Quantum Control Design by Lyapunov Trajectory Tracking and Optimal Control
<p>The evolution of the control law <math display="inline"><semantics> <msub> <mi>u</mi> <mi>i</mi> </msub> </semantics></math> adopts the control law of (7) under the system of (8).</p> "> Figure 2
<p>The evolution of the Lyapunov function <span class="html-italic">V</span> with time under system (8) and control law (7).</p> "> Figure 3
<p>The evolution of the control law <math display="inline"><semantics> <msub> <mi>u</mi> <mi>i</mi> </msub> </semantics></math> adopts the control law of (7) under the system of (9).</p> "> Figure 4
<p>The evolution of the Lyapunov function <span class="html-italic">V</span> with time under system (9) and control law (7).</p> "> Figure 5
<p>The evolution of the control law <math display="inline"><semantics> <msub> <mi>u</mi> <mi>i</mi> </msub> </semantics></math> adopts the control law of (7) under the system of (10).</p> "> Figure 6
<p>The evolution of the Lyapunov function <span class="html-italic">V</span> with time under system (10) and control law (7).</p> "> Figure 7
<p>The evolution of the control law <math display="inline"><semantics> <msub> <mi>u</mi> <mi>i</mi> </msub> </semantics></math> adopts the control law of (7) under the system of (11).</p> "> Figure 8
<p>The evolution of the Lyapunov function <span class="html-italic">V</span> with time under system (11) and control law (7).</p> "> Figure 9
<p><math display="inline"><semantics> <msubsup> <mi>u</mi> <mi>i</mi> <mo>*</mo> </msubsup> </semantics></math> corresponds to the evolution process under <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p><math display="inline"><semantics> <msubsup> <mi>u</mi> <mi>i</mi> <mo>*</mo> </msubsup> </semantics></math> corresponds to the evolution process under <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Control Law Design
2.1. Quantum System Described by Schrödinger Equation (TDSE)
2.2. Lyapunov Control Design
2.3. Examples and Simulations
3. A Spin-1/2 Particle System
3.1. Simulation Experiment
3.2. Optimal Control
3.2.1. Selection of Optimal Control Law
3.2.2. Optimal Control of a Spin-1/2 Particle System
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Timothy, H.B. Blackbody radiation in classical physics: A historical perspective. Am. J. Phys. 2018, 86, 495–509. [Google Scholar]
- Don, S.L.; William, R.S. Adiabatic invariance and its application to Wien’s complete displacement law of blackbody radiation. Am. J. Phys. 2024, 86, 132–139. [Google Scholar]
- Gkourmpis, A. A demonstration of the photoelectric effect with sunlight. Phys. Teach. 2023, 61, 710–711. [Google Scholar] [CrossRef]
- Lou, C.G.; Dai, J.L.; Wang, Y.X.; Zhang, Y.; Li, Y.F.; Liu, X.L.; Ma, Y.F. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork. Photoacoustics 2023, 31, 100515. [Google Scholar] [CrossRef]
- Hsieh, S.S.; Katsuyuki, T. Spectral information content of Compton scattering events in silicon photon counting detectors. Med. Phys. 2024, 51, 2386–2397. [Google Scholar] [CrossRef]
- Bornikov, K.A.; Volobuev, I.P.; Popov, Y.V. Notes on Inverse Compton Scattering. Mosc. Univ. Phys. Bull. 2023, 78, 453–459. [Google Scholar] [CrossRef]
- Ikuta, R. Wave-particle duality of light appearing in an intensity interferometric scenario. Opt. Express 2022, 30, 46972–46981. [Google Scholar] [CrossRef] [PubMed]
- Elinor, Z.H.; Yonatan, D. Signature of Quantum Coherence in the Exciton Energy Pathways of the LH2 Photosynthetic Complex. ACS Omega 2023, 8, 38871–38878. [Google Scholar]
- Daniel, L.; Martin, H.G. Making and breaking bonds with absolutely localized molecular orbitals: An energy-decomposition analysis for bonded interactions. Abstr. Pap. Am. Chem. Soc. 2016, 251. [Google Scholar]
- Peirce, A.; Dahleh, M.; Rabitz, H. Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. Phys. Rev. A Gen. Phys. 1988, 37, 4950–4964. [Google Scholar] [CrossRef]
- Albertini, F.; D’Alessandro, D. Control of a two-level quantum system in a coherent feedback scheme. Phys. A Math. Theor. 2013, 46, 045301-1–045301-8. [Google Scholar] [CrossRef]
- Stefanatos, D.; Paspalakis, E. A shortcut tour of quantum control methods for modern quantum technologies. Europhys. Lett. 2020, 132, 60001. [Google Scholar] [CrossRef]
- Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.; Schulte-Herbrüggen, T.; Sugny, D.; et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol. 2022, 9, 19. [Google Scholar] [CrossRef]
- Khaneja, N.; Brockett, R.; Glaser, S.J. Time optimal control in spin systems. Phys. Rev. A 2001, 63, 032308. [Google Scholar] [CrossRef]
- Cong, S. Control of Quantum Systems: Theory and Methods; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Kuang, S.; Cong, S. Lyapunov control methods of closed quantum systems. Automatica 2008, 44, 98–108. [Google Scholar] [CrossRef]
- Wang, X.; Schirmer, S. Analysis of Lyapunov method for control of quantum states. IEEE Trans. Autom. Control 2010, 55, 2259–2270. [Google Scholar] [CrossRef]
- Grivopoulos, S.; Bamieh, B. Lyapunov-based control of quantum systems. In Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, HI, USA, 9–12 December 2003; pp. 434–438. [Google Scholar]
- Coron, J.M.; Grigoriu, A.; Lefter, C.; Turinici, G. Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling. New J. Phys. 2009, 11, 105034. [Google Scholar] [CrossRef]
- Bose, S.S.C.; Alfurhood, B.S.; Flammini, F.; Natarajan, R.; Jaya, S.S. Decision Fault Tree Learning and Differential Lyapunov Optimal Control for Path Tracking. Entropy 2023, 25, 443. [Google Scholar] [CrossRef]
- Byoungsoo, L.; Walter, J.G. Aeroassisted orbital maneuvering using Lyapunov optimal feedback control. J. Guid. Control Dyn. 2012, 12, 237–242. [Google Scholar]
- Rush, D.R.; Gordon, G.P.; Hanspeter, S.; John, L.J. Lyapunov Optimal Saturated Control for Nonlinear Systems. J. Guid. Control Dyn. 2012, 20, 1083–1088. [Google Scholar]
- Jouili, K.; Madani, A. Nonlinear Lyapunov Control of a Photovoltaic Water Pumping System. Energies 2023, 16, 2241. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, J.; Chao, S.; Zhao, C.; Peng, R.; Zhou, L. Simultaneous ground-state cooling of identical mechanical oscillators by Lyapunov control. Opt. Express 2022, 30, 20135–20148. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.; Guan, X.K. Robustness of continuous non-smooth finite-time Lyapunov control for two-level quantum systems. IET Control Theory Appl. 2020, 14, 2449–2454. [Google Scholar] [CrossRef]
- Hou, S.C.; Yi, X.X. Quantum Lyapunov control with machine learning. Quantum Inf. Process. 2020, 19, 8. [Google Scholar] [CrossRef]
- Guan, X.K.; Kuang, S.; Lu, X.J.; Yan, J.Z. Lyapunov Control of High-Dimensional Closed Quantum Systems Based on Particle Swarm Optimization. IEEE Access 2020, 8, 49765–49774. [Google Scholar] [CrossRef]
- Aleksandrov, A.; Efimov, D.; Dashkovskiy, S. On input to state stability Lyapunov functions for mechanical systems. Int. J. Robust Nonlinear Control 2022, 33, 2902–2912. [Google Scholar] [CrossRef]
- Mirrahimi, M.; Rouchon, P.; Turinici, G. Lyapunov control of bilinear Schrödinger equations. Automatica 2005, 41, 1987–1994. [Google Scholar] [CrossRef]
- Yu, G.H.; Yang, H.L. Quantum control based on three forms of Lyapunov functions. Chin. Phys. B 2024, 33, 040201. [Google Scholar] [CrossRef]
- Benallou, A.; Mellichamp, D.A.; Seborg, D.E. Optimal stabilizing controllers for bilinear systems. Int. J. Control 1988, 48, 1487–1501. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Cong, S. Optimal quantum control based on Lyapunov stability theorem. J. Univ. Sci. Technol. China 2008, 38, 331–336. [Google Scholar]
- Franco, B.; Stefano, M. Set-Theoretic Methods in Control; Birkhäuser: Cham, Switzerland, 2019; pp. 143–146. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Yu, G.; Ivanov, I.G. Quantum Control Design by Lyapunov Trajectory Tracking and Optimal Control. Entropy 2024, 26, 978. https://doi.org/10.3390/e26110978
Yang H, Yu G, Ivanov IG. Quantum Control Design by Lyapunov Trajectory Tracking and Optimal Control. Entropy. 2024; 26(11):978. https://doi.org/10.3390/e26110978
Chicago/Turabian StyleYang, Hongli, Guohui Yu, and Ivan Ganchev Ivanov. 2024. "Quantum Control Design by Lyapunov Trajectory Tracking and Optimal Control" Entropy 26, no. 11: 978. https://doi.org/10.3390/e26110978