Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation
"> Figure 1
<p>Location of study area—partial Zhejiang Province, eastern China (Note: (<b>a</b>) the study area is located in Eastern China; (<b>b</b>) the study area occupies most part of Zhejiang province; and (<b>c</b>) a false color composite of Landsat Thematic Mapper (TM) band 4 in red, band 3 in green, and band 2 in blue, highlighting vegetated areas in red color).</p> "> Figure 2
<p>Strategy of vegetation classification from Landsat 5 Thematic Mapper (TM) image (Note: LSMA, linear spectral mixture analysis).</p> "> Figure 3
<p>Classified map (<b>left</b>) of land use and land cover types for the whole study area using Landsat 5 Thematic Mapper imagery, and the selected portions (<b>a</b>) and (<b>b</b>) at a large scale to highlight the complexity and spatial distribution of vegetation types.</p> "> Figure 4
<p>The relationships between aboveground biomass (AGB) and Landsat 5 Thematic Mapper (TM) spectral band 7 surface reflectance for different vegetation types: (<b>a</b>) pine forest; (<b>b</b>) Chinese fir; (<b>c</b>) broadleaf forest; (<b>d</b>) mixed forest; (<b>e</b>) bamboo forest; and (<b>f</b>) shrub.</p> "> Figure 5
<p>The modeled relationships of Landsat 5 Thematic Mapper (TM) spectral band 7 surface reflectance against forest aboveground biomass using spherical model for estimation of the data saturation value for each vegetation type (indicated using different symbols).</p> "> Figure 6
<p>A comparison of spatial distributions of forest aboveground biomass estimates among the models using four stratification scenarios: (<b>a</b>) non-stratification; (<b>b</b>) stratification based on vegetation types; (<b>c</b>) stratification based on slope aspects; and (<b>d</b>) stratification based on the combination of vegetation types and slope aspects.</p> "> Figure 7
<p>The relationships between forest aboveground biomass (AGB) estimates and reference data (<b>a1</b>–<b>d1</b>); and residuals of AGB estimates against reference data (<b>a2</b>–<b>d2</b>) using four stratification scenarios: (<b>a1</b>,<b>a2</b>) non-stratification; (<b>b1</b>,<b>b2</b>) stratification based on vegetation types; (<b>c1</b>,<b>c2</b>) stratification based on slope aspects; and (<b>d1</b>,<b>d2</b>) stratification based on the combination of vegetation types and slope aspects.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Description of the Study Area
2.2. Collection of Sample Plot Data and Calculation of Forest Aboveground Biomass
2.3. Collection of Remote Sensing and DEM Data and Preprocessing
2.4. Preparation of Vegetation Classification Data
3. Methods
3.1. Estimation of AGB Saturation Values
3.2. Selection of Textural Images
3.3. Development and Comparison of AGB Estimation Models Based on Stratification
- (1)
- one population without stratification of sample plots;
- (2)
- stratification of sample plots based on vegetation types;
- (3)
- stratification of sample plots based on slope aspects;
- (4)
- stratification of sample plots based on the combination of vegetation types and slope aspects.
3.4. Evaluation of AGB Models and Estimates
4. Results
4.1. Estimation of AGB Saturation Values of Six Vegetation Types
4.2. Regression Models from Different Scenarios
4.3. Assessment and Comparison of AGB Estimates from Regression Models
5. Discussion
5.1. Data Saturation Problem in Landsat Imagery and Potential Solution in Reducing the Saturation
5.2. Selection of Suitable Algorithms to Establish the Relationship between AGB and Remote Sensing Variables
5.3. Uncertainties Due to Sample Plots
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Land Use, Land-Use Change and Forestry; Cambridge Univ. Press: Cambridge, UK, 2000. [Google Scholar]
- Smith, J.E.; Heath, L.S. Carbon Stocks and Stock Changes in U.S. Forests and appendix C. In U.S. Agriculture and Forestry Greenhouse Gas Inventory: 1990–2005; Global Change Program Office, Office of the Chief Economist: Washington, DC, USA; Technical Bulletin No. 1921; 2008. Available online: http://www.usda.gov/oce/global_change/ AFGGInventory1990_2005.htm (accessed on 28 August 2015). [Google Scholar]
- US Climate Change Science Program. The North American Carbon Budget and Implications for the Global Carbon Cycle. 2007. Available online: http://www.cfr.org/climate-change/north-american-carbon-budget-implications-global-carbon-cycle/p14868 (accessed on 28 August 2015).
- Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 1–16. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Wang, G.; Oyana, T.; Zhang, M.; Adu-Prah, S.; Zeng, S.; Lin, H.; Se, J. Mapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite images. For. Ecol. Manag. 2009, 258, 1275–1283. [Google Scholar] [CrossRef]
- Landsberg, J.J.; Waring, R.H. A generalized model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance, and partitioning. For. Ecol. Manag. 1997, 95, 209–228. [Google Scholar] [CrossRef]
- Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications I. hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125–154. [Google Scholar] [CrossRef]
- Kimball, J.S.; Keyser, A.R.; Running, S.W.; Saatch, S.S. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps. Tree Physiol. 2000, 20, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Sinha, P.; Taylor, S.; Alqurashi, A.F. Review of the use of remote sensing for biomass estimation to support renewable energy generation. J. Appl. Remote Sens. 2015, 9, 29. [Google Scholar] [CrossRef]
- Barbosa, J.M.; Broadbent, E.N.; Bitencourt, M.D. Remote sensing of aboveground biomass in tropical secondary forests: A review. Int. J. For. Res. 2014, 14. [Google Scholar] [CrossRef]
- Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsi, B. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Timothy, D.; Onisimo, M.; Riyad, I. Quantifying aboveground biomass in African environments: A review of the trade-offs between sensor estimation accuracy and costs. Trop. Ecol. 2016, 57, 393–405. [Google Scholar]
- Vashum, K.T.; Jayakumar, S. Methods to estimate aboveground biomass and carbon stock in natural forests—A review. J. Ecosyst. Ecogr. 2012, 2, 116. [Google Scholar] [CrossRef]
- Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag. 2009, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Song, C. Optical remote sensing of forest leaf area index and biomass. Prog. Phys. Geogr. 2012, 37, 98–113. [Google Scholar] [CrossRef]
- Muukkonen, P.; Heiskanen, J. Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data. Remote Sens. Environ. 2005, 99, 434–447. [Google Scholar] [CrossRef]
- Muukkonen, P.; Heiskanen, J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sens. Environ. 2007, 107, 617–624. [Google Scholar] [CrossRef]
- Gasparri, N.I.; Parmuchi, M.G.; Bono, J.; Karszenbaum, H.; Montenegro, C.L. Assessing multitemporal Landsat 7 ETM+ images for estimating aboveground biomass in subtropical dry forests of Argentina. J. Arid Environ. 2010, 74, 1262–1270. [Google Scholar] [CrossRef]
- Cutler, M.E.J.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J. Photogramm. Remote Sens. 2012, 70, 66–77. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images. Int. J. Appl. Earth Observ. Geoinf. 2014, 31, 45–56. [Google Scholar] [CrossRef]
- Güneralp, I.; Filippi, A.M.; Randall, J. Estimation of floodplain aboveground biomass using multispectral remote sensing and nonparametric modeling. Int. J. Appl. Earth Observ. Geoinf. 2014, 33, 119–126. [Google Scholar] [CrossRef]
- Gömez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Historical forest biomass dynamics modelled with Landsat spectral trajectories. ISPRS J. Photogramm. Remote Sens. 2014, 93, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Sarker, L.R.; Nichol, J.E. Improved forest biomass using ALOS AVNIR-2 texture indices. Remote Sens. Environ. 2011, 115, 968–977. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J. Photogramm. Remote Sens. 2015, 108, 12–32. [Google Scholar] [CrossRef]
- Kelsey, K.C.; Neff, J.C. Estimates of aboveground biomass from texture analysis of Landsat imagery. Remote Sens. 2014, 6, 6407–6422. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Foody, G.M.; Boyd, D.S.; Cutler, M.E. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [Google Scholar] [CrossRef]
- Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M.; Moran, E. Satellite estimation of aboveground biomass and impacts of forest stand structure. Photogramm. Eng. Remote Sens. 2005, 71, 967–974. [Google Scholar] [CrossRef]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366–380. [Google Scholar] [CrossRef]
- Ji, L.; Wylie, B.K.; Nossov, D.R.; Peterson, B.; Waldrop, M.P.; McFarland, J.W.; Rover, J.; Hollingsworth, T.N. Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. Int. J. Appl. Earth Observ. Geoinf. 2012, 18, 451–461. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Hall, R.J.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006, 225, 378–390. [Google Scholar] [CrossRef]
- Labrecque, S.; Fournier, R.A.; Luther, J.E.; Piercey, D. A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129–144. [Google Scholar] [CrossRef]
- Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Integration of GLAS and Landsat TM data for aboveground biomass estimation. Can. J. Remote Sens. 2010, 36, 129–141. [Google Scholar] [CrossRef]
- Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass derived from satellite imagery. Environ. Res. Lett. 2008, 3, 045011. [Google Scholar] [CrossRef]
- Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 2008, 112, 1658–1677. [Google Scholar] [CrossRef]
- Boyd, D.S.; Foody, G.M.; Curran, P.J. The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m). Int. J. Remote Sens. 1999, 20, 1017–1023. [Google Scholar] [CrossRef]
- Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Estimation of forest aboveground biomass using multi-parameter remote sensing data over a cold and arid area. Int. J. Appl. Earth Observ. Geoinf. 2012, 14, 160–168. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; le Moine, J.; Ryu, S. Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A comparison of two models with Landsat data for estimating above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [Google Scholar] [CrossRef]
- Foody, G.M.; Cutler, M.E.; McMorrow, J.; Pelz, D.; Tangki, H.; Boyd, D.S.; Douglas, I. Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Glob. Ecol. Biogeogr. 2001, 10, 379–387. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Reese, H.; Olsson, H. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter. Remote Sens. Environ. 2011, 115, 1387–1400. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Nichol, J.E.; Sarker, M.L.R. Improved biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Trans. Geosci. Remote Sens. 2011, 49, 930–948. [Google Scholar] [CrossRef]
- Sarker, M.L.R.; Nichol, J.; Ahmad, B.; Busu, I.; Rahman, A.A. Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS J. Photogram. Remote Sens. 2012, 69, 146–166. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Relationships between forest stand parameters and Landsat Thematic Mapper spectral responses in the Brazilian Amazon basin. For. Ecol. Manag. 2004, 198, 149–167. [Google Scholar] [CrossRef]
- Lu, D.; Batistella, M. Exploring TM image texture and its relationships with biomass estimation in Rondônia, Brazilian Amazon. Acta Amazôn. 2005, 35, 249–257. [Google Scholar] [CrossRef]
- Kuplich, T.M.; Curran, P.J.; Atkinson, P.M. Relating SAR image texture to the biomass of regenerating tropical forests. Int. J. Remote Sens. 2005, 26, 4829–4854. [Google Scholar] [CrossRef]
- Sanga-Ngoie, K.; Iizuka, K.; Kobayashi, S. Estimating CO2 sequestration by forests in Oita prefecture, Japan, by combining Landsat ETM plus and ALOS Satellite remote sensing data. Remote Sens. 2012, 4, 3544–3570. [Google Scholar] [CrossRef]
- Zhejiang. Available online: https://en.wikipedia.org/wiki/Zhejiang/ (accessed on 26 February 2016).
- Zhu, T.; Shen, C.; Ji, B.; Lin, Y.; Wang, X.; Zhang, G.; Yuan, W. Biomass conversion coefficients of Chinese fir forests of Zhejiang Province based on LULUCF greenhouse gas emission. Acta Ecol. Sin. 2013, 33, 3925–3932. (In Chinese) [Google Scholar]
- Forestry Department of Zhejiang Province: Introduction of Forestry. Available online: http://baike.baidu.com/view/4532835.htm#5 (accessed on 26 February 2016).
- Qia, Y.; Yi, L.; Zhang, C.; Yu, S.; Shen, L.; Pan, D.; Deng, C. Bioass and carbon stocks of commonwealth forests for Central Zhejiang. For. Sci. 2013, 49, 17–23. (In Chinese) [Google Scholar]
- Yuan, W.; Jiang, B.; Ge, Y.; Zhu, J.; Shen, A. Study on biomass models of important commonwealth forests for Zhejiang Province. J. Zhejiang For. Technol. 2009, 29, 1–5. (In Chinese) [Google Scholar]
- Li, C.; Fan, J.; Fu, X.; Fan, H. Analysis and comparison test on C-correction strategies and their scale effects with TM images in rugged mountainous terrain. J. Geo-Inf. Sci. 2014, 16, 134–141. [Google Scholar]
- Li, G.; Lu, D.; Moran, E.; Sant’Anna, S.J.S. A comparative analysis of classification algorithms and multiple sensor data for land use/land cover classification in the Brazilian Amazon. J. Appl. Remote Sens. 2012, 6, 061706. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J. Digit. Earth 2014, 7, 93–112. [Google Scholar] [CrossRef]
- Li, L.; Lu, D.; Kuang, W. Examining urban impervious surface distribution and its dynamic change in Hangzhou metropolis. Remote Sens. 2016, 8, 265. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). J. Remote Sens. 2005, 5, 589–595. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Inference for lidar-assisted estimation of forest growing stock volume. Remote Sens. Environ. 2013, 128, 268–275. [Google Scholar] [CrossRef]
- Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5–24. [Google Scholar] [CrossRef]
- Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art. Inf. Fusion 2013, 14, 28–44. [Google Scholar] [CrossRef]
- Andersen, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; U.S. Geological Survey Professional Paper 964; United States Government Printing Office: Washington, DC, USA, 1976. Available online: http://www.pbcgis.com/data_basics/anderson.pdf (accessed on 7 April 2016).
- Fleming, A.; Wang, G.; McRoberts, R. Comparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM images. Eur. J. For. Res. 2015, 134, 125–137. [Google Scholar] [CrossRef]
- Wang, G.; Wente, S.; Gertner, G.; Anderson, A.B. Improvement in mapping vegetation cover factor for universal soil loss equation by geo-statistical methods with Landsat TM images. Int. J. Remote Sens. 2002, 23, 3649–3667. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons Ltd.: West Sussex, UK, 2002. [Google Scholar]
- Gao, X.; Asami, Y.; Chung, C.F. An empirical evaluation of spatial regression models. Comput. Geosci. 2006, 32, 1040–1051. [Google Scholar] [CrossRef]
- Zhang, L.; Gove, J.H.; Health, L.S. Spatial residual analysis of six modeling techniques. Ecol. Model. 2005, 186, 154–177. [Google Scholar] [CrossRef]
- Bastin, J.F.; Barbier, N.; Couteron, P.; Adams, B.; Shapiro, A.; Bogaert, J.; de Canniere, C. Aboveground biomass mapping of African forest mosaics using canopy texture analysis: Toward a regional approach. Ecol. Appl. 2014, 24, 1984–2001. [Google Scholar] [CrossRef]
- Clark, D.B.; Clark, D.A. Landscape-scale variation in forest structure and biomass in a tropical rain forest. For. Ecol. Manag. 2000, 137, 185–198. [Google Scholar] [CrossRef]
- Réjou-Méchain, M.; Muller-Landau, H.C.; Detto, M.; Thomas, S.C.; le Toan, T.; Saatchi, S.S.; Barreto-Silva, J.S.; Bourg, N.A.; Bunyavejchewin, S.; Butt, N.; et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 2014, 11, 6827–6840. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Zhang, M.; Gertner, G.Z.; Oyana, T.; McRoberts, R.E.; Ge, H. Uncertainties of mapping forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scand. J. For. Res. 2011, 26, 360–373. [Google Scholar] [CrossRef]
- Zhang, M.; Lin, H.; Zeng, S.; Li, J.; She, J.; Wang, G. Impacts of plot location errors on accuracy of mapping and up-scaling aboveground forest carbon using sample plot and Landsat TM data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1483–1487. [Google Scholar] [CrossRef]
- Chen, Q.; Vaglio Laurin, G.; Valentini, R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sens. Environ. 2015, 160, 134–143. [Google Scholar] [CrossRef]
Vegetation Types | No. of Sample Plots | Mean (Mg/ha) | Standard Deviation | Minimum (Mg/ha) | Maximum (Mg/ha) | Coef. of Variation |
---|---|---|---|---|---|---|
Pine | 246 | 100.05 | 36.71 | 27.00 | 204.83 | 36.69 |
Fir | 123 | 95.79 | 37.73 | 22.15 | 190.76 | 39.39 |
BLF | 192 | 86.98 | 35.05 | 20.51 | 175.71 | 40.29 |
MDF | 124 | 104.58 | 34.30 | 31.92 | 180.70 | 32.80 |
Bamboo | 87 | 54.08 | 20.06 | 10.47 | 108.04 | 37.08 |
Shrub | 30 | 36.68 | 16.71 | 15.12 | 72.60 | 45.55 |
All samples | 802 | 89.61 | 38.39 | 10.47 | 204.83 | 42.84 |
Number of Sample Plots | Number of Sample Plots for Each AGB Group (Mg/ha) | |||||
---|---|---|---|---|---|---|
<40 | 40–80 | 80–120 | 120–160 | >160 | ||
Number of sample plots | 802 | 76 | 280 | 255 | 165 | 26 |
Sample plots for modeling | 589 | 59 | 210 | 181 | 118 | 21 |
Sample plots for evaluation | 213 | 17 | 70 | 74 | 47 | 5 |
Vegetation Types | Sample Plots for Modeling | Sample Plots for Modeling at Different Aspects | Sample Plots for Evaluation | |||
---|---|---|---|---|---|---|
Shady | Semi-Shady | Sunny | Semi-Sunny | |||
Pine | 185 | 44 | 54 | 40 | 47 | 61 |
Fir | 91 | 20 | 28 | 32 | 11 | 32 |
BLF | 138 | 36 | 40 | 30 | 32 | 54 |
MDF | 92 | 20 | 26 | 30 | 16 | 32 |
Bamboo | 62 | 22 | 18 | 6 | 16 | 25 |
Shrub | 21 | 4 | 5 | 9 | 3 | 9 |
All sample plots | 589 | 146 | 171 | 147 | 125 | 213 |
Vegetation Type | Description | Average DBH (cm) | Average Height (m) | Average Age (Year) |
---|---|---|---|---|
Pine | Pure or Pinus Massoniana dominant forests with a small mixture of broadleaf trees and shrubs | 10.6 | 7.5 | 24 |
Fir | Pure or Cunnigjamia lanceolate (Lamb.) Hook dominant forests with very small mixture of Pinus Massoniana and shrubs | 11.2 | 7.5 | 23 |
Mixed forests | Dominant species including Schima superba Gardn. et Cham, Pinus Massoniana, Cunnigjamia lanceolate (Lamb.) Hook, Cyclobalanopsis glauca and shrubs | 10.2 | 7.1 | 26 |
Broadleaf forests | Tree species including Schima superba Gardn. et Cham, Castanopsis sclerophylla (Lindl.) Schott, Cyclobalanopsis glauca, Acer, Cinnamomum camphora | 9.0 | 6.4 | 26 |
Bamboo | Dominant Phyllostachys heterocycla (Carr.) Mitford cv. Pubescens forests | 9.3 | 10.6 | 4 |
Shrub | shrubs | 8.9 | 4.3 | 12 |
Vegetation Types | Classification Data | Total | UA% | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pine | Fir | BLF | MDF | Bamboo | Shrub | Farmland | ||||
Reference data | Pine | 172 | 7 | 3 | 14 | 4 | 5 | 7 | 212 | 81.13 |
Fir | 14 | 77 | 1 | 9 | 3 | 5 | 0 | 109 | 70.64 | |
BLF | 3 | 5 | 150 | 25 | 0 | 12 | 0 | 195 | 76.92 | |
MDF | 13 | 7 | 7 | 158 | 0 | 7 | 0 | 192 | 82.29 | |
Bamboo | 6 | 0 | 0 | 3 | 85 | 3 | 1 | 98 | 86.73 | |
Shrub | 3 | 4 | 10 | 6 | 3 | 63 | 1 | 90 | 70.00 | |
Farmland | 5 | 1 | 1 | 3 | 3 | 3 | 47 | 63 | 74.60 | |
Total | 216 | 101 | 172 | 218 | 98 | 98 | 56 | |||
PA% | 79.63 | 76.24 | 87.21 | 72.48 | 86.73 | 64.29 | 83.93 |
Landsat TM Spectral Bands | All-Vegetation | Specific Vegetation Types | |||||
---|---|---|---|---|---|---|---|
Pine | Fir | BLF | MDF | Bamboo | Shrub | ||
Green (b2) | −0.43 ** | −0.39 ** | −0.38 ** | −0.33 ** | −0.27* | −0.03 | −0.32 |
Red (b3) | −0.35 ** | −0.33 ** | −0.34 ** | −0.27 ** | −0.07 | −0.16 | −0.19 |
Near infrared (NIR) (b4) | −0.35 ** | −0.27 ** | −0.46 ** | −0.37 ** | −0.41 ** | 0.09 | −0.07 |
Shortwave infrared (SWIR1) (b5) | −0.54 ** | −0.47 ** | −0.59 ** | −0.61 ** | −0.50 ** | −0.02 | −0.24 |
Shortwave infrared (SWIR2) (b7) | −0.62 ** | −0.51 ** | −0.63 ** | −0.65 ** | −0.48 ** | −0.18 | −0.40* |
All vegetation | Different Vegetation Types | ||||||
---|---|---|---|---|---|---|---|
Pine | Fir | BLF | MDF | Bamboo | Shrub | ||
Saturation value (Mg/ha) | 156 | 159 | 143 | 123 | 152 | 75 | 55 |
No stratification Based on Aspects | Stratification Based on Slope Aspects | |||||
---|---|---|---|---|---|---|
Shady | Semi-Shady | Sunny | Semi-Sunny | |||
No stratification based on vegetation types | 0.39 | 0.45 | 0.34 | 0.39 | 0.53 | |
Stratification based on vegetation types | Pine | 0.34 | 0.26 | 0.34 | 0.49 | 0.36 |
Fir | 0.39 | 0.49 | 0.35 | 0.32 | 0.69 | |
MDF | 0.34 | 0.55 | 0.56 | 0.17 | 0.45 | |
BLF | 0.43 | 0.51 | 0.35 | 0.46 | 0.61 | |
Bamboo * | 0.06 | |||||
Shrub * | 0.17 |
Regression Model | Radj2 | Standard Coefficient | ||
---|---|---|---|---|
Non-stratification | y = 200.657 − 1107.3Sb7 − 13.195Tb7w5ME + 19.801Tb7w9CC + ε | 0.39 | −0.398; −0.248; 0.105 | |
Stratification based on vegetation types | Pine | y = 213.120 − 1465.878Sb7 − 172.253Tb5w9SM − 18.857Tb3w9ME + 27.674Tb7w9CC + ε | 0.34 | −0.457; −0.197; −0.226; 0.152 |
Fir | y = 214.532 − 1771.135Sb7 − 16.290Tb3w5CC + ε | 0.39 | −0.668; −0.217 | |
MDF | y = 246.916 − 376.179Sb5 − 10.721Tb5w9ME + ε | 0.34 | −0.242; −0.403 | |
BLF | y = 195.727 − 2320.487Sb7 + 1798.578Sb3 + ε | 0.43 | −0.788; 0.241 | |
Bamboo | y = 115.334 − 6.289Tb5w9ME + ε | 0.06 | −0.276 | |
Shrub | y = 75.827 − 542.561Sb7 + ε | 0.17 | −0.465 |
Shady Slope | Semi-Shady Slope | ||||||
---|---|---|---|---|---|---|---|
Regression Model | Radj2 | Std. coef. | Regression Model | Radj2 | Std. coef. | ||
Non-stratification | y = 232.486 − 2161.441Sb7 + ε | 0.45 | −0.673 | y = 205.790 − 1222.626Sb7 − 12.269Tb7w9ME + ε | 0.34 | −0.410; −0.240 | |
Stratification based on vegetation type | Pine | y = 229.333 − 2121.672Sb7 + ε | 0.26 | −0.523 | y = 185.550 − 1733.399Sb7 + ε | 0.34 | −0.594 |
Fir | y = 243.811 − 2380.771Sb7 + ε | 0.49 | −0.716 | y = 208.571 − 1766.397Sb7 + ε | 0.35 | −0.612 | |
MDF | y = 250.259 − 826.914Sb5 − 55.726Tb2w9SM + ε | 0.55 | −0.604; −0.411 | y = 235.731 − 42.403Tb7w9ME + ε | 0.56 | −0.763 | |
BLF | y = 349.489-927.201Sb5 − 30.386Tb7w5ME + ε | 0.51 | −0.420; −0.401 | y = 236.037 − 2305.834Sb7 + ε | 0.35 | −0.601 | |
Sunny slope | Semi−sunny slope | ||||||
Non- stratification | y = 209.005-428.519Sb5 − 17.648Tb7w5ME + 24.818Tb7w9CC + ε | 0.39 | −0.319; −0.334; 0.143 | y = 217.710 − 1660.365Sb7 + 1539.191Sb3 − 32.588Tb4w5CC − 26.282Tb3w9ME − 27.517Tb2w5SM + ε | 0.53 | −0.717; 0.263; −0.212; −0.306; −0.183; | |
Stratification based on vegetation type | Pine | y = 189.670 − 1355.797Sb7 + ε | 0.49 | −0.708 | y = 207.651 − 1016.638Sb5 + 41.957Tb7w9CC + ε | 0.36 | −0.571; 0.241 |
Fir | y = 206.696 − 712.373Sb5 − 35.088Tb2w5CC + ε | 0.32 | −0.500; −0.319 | y = 177.688 − 1482.658Sb7 + ε | 0.69 | −0.846 | |
MDF | y = 195.701 − 26.585Tb7w5ME + ε | 0.17 | −0.445 | y=226.899 − 14.984Tb5w5ME + ε | 0.45 | −0.699 | |
BLF | y = 203.738 − 1845.973Sb7 + ε | 0.46 | −0.693 | y = 188.577 − 1294.233Sb7 − 37.938Tb4w5CC + ε | 0.61 | −0.681; −0.281 |
Non-Aspects Stratification | Stratification Based on Slope Aspects | ||||
---|---|---|---|---|---|
RMSE | RMSEr | RMSE | RMSEr | ||
Non-vegetation stratification | 29.3 | 32.0 | 28.2 | 30.8 | |
Stratification based on vegetation types | 27.4 | 30.0 | 24.5 | 26.8 | |
Vegetation types | Pine | 29.5 | 29.0 | 28.6 | 28.1 |
Fir | 32.7 | 31.6 | 28.5 | 27.5 | |
MDF | 28.7 | 26.0 | 26.3 | 23.8 | |
BLF | 24.8 | 28.6 | 23.4 | 27.0 | |
Bamboo | 20.4 | 37.4 | |||
Shrub | 15.4 | 40.4 |
AGB Range (Mg/ha) | Non-Stratification | Stratification Based on the Following | ||||||
---|---|---|---|---|---|---|---|---|
Vegetation Type | Slope Aspects | Vegetation Type & Slope Aspect | ||||||
RMSE | RMSEr | RMSE | RMSEr | RMSE | RMSEr | RMSE | RMSEr | |
<40 | 42.1 | 137.0 | 28.3 | 91.9 | 41.6 | 135.4 | 23.1 | 75.2 |
40–80 | 25.5 | 44.0 | 26.0 | 44.9 | 25.3 | 43.7 | 25.1 | 43.2 |
80–120 | 16.8 | 16.7 | 16.8 | 16.8 | 18.1 | 18.1 | 17.4 | 17.3 |
120–160 | 39.1 | 28.0 | 37.1 | 26.6 | 36.8 | 26.3 | 33.9 | 24.3 |
>160 | 54.6 | 31.3 | 45.6 | 26.2 | 38.7 | 22.2 | 39.0 | 22.4 |
Statification Methods | Mean | R2 | RMSE | RMSEr | Confidence Interval | ||
---|---|---|---|---|---|---|---|
Non-stratification | 90.48 | 0.42 | 29.3 | 32.0 | 86.11 | 4.09 | 82.07–90.15 |
Stratification based on vegetation | 90.11 | 0.49 | 27.4 | 30.0 | 82.49 | 3.59 | 78.70–86.28 |
Stratification based on aspects | 91.50 | 0.46 | 28.2 | 30.8 | 86.87 | 3.78 | 82.98–90.76 |
Stratification based on both | 89.87 | 0.60 | 24.5 | 26.8 | 81.49 | 2.82 | 78.13–84.85 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, P.; Lu, D.; Wang, G.; Wu, C.; Huang, Y.; Yu, S. Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sens. 2016, 8, 469. https://doi.org/10.3390/rs8060469
Zhao P, Lu D, Wang G, Wu C, Huang Y, Yu S. Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sensing. 2016; 8(6):469. https://doi.org/10.3390/rs8060469
Chicago/Turabian StyleZhao, Panpan, Dengsheng Lu, Guangxing Wang, Chuping Wu, Yujie Huang, and Shuquan Yu. 2016. "Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation" Remote Sensing 8, no. 6: 469. https://doi.org/10.3390/rs8060469
APA StyleZhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., & Yu, S. (2016). Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation. Remote Sensing, 8(6), 469. https://doi.org/10.3390/rs8060469