Machine Learning-Assisted Hartree–Fock Approach for Energy Level Calculations in the Neutral Ytterbium Atom
<p>Step-by-step diagram of the machine learning-assisted atomic structure calculation workflow. Step 1: Initial calculation; Step 2: data extraction; Step 3: data preparation; Step 4: machine learning fitting calculations; Step 5: parameter refinement; Step 6: results evaluation.</p> "> Figure 2
<p>Errors of even-parity excited state energy levels for Yb I calculated using ab initio method, RAEN, XGB-R, XGB-B, and XGB-C. Top marginal histograms show error distributions for each method. The vertical axis is broken (indicated by //) to accommodate the large range of errors.</p> "> Figure 3
<p>Errors in even-parity excited state energy levels of Yb I calculated by XGB-R, XGB-B, and XGB-C models with an expanded training set. Top marginal histograms show error distributions for each method. The vertical axis is broken (indicated by //) to accommodate the large range of errors.</p> "> Figure 4
<p>Errors in small-sample even-parity excited state energy levels of Yb I calculated using Cowan fit, RAEN, XGB-R, XGB-B, and XGB-C methods. Top marginal histograms show error distributions for each method. The vertical axis is broken (indicated by //) to accommodate the large range of errors.</p> ">
Abstract
:1. Introduction
2. Calculation Methods
2.1. Machine Learning-Assisted Atomic Structure Calculation Workflow
- Step 1: Initial calculation. Ab initio calculations based on the HFR theory are accomplished by Cowan code.
- Step 2: Data extraction. We implemented customized modifications to the Cowan code. Based on HFR theory, we established data output interfaces and preliminary data formatting processes at key nodes of the program. This approach enables real-time capture and export of key parameters during the ab initio calculation process, including the aforementioned series of electrostatic and spin–orbit interaction Slater parameters: , , , and , as well as the radial integral correlation matrix that connects these parameters to energy levels. This method ensures a direct correlation between the extracted data and the computational process, minimizing intermediate processing steps and thereby enhancing the accuracy and traceability of the data.
- Step 3: Data preparation. This phase integrates multi-source data, including experimental energy levels from the NIST database, ab initio calculated energy levels, and the electrostatic and spin–orbit interaction Slater parameters along with their corresponding correlation matrices. In this step, we also perform comprehensive preprocessing on these datasets prior to machine learning training. This involves constructing a pipeline for data cleaning and standardization, thereby transforming the data into a correlation matrix encompassing both feature variables and target values, suitable for machine learning algorithms.
- Step 4: Machine learning fitting calculations. The machine learning algorithm performs the fitting calculations in this step using the correlation matrix containing all the preprocessing information, where the radial integral correlation matrix is used to form the feature variables, and the NIST [3] experimental energy level values are used as the target values. We designed this step as a drawer to freely integrate different machine learning algorithms. To facilitate computation, we employ both linear (ElasticNet) and tree-based (XGBoost) models. These algorithms are tailored and optimized for the specific characteristics of the atomic structure data, as elaborated in Section 2.2.
- Step 5 and 6: Results evaluation and parameter refinement. We evaluate the performance of the machine learning algorithms using the root mean square error, and the mean absolute error to measure the accuracy of fitting the computational energy level data. We use five-fold cross-validation and grid search to update the hyperparameters to optimize the generalization ability of different machine learning algorithms and finally attain the best computational results. Furthermore, our enhanced ElasticNet model refines Slater parameters, facilitating an iterative optimization process when reintroduced at Step 2.
2.2. Machine Learning Algorithms
2.2.1. Linear Model
2.2.2. Tree-Based Model
3. Results and Discussion
3.1. Calculations of Yb I Even-Parity Excited States
3.2. Small-Sample Analysis of Linear Models for Yb I Excited States
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Godbert, L.; Calisti, A.; Stamm, R.; Talin, B.; Lee, R.; Klein, L. Plasma Diagnostics with Spectral Profile Calculations. Phys. Rev. E 1994, 49, 5644–5651. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical Atomic Clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Kramida, A.; Ralchenko, Y. NIST Atomic Spectra Database, NIST Standard Reference Database 78 1999. Available online: https://data.nist.gov/pdr/lps/EBC9DB05EDEC5B0EE043065706812DF83 (accessed on 7 October 2024).
- Dere, K.P.; Landi, E.; Mason, H.E.; Monsignori Fossi, B.C.; Young, P.R. CHIANTI—An Atomic Database for Emission Lines: I. Wavelengths Greater than 50 Å. Astron. Astrophys. Suppl. Ser. 1997, 125, 149–173. [Google Scholar] [CrossRef]
- Fischer, C.F. Hartree—Fock Method for Atoms: A Numerical Approach; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Grant, I.P.; Quiney, H.M. Foundations of the Relativistic Theory of Atomic and Molecular Structure. In Advances in Atomic and Molecular Physics; Elsevier: Amsterdam, The Netherlands, 1988; Volume 23, pp. 37–86. ISBN 978-0-12-003823-7. [Google Scholar]
- Lindgren, I.; Morrison, J. Atomic Many-Body Theory; Springer Series in Chemical Physics; Springer: Berlin/Heidelberg, Germany, 1982; Volume 13, ISBN 978-3-642-96616-3. [Google Scholar]
- Cowan, R.D. Theoretical Calculation of Atomic Spectra Using Digital Computers. J. Opt. Soc. Am. 1968, 58, 808. [Google Scholar] [CrossRef]
- Hibbert, A. CIV3—A General Program to Calculate Configuration Interaction Wave Functions and Electric-Dipole Oscillator Strengths. Comput. Phys. Commun. 1975, 9, 141–172. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Tachiev, G.; Gaigalas, G.; Godefroid, M.R. An MCHF Atomic-Structure Package for Large-Scale Calculations. Comput. Phys. Commun. 2007, 176, 559–579. [Google Scholar] [CrossRef]
- Grant, I.P.; McKenzie, B.J.; Norrington, P.H.; Mayers, D.F.; Pyper, N.C. An Atomic Multiconfigurational Dirac-Fock Package. Comput. Phys. Commun. 1980, 21, 207–231. [Google Scholar] [CrossRef]
- Jönsson, P.; Gaigalas, G.; Bieroń, J.; Fischer, C.F.; Grant, I.P. New Version: Grasp2K Relativistic Atomic Structure Package. Comput. Phys. Commun. 2013, 184, 2197–2203. [Google Scholar] [CrossRef]
- Fritzsche, S. The Ratip Program for Relativistic Calculations of Atomic Transition, Ionization and Recombination Properties. Comput. Phys. Commun. 2012, 183, 1525–1559. [Google Scholar] [CrossRef]
- Fritzsche, S. Ratip—A Toolbox for Studying the Properties of Open-Shell Atoms and Ions. J. Electron Spectrosc. Relat. Phenom. 2001, 114–116, 1155–1164. [Google Scholar] [CrossRef]
- Gu, M.F. The Flexible Atomic Code. Can. J. Phys. 2008, 86, 675–689. [Google Scholar] [CrossRef]
- Ghiringhelli, L.M.; Vybiral, J.; Levchenko, S.V.; Draxl, C.; Scheffler, M. Big Data of Materials Science: Critical Role of the Descriptor. Phys. Rev. Lett. 2015, 114, 105503. [Google Scholar] [CrossRef] [PubMed]
- Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B.P.; Ramprasad, R.; Gubernatis, J.E.; Lookman, T. Machine Learning Bandgaps of Double Perovskites. Sci. Rep. 2016, 6, 19375. [Google Scholar] [CrossRef] [PubMed]
- Bartók, A.P.; Csányi, G. G Aussian Approximation Potentials: A Brief Tutorial Introduction. Int. J. Quantum Chem. 2015, 115, 1051–1057. [Google Scholar] [CrossRef]
- Pfau, D.; Spencer, J.S.; Matthews, A.G.D.G.; Foulkes, W.M.C. Ab Initio Solution of the Many-Electron Schrödinger Equation with Deep Neural Networks. Phys. Rev. Res. 2020, 2, 033429. [Google Scholar] [CrossRef]
- Hermann, J.; Schätzle, Z.; Noé, F. Deep-Neural-Network Solution of the Electronic Schrödinger Equation. Nat. Chem. 2020, 12, 891–897. [Google Scholar] [CrossRef]
- Liggins, F.S.; Pickering, J.C.; Nave, G.; Kramida, A.; Gamrath, S.; Quinet, P. New Ritz Wavelengths and Transition Probabilities of Parity-Forbidden [Mn II] Lines of Astrophysical Interest. ApJ 2021, 907, 69. [Google Scholar] [CrossRef]
- Kramida, A. Cowan Code: 50 Years of Growing Impact on Atomic Physics. Atoms 2019, 7, 64. [Google Scholar] [CrossRef]
- Chikh, A.; Deghiche, D.; Meftah, A.; Tchang-Brillet, W.-Ü.L.; Wyart, J.-F.; Balança, C.; Champion, N.; Blaess, C. Extended Analysis of the Free Ion Spectrum of Er3+ (Er IV). J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107796. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: New York, NY, USA, 1981; ISBN 978-0-520-03821-9. [Google Scholar]
- Yu, Y.; Yang, C.; Jiang, G. Ridge Regression Energy Levels Calculation of Neutral Ytterbium (Z = 70). Chin. Phys. B 2023, 32, 033101. [Google Scholar] [CrossRef]
- Carrete, J.; Li, W.; Mingo, N.; Wang, S.; Curtarolo, S. Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling. Phys. Rev. X 2014, 4, 011019. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [Google Scholar] [CrossRef]
- Porsev, S.G.; Safronova, M.S.; Derevianko, A.; Clark, C.W. Long-Range Interaction Coefficients for Ytterbium Dimers. Phys. Rev. A 2014, 89, 012711. [Google Scholar] [CrossRef]
- Baumann, M.; Braun, M.; Maier, J. Configuration Interaction in the 6s n d1D2 and 6s n s1S0 States of Yb Probed by Lifetime Measurements. Z. Für Phys. D At. Mol. Clust. 1987, 6, 275–278. [Google Scholar] [CrossRef]
- Bowers, C.J.; Budker, D.; Commins, E.D.; DeMille, D.; Freedman, S.J.; Nguyen, A.-T.; Shang, S.-Q.; Zolotorev, M. Experimental Investigation of Excited-State Lifetimes in Atomic Ytterbium. Phys. Rev. A 1996, 53, 3103–3109. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef]
Config. | Term | J | Exp. [3] | Ab Initio | RAEN | XGB-R | XGB-B | XGB-C | Other Work | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level | Level | Level | Level | ||||||||||
4f146s2 | 1S | 0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
4f145d6s | 3D | 1 | 24,489.1 | 22,944.7 | 24,492.7 | 3.6 | 24,435.7 | 53.4 | 0.0 | 0.0 | 24,132.8 | 356.3 | 25,108 a |
3D | 2 | 24,751.9 | 25,366.7 | 24,757.7 | 5.8 | 24,765.2 | 13.3 | 24,364.8 | 124.3 | 24,893.1 | 141.2 | 25,368 a | |
3D | 3 | 25,270.9 | 25,983.5 | 25,339.4 | 68.4 | 25,324.6 | 53.7 | 24,838.6 | 86.7 | 25,438.4 | 167.4 | 25,891 a | |
1D | 2 | 27,677.6 | 26,630.8 | 27,676.0 | 1.6 | 27,661.4 | 16.2 | 25,352.4 | 81.5 | 27,436.3 | 241.3 | 28,353 a | |
4f146s7s | 3S | 1 | 32,694.7 | 31,957.0 | 32,697.4 | 2.7 | 32,700.5 | 5.8 | 27,626.3 | 51.3 | 32,524.2 | 170.5 | 33,092 a |
1S | 0 | 34,350.6 | 32,225.7 | 33,773.0 | 577.6 | 34,324.3 | 26.3 | 32,689.8 | 4.9 | 33,853.5 | 497.1 | 34,755 a | |
4f146s6d | 3D | 1 | 39,808.7 | 39,365.8 | 39,810.6 | 1.9 | 39,817.1 | 8.4 | 34,269.0 | 81.6 | 39,707.0 | 101.7 | |
3D | 2 | 39,838.0 | 39,387.1 | 40,091.6 | 253.6 | 39,866.6 | 28.6 | 39,858.3 | 49.6 | 39,734.5 | 103.5 | ||
3D | 3 | 39,966.1 | 39,571.4 | 39,967.8 | 1.7 | 39,956.3 | 9.8 | 39,951.0 | 113.0 | 39,875.4 | 90.7 | ||
1D | 2 | 40,061.5 | 39,608.5 | 40,397.6 | 336.1 | 40,058.3 | 3.2 | 39,919.7 | 46.4 | 39,956.6 | 104.9 | ||
4f146s8s | 3S | 1 | 41,615.0 | 40,730.6 | 41,616.3 | 1.3 | 41,612.4 | 2.6 | 40,068.3 | 6.8 | 41,410.7 | 204.3 | |
1S | 0 | 41,939.9 | 40,773.8 | 41,791.3 | 148.6 | 41,903.0 | 36.9 | 41,572.8 | 42.2 | 41,665.6 | 274.3 | ||
4f146p2 | 3P | 0 | 42,436.9 | 43,448.4 | 44,134.3 | 1697.3 | 42,491.4 | 54.5 | 42,557.9 | 121.0 | 42,671.4 | 234.5 | |
3P | 1 | 43,805.4 | 44,199.7 | 43,882.8 | 77.4 | 43,820.2 | 14.8 | 43,900.4 | 95.0 | 43,897.2 | 91.8 | ||
4f146s7d | 3D | 1 | 44,311.4 | 43,384.2 | 44,303.4 | 8.0 | 44,302.7 | 8.7 | 44,259.9 | 51.5 | 44,098.0 | 213.4 | |
3D | 2 | 44,313.1 | 43,391.2 | 44,261.8 | 51.3 | 44,303.5 | 9.6 | 44,255.5 | 57.6 | 44,100.8 | 212.3 | ||
3D | 3 | 44,357.6 | 43,459.1 | 44,092.7 | 264.9 | 44,360.8 | 3.2 | 44,347.7 | 9.9 | 44,150.6 | 207.0 | ||
1D | 2 | 44,380.8 | 43,474.3 | 44,670.6 | 289.8 | 44,380.8 | 0.0 | 44,410.0 | 29.2 | 44,171.6 | 209.2 | ||
4f146p2 | 3P | 2 | 44,760.4 | 45,030.0 | 44,770.0 | 9.6 | 44,360.8 | 3.2 | 44,869.5 | 109.1 | 44,823.3 | 62.9 | |
4f146s9s | 3S | 1 | 45,121.3 | 44,097.2 | 44,775.4 | 345.9 | 45,115.8 | 5.5 | 40,068.3 | 6.8 | 41,410.7 | 204.3 | |
1S | 0 | 44,123.7 | 45,487.9 | 45,353.6 | 41,572.8 | 42.2 | 41,665.6 | 274.3 | |||||
4f146s8d | 3D | 1 | 46,445.0 | 45,388.8 | 46,449.7 | 4.7 | 46,448.0 | 3.0 | 45,124.6 | 3.3 | 44,885.7 | 235.6 | |
3D | 2 | 46,467.7 | 45,387.6 | 46,458.4 | 9.3 | 46,441.4 | 26.3 | 45,259.0 | 45,075.0 | ||||
3D | 3 | 46,480.7 | 45,425.9 | 46,195.7 | 285.0 | 46,468.4 | 12.3 | 46,423.2 | 21.8 | 46,201.4 | 243.6 | ||
1D | 2 | 45,424.8 | 46,727.1 | 47,551.1 | 46,382.0 | 85.7 | 46,218.0 | 249.7 | 46,405.45 b | ||||
4f146p2 | 1D | 2 | 47,821.8 | 48,840.9 | 47,700.8 | 121.0 | 47,862.5 | 40.7 | 46,438.5 | 42.2 | 46,237.8 | 242.9 | |
1S | 0 | 45,121.3 | 49,525.3 | 50,963.7 | 50,631.6 | 47,492.1 | 47,078.8 | ||||||
R * | 966.1 | 439.2 | 24.7 | 75.0 | 247.8 |
Config. | Term | J | Exp. [3] | Ab Initio | Cowan Fit | Other Work | RAEN | XGB-R | XGB-B | XGB-C | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level | Level | Level | Level | |||||||||||
4f146p2 | 3P | 0 | 42,436.9 | 43,448.4 | 43,443.7 | 42,708.5 | 271.6 | 42,436.9 | 0.0 | 42,443.9 | 7.0 | 42,671.6 | 234.7 | |
3P | 1 | 43,805.4 | 44,199.7 | 44,199.7 | 43,960.9 | 155.5 | 43,805.4 | 0.0 | 43,809.5 | 4.1 | 43,897.7 | 92.3 | ||
4f146s7d | 3D | 1 | 44,311.4 | 43,384.2 | 43,340.4 | 44,293.9 | 17.5 | 42,366.3 | 1945.0 | 42,375.7 | 1935.7 | 43,463.2 | 848.2 | |
3D | 2 | 44,313.1 | 43,391.2 | 43,373.7 | 44,314.1 c | 44,294.2 | 18.9 | 44,313.1 | 0.0 | 44,301.2 | 11.9 | 44,101.3 | 211.8 | |
3D | 3 | 44,357.6 | 43,459.1 | 43,411.9 | 44,345.3 c | 44,343.5 | 14.1 | 44,357.6 | 0.0 | 44,353.3 | 4.3 | 44,150.5 | 207.1 | |
1D | 2 | 44,380.8 | 43,474.3 | 43,152.7 | 44,401.1 c | 44,366.3 | 14.5 | 44,380.8 | 0.0 | 44,378.8 | 2.0 | 44,172.8 | 208.0 | |
4f146p2 | 3P | 2 | 44,760.4 | 45,030.0 | 44,466 | 44,879.8 | 119.4 | 46,034.7 | 1274.3 | 46,027.7 | 1267.3 | 44,836.1 | 75.7 | |
4f146s9s | 3S | 1 | 45,121.3 | 44,097.2 | 44,070.6 | 45,074.2 | 47.1 | 45,121.3 | 0.0 | 45,115.5 | 5.8 | 44,886.0 | 235.3 | |
1S | 0 | 44,123.7 | 44,092.7 | 45,909.5 | 45,361.0 | 45,346.9 | 45,076.2 | |||||||
4f146s8d | 3D | 1 | 46,445.0 | 45,388.8 | 45,376.4 | 46,364.7 | 80.3 | 46,445.0 | 0.0 | 46,433.4 | 11.6 | 46,202.1 | 242.9 | |
3D | 2 | 46,467.7 | 45,387.6 | 45,392.7 | 46,377.7 | 90.0 | 44,984.3 | 1483.4 | 44,990.4 | 1477.3 | 44,840.9 | 1626.8 | ||
3D | 3 | 46,480.7 | 45,425.9 | 45,412.6 | 46,398.0 | 82.7 | 46,480.7 | 0.0 | 46,470.5 | 10.2 | 46,238.2 | 242.5 | ||
1D | 2 | 45,424.8 | 45,292.8 | 47,550.9 | 47,574.0 | 47,552.6 | 47,062.2 | |||||||
4f146p2 | 1D | 2 | 47,821.8 | 48,840.9 | 46,097.7 | 47,961.3 | 139.5 | 47,822.8 | 1.0 | 47,832.4 | 10.6 | 48,059.5 | 237.6 | |
R * | 1040.8 | 114.1 | 737.6 | 734.3 | 604.4 |
Linear Model | Cowan Fit | RAEN |
---|---|---|
(4f146s7d) | 43,385.3 | 42,878.3 |
28.6 | 28.7 | |
28.6 | 62.6 | |
(4f146p2) | 44,875.8 | 45,269.1 |
1752 | 1395.8 | |
931.8 | 241.4 | |
(4f146s8d) | 45,399.2 | 45,770.5 |
14.5 | 13.5 | |
13.7 | 16.9 | |
(4f146s9s) | 44,076.9 | 44,424.7 |
Config. | Term | J | Exp. [3] | Ab Initio | RAEN | XGB-R | XGB-B | XGB-C | Other Work | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Level | Level | Level | Level | ||||||||||
4f146s6p | 3P | 1 | 17,992.0 | 17,891.7 | 17,808.4 | 183.6 | 17,979.1 | 12.9 | 17,913.1 | 78.9 | 17,968.9 | 23.1 | 18,450.0 a |
3P | 2 | 19,710.4 | 18,854.4 | 19,403.7 | 306.7 | 19,621.2 | 89.2 | 19,610.2 | 100.2 | 19,512.4 | 198.0 | 20,251.0 a | |
1P | 1 | 25,068.2 | 29,170.4 | 26,212.4 | 1144.2 | 25,167.1 | 98.9 | 25,182.8 | 114.6 | 26,015.2 | 947.0 | 25,967.0 a | |
4f146s7p | 3P | 0 | 38,090.7 | 39,090.3 | 38,305.8 | 215.1 | 38,135.3 | 44.6 | 38,199.4 | 108.7 | 38,322.0 | 231.3 | |
3P | 1 | 38,174.2 | 39,183.5 | 38,173.9 | 0.3 | 38,200.6 | 26.4 | 38,232.3 | 58.1 | 38,407.2 | 233.0 | ||
3P | 2 | 38,552.0 | 39,400.8 | 38,804.1 | 252.1 | 38,558.0 | 6.0 | 38,573.6 | 21.6 | 38,747.8 | 195.8 | ||
1P | 1 | 40,564.0 | 40,914.4 | 40,561.9 | 2.1 | 40,540.9 | 23.1 | 40,517.7 | 46.4 | 40,644.8 | 80.8 | ||
4f146s5f | 3F | 3 | 44,148.2 | 43,259.5 | 43,273.0 | 43,286.2 | 43,466.8 | 43,297.51 c | |||||
3F | 4 | 44,148.5 | 41,711.7 | 43,379.1 | 43,367.3 | 43,560.9 | |||||||
3F | 2 | 43,433.9 | 44,148.0 | 43,853.2 | 419.3 | 43,452.1 | 18.2 | 43,509.9 | 76.0 | 43,598.7 | 164.8 | ||
1F | 3 | 44,209.3 | 43,519.2 | 43,460.8 | 43,441.2 | 43,673.4 | 43,254.8 c | ||||||
4f146s8p | 3P | 0 | 43,614.3 | 44,595.7 | 43,556.8 | 57.5 | 43,628.3 | 14.0 | 43,635.2 | 20.9 | 43,840.4 | 226.1 | |
3P | 1 | 43,659.4 | 44,632.7 | 43,597.0 | 62.4 | 43,670.3 | 10.9 | 43,708.9 | 49.5 | 43,884.1 | 224.7 | ||
3P | 2 | 43,805.7 | 44,719.5 | 43,879.0 | 73.3 | 43,886.7 | 81.0 | 43,908.8 | 103.1 | 44,017.0 | 211.3 | ||
1P | 1 | 44,017.6 | 45,308.4 | 43,918.4 | 99.2 | 44,098.7 | 81.1 | 44,131.7 | 114.1 | 44,315.8 | 298.2 | ||
4f146s6f | 3F | 2 | 45,956.3 | 46,777.3 | 45,821.5 | 134.8 | 45,942.4 | 13.9 | 45,957.6 | 1.3 | 46,145.1 | 188.8 | |
3F | 3 | 46,777.5 | 46,421.1 | 46,018.1 | 45,991.2 | 46,219.9 | |||||||
4f146s9p | 3P | 1 | 46,078.9 | 47,040.5 | 46,317.6 | 238.7 | 46,185.5 | 106.6 | 46,203.7 | 124.8 | 46,301.8 | 222.9 | |
3P | 0 | 46,082.2 | 47,021.3 | 46,082.6 | 0.4 | 46,134.3 | 52.1 | 46,180.3 | 98.1 | 46,299.0 | 216.8 | ||
4f146s6f | 3F | 4 | 46,777.6 | 45,858.3 | 46,031.8 | 46,018.6 | 46,271.9 | ||||||
3F | 3 | 46,818.4 | 46,042.6 | 46,051.5 | 46,009.9 | 46,319.7 | |||||||
4f146s9p | 3P | 2 | 46,184.2 | 47,084.7 | 46,184.3 | 0.1 | 46,211.5 | 27.3 | 46,243.7 | 59.5 | 46,391.9 | 207.7 | |
1P | 1 | 46,370.3 | 47,435.3 | 46,842.4 | 472.1 | 46,545.1 | 174.8 | 46,541.8 | 171.5 | 46,617.0 | 246.7 | ||
4f146s6f | 3F | 2 | 47,326.7 | 48,186.2 | 47,326.7 | 0.1 | 47,313.0 | 13.7 | 47,345.2 | 18.5 | 47,525.3 | 198.7 | |
3F | 3 | 48,186.3 | 47,525.1 | 47,419.4 | 47,377.8 | 47,637.2 | |||||||
3F | 4 | 48,186.4 | 47,764.0 | 47,776.1 | 47,762.6 | 47,938.9 | |||||||
1F | 3 | 48,212.8 | 48,062.6 | 48,169.5 | 48,155.7 | 48,247.1 | |||||||
R * | 1302.1 | 338.8 | 67.2 | 88.8 | 297.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, K.; Yang, C.; Zhang, J.; Li, Y.; Jiang, G.; Chai, J. Machine Learning-Assisted Hartree–Fock Approach for Energy Level Calculations in the Neutral Ytterbium Atom. Entropy 2024, 26, 962. https://doi.org/10.3390/e26110962
Ma K, Yang C, Zhang J, Li Y, Jiang G, Chai J. Machine Learning-Assisted Hartree–Fock Approach for Energy Level Calculations in the Neutral Ytterbium Atom. Entropy. 2024; 26(11):962. https://doi.org/10.3390/e26110962
Chicago/Turabian StyleMa, Kaichen, Chen Yang, Junyao Zhang, Yunfei Li, Gang Jiang, and Junjie Chai. 2024. "Machine Learning-Assisted Hartree–Fock Approach for Energy Level Calculations in the Neutral Ytterbium Atom" Entropy 26, no. 11: 962. https://doi.org/10.3390/e26110962