08 | 208.43 | <0.01 | 515.01 | 172.84 | <0.01 | ||||
17.18 | 7.68 | <0.05 | 5.74 | 6.06 | <0.05 | ||||
5.29 | 2.08 | <0.01 | 4.44 | 1.69 | <0.01 | ||||
Mixed | 23.65 | 7.636 | <0.01 | Mixed | 10.55 | 6.79 | <0.05 | ||
−4.80 | 3.665 | <0.05 | −1.42 | 2.86 | <0.05 | ||||
6.28 | 5.165 | <0.05 | 0.74 | 4.09 | <0.05 | ||||
Total vegetation | −2.20 | 0.66 | <0.01 | Total vegetation | −1.60 | 0.50 | <0.01 | ||
0.48 | 0.21 | <0.05 | 0.25 | 0.20 | <0.05 | ||||
8.05 | 5.49 | <0.05 | 1.07 | 4.56 | <0.05 |
Vegetation Type | R2 | R2adj | RMSE | Predict Mean |
---|---|---|---|---|
Pine | 0.23 | 0.21 | 18.41 | 29.64 |
Fir | 0.22 | 0.22 | 25.57 | 52.43 |
Mixed | 0.21 | 0.19 | 27.28 | 63.67 |
Total vegetation | 0.11 | 0.10 | 28.47 | 47.40 |
Vegetation Type | Model# | R2 | R2adj | RMSE | Predict Mean |
---|---|---|---|---|---|
Pine | 2 | 0.41 | 0.40 | 16.05 | 29.65 |
3 | 0.39 | 0.38 | 16.29 | 29.36 | |
Fir | 2 | 0.61 | 0.61 | 17.88 | 52.39 |
3 | 0.61 | 0.61 | 17.92 | 51.95 | |
Mixed | 2 | 0.46 | 0.44 | 22.56 | 63.64 |
3 | 0.43 | 0.42 | 23.12 | 62.41 | |
Total vegetation | 2 | 0.41 | 0.41 | 22.99 | 47.70 |
3 | 0.41 | 0.41 | 23.07 | 47.51 |
Vegetation Type | Model# | Models 1–3 | Model 2 and Model 3 | ||
---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | ||
Pine | 1 | ||||
2 | 11.76 | <0.01 | |||
3 | 4.12 | <0.05 | 2.44 | 0.12 | |
Fir | 1 | ||||
2 | 29.58 | <0.01 | |||
3 | 17.31 | <0.01 | 1.28 | 0.26 | |
Mixed | 1 | ||||
2 | 9.37 | <0.01 | |||
3 | 0.77 | 0.38 | 4.69 | 0.03 | |
Total vegetation | 1 | ||||
2 | 111.48 | <0.01 | |||
3 | 66.03 | <0.01 | 2.95 | 0.09 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests 2019, 10, 104. https://doi.org/10.3390/f10020104
Li C, Li Y, Li M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests. 2019; 10(2):104. https://doi.org/10.3390/f10020104
Chicago/Turabian StyleLi, Chao, Yingchang Li, and Mingyang Li. 2019. "Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China" Forests 10, no. 2: 104. https://doi.org/10.3390/f10020104
APA StyleLi, C., Li, Y., & Li, M. (2019). Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests, 10(2), 104. https://doi.org/10.3390/f10020104