Entropy of Neuronal Spike Patterns
Abstract
:1. Introduction
Neuronal Spike Packets
2. Quantifying Entropy in Spike Patterns
3. Entropy as a Tool for Understanding Neuronal Processing
4. Challenges and Future Directions
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Kandel, E.R.; Schwartz, J.H.; Jessell, T.M. Principles of Neural Science; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Rieke, F.; Warland, D.; van Steveninck, R.d.R.; Bialek, W. Spikes: Exploring the Neural Code; MIT Press: Cambridge, MA, USA, 1997. [Google Scholar]
- Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Mainen, Z.F.; Sejnowski, T.J. Reliability of spike timing in neocortical neurons. Science 1995, 268, 1503–1506. [Google Scholar] [CrossRef] [PubMed]
- Shadlen, M.N.; Newsome, W.T. The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. J. Neurosci. 1998, 18, 3870–3896. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Ng, K.K.; Birznieks, I.; Vickery, R.M. Perceived tactile intensity at a fixed primary afferent spike rate varies with the temporal pattern of spikes. J. Neurophysiol. 2022, 128, 1074–1084. [Google Scholar] [CrossRef]
- Huetz, C.; Del Negro, C.; Lebas, N.; Tarroux, P.; Edeline, J.M. Contribution of spike timing to the information transmitted by HVC neurons. Eur. J. Neurosci. 2006, 24, 1091–1108. [Google Scholar] [CrossRef]
- Huetz, C.; Philibert, B.; Edeline, J.M. A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. J. Neurosci. 2009, 29, 334–350. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2006. [Google Scholar]
- Borst, A.; Theunissen, F.E. Information theory and neural coding. Nat. Neurosci. 1999, 2, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Strong, S.P.; Koberle, R.; de Ruyter van Steveninck, R.R.; Bialek, W. Entropy and information in neural spike trains. Phys. Rev. Lett. 1998, 80, 197. [Google Scholar] [CrossRef]
- Quiroga, R.Q.; Panzeri, S. Extracting information from neuronal populations: Information theory and decoding approaches. Nat. Rev. Neurosci. 2009, 10, 173–185. [Google Scholar] [CrossRef]
- DeWeese, M.R.; Wehr, M.; Zador, A.M. Binary spiking in auditory cortex. J. Neurosci. 2003, 23, 7940–7949. [Google Scholar] [CrossRef]
- Baddeley, R.; Abbott, L.F.; Booth MC, A.; Sengpiel, F.; Freeman, T.; Wakeman, E.A.; Rolls, E.T. Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc. R. Soc. B Biol. Sci. 1997, 264, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Luczak, A.; McNaughton, B.L.; Harris, K.D. Packet-based communication in the cortex. Nat. Rev. Neurosci. 2015, 16, 745–755. [Google Scholar] [CrossRef]
- Luczak, A.; Bartho, P.; Harris, K.D. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 2009, 62, 413–425. [Google Scholar] [CrossRef]
- Luczak, A. Packets of Sequential Neural Activity in Sensory Cortex. In Analysis and Modeling of Coordinated Multi-Neuronal Activity. Springer Series in Computational Neuroscience; Tatsuno, M., Ed.; Springer: New York, NY, USA, 2015; Volume 12. [Google Scholar]
- Luczak, A.; MacLean, J.N. Default activity patterns at the neocortical microcircuit level. Front. Neural Circuits 2012, 6, 127. [Google Scholar] [CrossRef]
- Contreras, E.J.B.; Schjetnan, A.G.P.; Muhammad, A.; Bartho, P.; McNaughton, B.L.; Kolb, B.; Gruber, A.J.; Luczak, A. Formation and reverberation of sequential neural activity patterns evoked by sensory stimulation are enhanced during cortical desynchronization. Neuron 2013, 79, 555–566. [Google Scholar]
- Bialek, W.; Rieke, F.; van Steveninck, R.; Warland, D. Reading a neural code. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 1989; Volume 2. [Google Scholar]
- Johnson, D.H.; Gruner, C.M.; Baggerly, K.; Seshagiri, C. Information-theoretic analysis of neural coding. J. Comput. Neurosci. 2001, 10, 47–69. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Lau, Z.J.; Pham, T.; Chen, S.A.; Makowski, D. Brain entropy, fractal dimensions and predictability: A review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur. J. Neurosci. 2022, 56, 5047–5069. [Google Scholar] [CrossRef]
- Rosso, O.A.; Montani, F. Information theoretic measures and their applications. Entropy 2020, 22, 1382. [Google Scholar] [CrossRef]
- Ma, Y.; Shi, W.; Peng, C.K.; Yang, A.C. Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Med. Rev. 2018, 37, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Beggs, J.M.; Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 2003, 23, 11167–11177. [Google Scholar] [CrossRef]
- Lotfi, N.; Fontenele, A.J.; Feliciano, T.; Aguiar, L.A.; de Vasconcelos, N.A.; Soares-Cunha, C.; Coimbra, B.; Rodrigues, A.J.; Sousa, N.; Copelli, M.; et al. Signatures of brain criticality unveiled by maximum entropy analysis across cortical states. Phys. Rev. E 2020, 102, 012408. [Google Scholar] [CrossRef] [PubMed]
- Serafim, F.; Carvalho, T.T.; Copelli, M.; Carelli, P.V. Maximum-entropy-based metrics for quantifying critical dynamics in spiking neuron data. Phys. Rev. E 2024, 110, 024401. [Google Scholar] [CrossRef]
- Lotfi, N.; Feliciano, T.; Aguiar, L.A.A.; Silva, T.P.L.; Carvalho, T.T.A.; Rosso, O.A.; Copelli, M.; Matias, F.S.; Carelli, P.V. Statistical complexity is maximized close to criticality in cortical dynamics. Phys. Rev. E 2021, 103, 012415. [Google Scholar] [CrossRef]
- Olsen, V.K.; Whitlock, J.R.; Roudi, Y. The quality and complexity of pairwise maximum entropy models for large cortical populations. PLoS Comput. Biol. 2024, 20, e1012074. [Google Scholar] [CrossRef]
- Schneidman, E.; Berry, M.J.; Segev, R.; Bialek, W. Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 2006, 440, 1007–1012. [Google Scholar] [CrossRef]
- Tkacik, G.; Marre, O.; Amodei, D.; Schneidman, E.; Bialek, W.; Berry, M.J. Searching for collective behavior in a large network of sensory neurons. PLoS Comput. Biol. 2014, 10, e1003408. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Singh, S.; Trappenberg, T.; Nunes, A. An Information-Geometric Formulation of Pattern Separation and Evaluation of Existing Indices. Entropy 2024, 26, 737. [Google Scholar] [CrossRef]
- Panzeri, S.; Schultz, S.R.; Treves, A.; Rolls, E.T. Correlations and the encoding of information in the nervous system. Proc. R. Soc. B Biol. Sci. 1999, 266, 1001–1012. [Google Scholar] [CrossRef]
- Latham, P.E.; Nirenberg, S. Synergy, redundancy, and independence in population codes, revisited. J. Neurosci. 2005, 25, 5195–5206. [Google Scholar] [CrossRef] [PubMed]
- Bardella, G.; Franchini, S.; Pan, L.; Balzan, R.; Ramawat, S.; Brunamonti, E.; Pani, P.; Ferraina, S. Neural activity in quarks language: Lattice Field Theory for a network of real neurons. Entropy 2024, 26, 495. [Google Scholar] [CrossRef] [PubMed]
- Stasenko, S.V.; Kazantsev, V.B. Information encoding in bursting spiking neural network modulated by astrocytes. Entropy 2023, 25, 745. [Google Scholar] [CrossRef] [PubMed]
- Perea, G.; Araque, A. Glial calcium signaling and neuron–glia communication. Cell Calcium 2005, 38, 375–382. [Google Scholar] [CrossRef]
- Araque, A.; Carmignoto, G.; Haydon, P.G.; Oliet, S.H.R.; Robitaille, R.; Volterra, A. Gliotransmitters travel in time and space. Neuron 2014, 81, 728–739. [Google Scholar] [CrossRef]
- Kosciessa, J.Q.; Kloosterman, N.A.; Garrett, D.D. Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What’s signal irregularity got to do with it? PLoS Comput. Biol. 2020, 16, e1007885. [Google Scholar] [CrossRef]
- Park, J.; Kawai, Y.; Asada, M. Spike timing-dependent plasticity under imbalanced excitation and inhibition reduces the complexity of neural activity. Front. Comput. Neurosci. 2023, 17, 1169288. [Google Scholar] [CrossRef]
- Yizhar, O.; Fenno, L.E.; Prigge, M.; Schneider, F.; Davidson, T.J.; O’Shea, D.J.; Sohal, V.S.; Goshen, I.; Finkelstein, J.; Paz, J.T.; et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477, 171–178. [Google Scholar] [CrossRef]
- Nelson, S.B.; Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 2015, 87, 684–698. [Google Scholar] [CrossRef]
- Vivekanandhan, G.; Mehrabbeik, M.; Rajagopal, K.; Jafari, S.; Lomber, S.G.; Merrikhi, Y. Higuchi fractal dimension is a unique indicator of working memory content represented in spiking activity of visual neurons in extrastriate cortex. Math. Biosci. Eng. MBE 2022, 20, 3749–3767. [Google Scholar] [CrossRef]
- McIntosh, A.R.; Kovacevic, N.; Itier, R.J. Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput. Biol. 2008, 4, e1000106. [Google Scholar] [CrossRef] [PubMed]
- Tononi, G.; Edelman, G.M. Consciousness and complexity. Science 1998, 282, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Silva LE, V.; Senra Filho AC, S.; Fazan VP, S.; Felipe, J.C.; Junior, L.M. Two-dimensional sample entropy: Assessing image texture through irregularity. Biomed. Phys. Eng. Express 2016, 2, 045002. [Google Scholar] [CrossRef]
- Ascoli, G.A. Neuroanatomical algorithms for dendritic modeling. Netw. Comput. Neural Syst. 2002, 13, 247–260. [Google Scholar] [CrossRef]
- Luczak, A. Measuring neuronal branching patterns using model-based approach. Front. Comput. Neurosci. 2010, 4, 135. [Google Scholar] [CrossRef] [PubMed]
- Luczak, A. Shaping of Neurons by Environmental Interaction. In The Computing Dendrite. Springer Series in Computational Neuroscience; Cuntz, H., Remme, M., Torben-Nielsen, B., Eds.; Springer: New York, NY, USA, 2014; Volume 11. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [CrossRef]
- Seth, A. “Preface: The brain as a prediction machine”. In The Philosophy and Science of Predictive Processing; Mendonça, D., Curado, M., Gouveia, S.S., Eds.; Bloomsbury Academic: London, UK, 2020. [Google Scholar]
- Luczak, A.; McNaughton, B.L.; Kubo, Y. Neurons learn by predicting future activity. Nat. Mach. Intell. 2022, 4, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Luczak, A.; Kubo, Y. Predictive neuronal adaptation as a basis for consciousness. Front. Syst. Neurosci. 2022, 15, 767461. [Google Scholar] [CrossRef]
- Rao, R.P.; Ballard, D.H. Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 1999, 2, 79–87. [Google Scholar] [CrossRef]
- Friston, K.; Kiebel, S. Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Millidge, B.; Seth, A.K.; Buckley, C.L. Predictive coding: A theoretical and experimental review. arXiv 2021, arXiv:2107.12979. [Google Scholar]
- Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Luczak, A.; Barthó, P.; Marguet, S.L.; Buzsáki, G.; Harris, K.D. Sequential structure of neocortical spontaneous activity in vivo. Proc. Natl. Acad. Sci. USA 2007, 104, 347–352. [Google Scholar] [CrossRef]
- Verleysen, M.; François, D. The curse of dimensionality in data mining and time series prediction. In International Work-Conference on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2005; pp. 758–770. [Google Scholar]
- Friedman, J.H. On bias, variance, 0/1—Loss, and the curse-of-dimensionality. Data Min. Knowl. Discov. 1997, 1, 55–77. [Google Scholar] [CrossRef]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef]
- Álvarez Chaves, M.; Gupta, H.V.; Ehret, U.; Guthke, A. On the Accurate Estimation of Information-Theoretic Quantities from Multi-Dimensional Sample Data. Entropy 2024, 26, 387. [Google Scholar] [CrossRef]
- Stevenson, I.H.; Kording, K.P. How advances in neural recording affect data analysis. Nat. Neurosci. 2011, 14, 139–142. [Google Scholar] [CrossRef]
- Panzeri, S.; Treves, A. Analytical estimates of limited sampling biases in different information measures. Netw. Comput. Neural Syst. 1996, 7, 87. [Google Scholar] [CrossRef]
- Kraskov, A.; Stögbauer, H.; Grassberger, P. Estimating mutual information. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2004, 69, 066138. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 2014, 17, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Stopfer, M.; Jayaraman, V.; Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 2003, 39, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Luczak, A.; Hackett, T.A.; Kajikawa, Y.; Laubach, M. Multivariate receptive field mapping in marmoset auditory cortex. J. Neurosci. Methods 2004, 136, 77–85. [Google Scholar] [CrossRef]
- Nemenman, I.; Shafee, F.; Bialek, W. Entropy and inference, revisited. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2001; Volume 14. [Google Scholar]
- Victor, J.D. Binless strategies for estimation of information from neural data. Phys. Rev. E 2002, 66, 051903. [Google Scholar] [CrossRef]
- Olshausen, B.A.; Field, D.J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 2004, 14, 481–487. [Google Scholar] [CrossRef]
- Vinje, W.E.; Gallant, J.L. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 2000, 287, 1273–1276. [Google Scholar] [CrossRef]
- Barlow, H.B. Possible principles underlying the transformation of sensory messages. In Sensory Communication; MIT Press: Cambridge, MA, USA, 1961; pp. 217–234. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Pandarinath, C.; O’shea, D.J.; Collins, J.; Jozefowicz, R.; Stavisky, S.D.; Kao, J.C.; Trautmann, E.M.; Kaufman, M.T.; Ryu, S.I.; Hochberg, L.R.; et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 2018, 15, 805–815. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; Volume 27. [Google Scholar]
- Turchenko, V.; Chalmers, E.; Luczak, A. A deep convolutional auto-encoder with pooling-unpooling layers in caffe. Int. J. Comput. 2019, 18, 8–31. [Google Scholar] [CrossRef]
- Turchenko, V.; Luczak, A. Creation of a deep convolutional auto-encoder in caffe. In Proceedings of the 2017 9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Bucharest, Romania, 21–23 September 2017; Volume 2, pp. 651–659. [Google Scholar]
- Jun, J.J.; Steinmetz, N.A.; Siegle, J.H.; Denman, D.J.; Bauza, M.; Barbarits, B.; Lee, A.K.; Anastassiou, C.A.; Andrei, A.; Aydın, Ç.; et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 2017, 551, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Schjetnan, A.G.P.; Luczak, A. Recording large-scale neuronal ensembles with silicon probes in the anesthetized rat. J. Vis. Exp. 2011, 56, e3282. [Google Scholar]
- Luczak, A.; Narayanan, N.S. Spectral representation—Analyzing single-unit activity in extracellularly recorded neuronal data without spike sorting. J. Neurosci. Methods 2005, 144, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Molina, L.A.; Ivan, V.E.; Gruber, A.J.; Luczak, A. Using Neuron Spiking Activity to Trigger Closed-Loop Stimuli in Neurophysiological Experiments. J. Vis. Exp. 2019, 153, e59812. [Google Scholar]
- Roediger, D.J.; Butts, J.; Falke, C.; Fiecas, M.B.; Klimes-Dougan, B.; Mueller, B.A.; Cullen, K.R. Optimizing the measurement of sample entropy in resting-state fMRI data. Front. Neurol. 2024, 15, 1331365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luczak, A. Entropy of Neuronal Spike Patterns. Entropy 2024, 26, 967. https://doi.org/10.3390/e26110967
Luczak A. Entropy of Neuronal Spike Patterns. Entropy. 2024; 26(11):967. https://doi.org/10.3390/e26110967
Chicago/Turabian StyleLuczak, Artur. 2024. "Entropy of Neuronal Spike Patterns" Entropy 26, no. 11: 967. https://doi.org/10.3390/e26110967