Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures
<p>Examples of data segments selected from a representative subject at muscle contraction levels of 30% (<b>top</b>) and 70% (<b>bottom</b>) MVC, respectively.</p> "> Figure 2
<p>Heaviside function and exponential function.</p> "> Figure 3
<p>Pretest results illustrating effect of signal length on both SampEn and FuzzyEn. Please note that the resultant entropy values are normalized by the mean value at the signal length of 100.</p> "> Figure 4
<p>Illustration of the EMG–torque relation for (<b>a</b>) RMS; (<b>b</b>) FuzzyEn.</p> "> Figure 5
<p>Illustration of the EMG–torque relation for SampEn of subject 4 (<b>a</b>) and subject 5 (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Data Preprocessing and Segmentation
2.3. Entropy Analysis
- (1)
- construct a set of m-dimensional vector X(i), X(i) = {x(i), x(i + 1), …, x(i + m − 1)}, i = 1, 2, …, N − m + 1, m is the embedding dimension.
- (2)
- For each i, i = 1, 2, …, N − m + 1, measure the distance between X(i) and X(j) , j = 1, 2, …, N − m + 1, but i ≠ j. The distance between X(i) and X(j) is defined as follows, k = 0, 1, …, m − 1
- (3)
- According to the given tolerance r, we define the degree of similarity between X(i) and X(j) by the Heaviside function, measured as dij,
- (4)
- For each i, all possible similarity measures between X(i) and other constructed vector X(j), j = 1, 2, …, N − m + 1, but j ≠ i, are summed and averaged to represent the probability B(i) for X(i) which is similar to X(j),
- (5)
- Compute the average of B(i), i = 1, 2, …, N − m + 1
- (6)
- Similarly, when the embedding dimension is m + 1, construct a set of (m + 1)-dimensional vector X’(i), X’(i) = {x(i), x(i + 1), …, x(i + m)}, i = 1, 2, …, N – m.
- (7)
- Repeat steps 2 to 4, for i = 1, 2, …, …N − m, count the number A(i) of X’(j) that d[X’(i), X’(j)] < r, j = 1, 2, …, N − m, but i ≠ j, and then the average probability Am + 1 is calculated as,
- (8)
- Ideally, the SampEn will be defined as,
2.4. Evaluation of the EMG–Torque Relation
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Negro, F.; Holobar, A.; Farina, D. Fluctuations in isometric muscle force can be described by one linear projection of low-frequency components of motor unit discharge rates. J. Physiol. 2009, 587, 5925–5938. [Google Scholar] [CrossRef] [PubMed]
- Zivkovic, M.Z.; Djuric, S.; Cuk, I.; Suzovic, D.; Jaric, S. Muscle force-velocity relationships observed in four different functional tests. J. Hum. Kinet. 2017, 56, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, C.; Allen, E.J.; Williams, G.N. Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 2011, 43, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Li, Y.; Lantz, V.; Wang, K.; Yang, J. A framework for hand gesture recognition based on accelerometer and EMG sensors. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011, 41, 1064–1076. [Google Scholar] [CrossRef]
- Andersen, L.L.; Nielsen, P.K.; Søgaard, K.; Andersen, C.H.; Skotte, J.; Sjøgaard, G. Torque–emg–velocity relationship in female workers with chronic neck muscle pain. J. Biomech. 2008, 41, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Shao, Q.; Bassett, D.N.; Manal, K.; Buchanan, T.S. An emg-driven model to estimate muscle forces and joint moments in stroke patients. Comput. Biol. Med. 2009, 39, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Clancy, E.A.; Dai, C.; Wartenberg, M.; Martinez-Luna, C.; Hunt, T.R.; Farrell, T.R. A pilot study assessing ipsilateral vs. Contralateral feedback in emg-force models of the wrist for upper-limb prosthesis control. In Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA, USA, 12 December 2015; pp. 1–8. [Google Scholar]
- Sbriccoli, P.; Bazzucchi, I.; Rosponi, A.; Bernardi, M.; De Vito, G.; Felici, F. Amplitude and spectral characteristics of biceps brachii semg depend upon speed of isometric force generation. J. Electromyogr. Kinesiol. 2003, 13, 139–147. [Google Scholar] [CrossRef]
- Karlsson, S.; Gerdle, B. Mean frequency and signal amplitude of the surface emg of the quadriceps muscles increase with increasing torque—a study using the continuous wavelet transform. J. Electromyogr. Kinesiol. 2001, 11, 131–140. [Google Scholar] [CrossRef]
- Onishi, H.; Yagi, R.; Akasaka, K.; Momose, K.; Ihashi, K.; Handa, Y. Relationship between emg signals and force in human vastus lateralis muscle using multiple bipolar wire electrodes. J. Electromyogr. Kinesiol. 2000, 10, 59–67. [Google Scholar] [CrossRef]
- Bilodeau, M.; Schindler-Ivens, S.; Williams, D.; Chandran, R.; Sharma, S. Emg frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women. J. Electromyogr. Kinesiol. 2003, 13, 83–92. [Google Scholar] [CrossRef]
- Fukuda, T.Y.; Echeimberg, J.O.; Pompeu, J.E.; Lucareli, P.R.G.; Garbelotti, S.; Gimenes, R.O.; Apolinário, A. Root mean square value of the electromyographic signal in the isometric torque of the quadriceps, hamstrings and brachial biceps muscles in female subjects. J. Appl. Res. 2010, 10, 32–39. [Google Scholar]
- Jahanmiri-Nezhad, F.; Hu, X.; Suresh, N.L.; Rymer, W.Z.; Zhou, P. Emg-force relation in the first dorsal interosseous muscle of patients with amyotrophic lateral sclerosis. NeuroRehabilitation 2014, 35, 307–314. [Google Scholar] [PubMed]
- Zhou, P.; Suresh, N.L.; Rymer, W.Z. Model based sensitivity analysis of emg–force relation with respect to motor unit properties: Applications to muscle paresis in stroke. Ann. Biomed. Eng. 2007, 35, 1521–1531. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Akima, H. Normalized emg to normalized torque relationship of vastus intermedius muscle during isometric knee extension. Eur. J. Appl. Physiol. 2009, 106, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Anders, C.; Brose, G.; Hofmann, G.O.; Scholle, H.-C. Evaluation of the emg–force relationship of trunk muscles during whole body tilt. J. Biomech. 2008, 41, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Bhadane, M.; Liu, J.; Rymer, W.Z.; Zhou, P.; Li, S. Re-evaluation of EMG-torque relation in chronic stroke using linear electrode array emg recordings. Sci. Rep. 2016, 6, 28957. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Morin, E.; Mousavi, P.; Hashtrudi-Zaad, K. Enhanced dynamic emg-force estimation through calibration and pci modeling. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Hayashibe, M.; Guiraud, D. Voluntary emg-to-force estimation with a multi-scale physiological muscle model. Biomed. Eng. Online 2013, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Naik, G.; Kumar, D.; Arjunan, S. Pattern classification of myo-electrical signal during different maximum voluntary contractions: A study using bss techniques. Measur. Sci. Rev. 2010, 10, 1–6. [Google Scholar] [CrossRef]
- Naik, G.R.; Kumar, D.K. Evaluation of higher order statistics parameters for multi channel semg using different force levels. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Boston, MA, USA, 30 August–3 September 2011; pp. 3869–3872. [Google Scholar]
- Naik, G.R.; Kumar, D.K.; Arjunan, S.P. Kurtosis and negentropy investigation of myo electric signals during different mvcs. In Proceedings of the 2011 ISSNIP Biosignals and Biorobotics Conference (BRC), Vitoria, Brazil, 6–8 January 2011; pp. 1–4. [Google Scholar]
- Eke, A.; Herman, P.; Kocsis, L.; Kozak, L. Fractal characterization of complexity in temporal physiological signals. Physiol. Measur. 2002, 23, R1. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [PubMed]
- Kosko, B. Fuzzy entropy and conditioning. Inf. Sci. 1986, 40, 165–174. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.; Yu, Z.; Chen, X.; Li, S.; Zhou, P. EMG-torque relation in chronic stroke: A novel emg complexity representation with a linear electrode array. IEEE J. Biomed. Health Inf. 2017, 21, 1562–1572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, P. Sample entropy analysis of surface emg for improved muscle activity onset detection against spurious background spikes. J. Electromyogr. Kinesiol. 2012, 22, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Kamavuako, E.N.; Farina, D.; Jensen, W. In Use of sample entropy extracted from intramuscular emg signals for the estimation of force. In Proceedings of the 15th Nordic-Baltic Conference on Biomedical Engineering and Medical Physics (NBC 2011), Aalborg, Denmark, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 125–128. [Google Scholar]
- Kaplanis, P.A.; Pattichis, C.S.; Zazula, D. Multiscale entropy-based approach to automated surface emg classification of neuromuscular disorders. Med. Biol. Eng. Comput. 2010, 48, 773–781. [Google Scholar]
- Chen, W.; Zhuang, J.; Yu, W.; Wang, Z. Measuring complexity using fuzzyen, apen, and sampen. Med. Eng. Phys. 2009, 31, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.B.; Chen, W.T.; He, W.X.; Liu, H. Complexity analysis of the biomedical signal using fuzzy entropy measurement. Appl. Soft Comput. 2011, 11, 2871–2879. [Google Scholar] [CrossRef]
- Ao, D.; Sun, R.; Tong, K.-y.; Song, R. Characterization of stroke-and aging-related changes in the complexity of emg signals during tracking tasks. Ann. Biomed. Eng. 2015, 43, 990–1002. [Google Scholar] [CrossRef] [PubMed]
- Troiano, A.; Naddeo, F.; Sosso, E.; Camarota, G.; Merletti, R.; Mesin, L. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface emg signal and perceived exertion scale. Gait Posture 2008, 28, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Meigal, A.I.; Rissanen, S.; Tarvainen, M.; Karjalainen, P.; Iudina-Vassel, I.; Airaksinen, O.; Kankaanpää, M. Novel parameters of surface emg in patients with parkinson’s disease and healthy young and old controls. J. Electromyogr. Kinesiol. 2009, 19, e206–e213. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Barkhaus, P.E.; Zhang, X.; Rymer, W.Z. Characterizing the complexity of spontaneous motor unit patterns of amyotrophic lateral sclerosis using approximate entropy. J. Neural Eng. 2011, 8, 066010. [Google Scholar] [CrossRef] [PubMed]
- Hogrel, J.-Y. Clinical applications of surface electromyography in neuromuscular disorders. Clin. Neurophysiol. 2005, 35, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wei, Z.; Ren, X.; Gao, X.; Chen, X.; Zhou, P. Complex neuromuscular changes post-stroke revealed by clustering index analysis of surface electromyogram. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2105–2112. [Google Scholar] [CrossRef] [PubMed]
No. | Age (years) | Gender | Weight (lb) | Handedness | MVC (Nm) |
---|---|---|---|---|---|
1 | 40 | male | 160 | right | 42 |
2 | 28 | female | 130 | right | 40 |
3 | 30 | male | 165 | right | 80 |
4 | 33 | female | 141 | right | 40 |
5 | 27 | male | 150 | right | 32 |
6 | 37 | male | 135 | right | 30 |
7 | 35 | female | 120 | right | 32 |
8 | 30 | male | 160 | right | 73 |
9 | 27 | female | 131 | right | 26 |
10 | 44 | male | 205 | right | 66 |
33.1 ± 5.5 | 6M, 4F | 149.7 ± 23.3 | 46.1 ± 18.5 |
SampEn | FuzzyEn | RMS | SampEn | FuzzyEn | RMS | |
---|---|---|---|---|---|---|
The Linear | The Exponential | |||||
1 | 0.752 | 0.980 | 0.924 | 0.741 | 0.957 | 0.958 |
2 | 0.646 | 0.915 | 0.859 | 0.644 | 0.982 | 0.992 |
3 | 0.242 | 0.970 | 0.933 | 0.241 | 0.918 | 0.926 |
4 | 0.103 | 0.954 | 0.919 | 0.103 | 0.942 | 0.940 |
5 | 0.131 | 0.906 | 0.886 | 0.131 | 0.897 | 0.869 |
6 | 0.693 | 0.859 | 0.831 | 0.703 | 0.926 | 0.888 |
7 | 0.003 | 0.801 | 0.715 | 0.003 | 0.877 | 0.792 |
8 | 0.693 | 0.986 | 0.967 | 0.703 | 0.929 | 0.950 |
9 | 0.648 | 0.901 | 0.849 | 0.671 | 0.940 | 0.942 |
10 | 0.082 | 0.953 | 0.905 | 0.080 | 0.930 | 0.935 |
Mean ± SD | 0.399 ± 0.294 | 0.922 ± 0.056 | 0.879 ± 0.067 | 0.402 ± 0.296 | 0.930 ± 0.028 | 0.919 ± 0.054 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Zhang, X.; Tang, X.; Gao, X.; Chen, X. Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. Entropy 2017, 19, 624. https://doi.org/10.3390/e19110624
Zhu X, Zhang X, Tang X, Gao X, Chen X. Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. Entropy. 2017; 19(11):624. https://doi.org/10.3390/e19110624
Chicago/Turabian StyleZhu, Xiaofei, Xu Zhang, Xiao Tang, Xiaoping Gao, and Xiang Chen. 2017. "Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures" Entropy 19, no. 11: 624. https://doi.org/10.3390/e19110624
APA StyleZhu, X., Zhang, X., Tang, X., Gao, X., & Chen, X. (2017). Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. Entropy, 19(11), 624. https://doi.org/10.3390/e19110624