Improving Intertidal Reef Mapping Using UAV Surface, Red Edge, and Near-Infrared Data
"> Figure 1
<p>Natural-colored drone-based imagery (13,820 × 10,315 pixels with 0.17 m pixel size) of <span class="html-italic">Sainte</span>-<span class="html-italic">Anne</span> honeycomb worm reefs in the Bay of Mont-Saint-Michel (BMSM) (France). The orthomosaic was derived from a 150 m-height eBee+<sup>®</sup> campaign, carried out on 22 March 2019. Brown, orange, green, red and blue dots correspond to pure gravel, sand, mud, reef, and water ground-truth data, respectively.</p> "> Figure 2
<p>(<b>a</b>) Red edge and (<b>b</b>) near-infrared drone-based spectral reflectance bands (13,820 × 10,315 pixels with 0.17 m pixel size) of <span class="html-italic">Sainte-Anne</span> honeycomb worm reefs in the BMSM (France). The orthomosaic was derived from a 150 m-height eBee+<sup>®</sup> campaign, carried out on 22 March 2019.</p> "> Figure 3
<p>Digital surface model (13,820 × 10,315 pixels with 0.17 m pixel size) of <span class="html-italic">Sainte</span>-<span class="html-italic">Anne</span> honeycomb worm reefs in the BMSM (France). The orthomosaic, referenced to the chart datum, was derived from a 150 m-height eBee+<sup>®</sup> campaign, carried out on 22 March 2019.</p> "> Figure 4
<p>Classification maps of <span class="html-italic">Sainte</span>-<span class="html-italic">Anne</span> honeycomb worm reefs into five classes: (<b>a</b>) RGB without DSM; (<b>b</b>) RGB+RE without DSM; (<b>c</b>) RGB+NIR without DSM; (<b>d</b>) RGB+RE+NIR without DSM; (<b>e</b>) RGB with DSM; (<b>f</b>) RGB+RE with DSM; (<b>g</b>) RGB+NIR with DSM; and (<b>h</b>) RGB+RE+NIR with DSM.</p> "> Figure 5
<p>Lineplots of the producer accuracies (PAs) and UAs stemming from the ML classifications of the RGB deprived of (<b>a</b> and <b>b</b>, respectively) and provided with (<b>c</b> and <b>d</b>, respectively) the DSM, both series enriched with isolated and joint RE and NIR spectral bands.</p> "> Figure 6
<p>Three-dimensional (3D) visualization of the southwestern part of <span class="html-italic">Sainte-Anne</span> honeycomb worm reefscape composed of the RGB imagery draped over the DSM, all derived from a 150 m-height eBee+<sup>®</sup> survey, carried out on 22 March 2019.</p> "> Figure 7
<p>Imageries of <span class="html-italic">Sainte-Anne</span> honeycomb worm reefs showing the spectral confusion of mud (green arrow) and water (blue arrow) in the (<b>a</b>) RGB imagery, while clearly separable in the (<b>b</b>) NIR imagery.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Handborne Data
2.3. Airborne Data
2.4. Classification Analysis
3. Results
3.1. Systemic Contributions of the DSM, RE, and NIR
3.2. Specific Contributions of the DSM, RE, and NIR
4. Discussion
4.1. Influence of the Spatial DSM
4.2. Influence of the Spectral RE and NIR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anders, M.S.; Reid, R.P. Growth morphologies of modern marine stromatolites: A case study from Highborne Cay, Bahamas. Sediment. Geol. 2006, 185, 319–328. [Google Scholar] [CrossRef]
- Gherardi, D.F.M.; Bosence, D.W.J. Composition and Community Structure of the Coralline Algal Reefs from Atol Das Rocas, South Atlantic, Brazil. Coral Reefs 2001, 19, 205–219. [Google Scholar] [CrossRef]
- Naylor, L.A.; Viles, H.A. A temperate reef builder: An evaluation of the growth, morphology and composition of Sabellaria Alveolata (L.) colonies on carbonate platforms in South Wales. Geol. Soc. Lond. Spec. Publ. 2000, 178, 9–19. [Google Scholar] [CrossRef]
- Mumby, P.J.; Skirving, W.; Strong, A.E.; Hardy, J.T.; LeDrew, E.F.; Hochberg, E.J.; Stumpf, R.P.; David, L.T. Remote sensing of coral reefs and their physical environment. Mar. Pollut. Bull. 2004, 48, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.; Harmáčková, Z.; Meacham, M.; Queiroz, C.; Jiménez-Aceituno, A.; Kuiper, J.; Malmborg, K.; Sitas, N.; Bennett, E. Welcoming different perspectives in IPBES: “Nature’s contributions to people” and “Ecosystem services”. Ecol. Soc. 2018, 23, 39. [Google Scholar] [CrossRef]
- Galparsoro, I.; Rodríguez, J.G.; Menchaca, I.; Quincoces, I.; Garmendia, J.M.; Borja, Á. Benthic habitat mapping on the Basque continental shelf (SE Bay of Biscay) and its application to the European Marine Strategy Framework Directive. J. Sea Res. 2015, 100, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Collin, A.; Ramambason, C.; Pastol, Y.; Casella, E.; Rovere, A.; Thiault, L.; Espiau, B.; Siu, G.; Lerouvreur, F.; Nakamura, N.; et al. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 2018, 39, 5676–5688. [Google Scholar] [CrossRef] [Green Version]
- Collin, A.; Dubois, S.; Ramambason, C.; Etienne, S. Very high-resolution mapping of emerging biogenic reefs using airborne optical imagery and neural network: The honeycomb worm (Sabellaria alveolata) case study. Int. J. Remote Sens. 2018, 39, 5660–5675. [Google Scholar] [CrossRef]
- Collin, A.; Andel, M.; James, D.; Claudet, J. The superspectral/hyperspatial WorldView-3 as the link between spaceborne hyperspectral and airborne hyperspatial sensors: The case study of the complex tropical coast. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 1849–1854. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 1997, 36, 8710–8723. [Google Scholar] [CrossRef]
- Guenther, G.C.; Brooks, M.W.; LaRocque, P.E. New capabilities of the “SHOALS” airborne lidar bathymeter. Remote Sens. Environ. 2000, 73, 247–255. [Google Scholar] [CrossRef]
- Ventura, D.; Bonifazi, A.; Gravina, M.; Belluscio, A.; Ardizzone, G. Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and Object-Based Image Analysis (OBIA). Remote Sens. 2018, 10, 1331. [Google Scholar] [CrossRef]
- Casella, E.; Collin, A.; Harris, D.; Ferse, S.; Bejarano, S.; Parravicini, V.; Hench, J.L.; Rovere, A. Mapping coral reefs using consumer-grade drones and structure from motion photogrammetry techniques. Coral Reefs 2017, 36, 269–275. [Google Scholar] [CrossRef]
- Noernberg, M.A.; Fournier, J.; Dubois, S.; Populus, J. Using Airborne Laser Altimetry to Estimate Sabellaria Alveolata (Polychaeta: Sabellariidae) Reefs Volume in Tidal Flat Environments. Estuar. Coast. Shelf Sci. 2010, 90, 93–102. [Google Scholar] [CrossRef]
- Dubois, S.; Barillé, L.; Cognie, B.; Beninger, P.G. Particle Capture and Processing Mechanisms in Sabellaria Alveolata (Polychaeta: Sabellariidae). Mar. Ecol. Prog. Ser. 2005, 301, 159–171. [Google Scholar] [CrossRef]
- Desroy, N.; Dubois, S.F.; Fournier, J.; Ricquiers, L.; Le Mao, P.; Guerin, L.; Gerla, D.; Rougerie, M.; Legendre, A. The Conservation Status of Sabellaria Alveolata (L.) (Polychaeta: Sabellariidae) Reefs in the Bay of Mont-Saint-Michel. Aquat. Conserv. Mar. Freshw. Ecosyst. 2011, 21, 462–471. [Google Scholar] [CrossRef]
- Plicanti, A.; Domínguez, R.; Dubois, S.; Bertocci, I. Human Impacts on Biogenic Habitats: Effects of Experimental Trampling on Sabellaria Alveolata (Linnaeus, 1767) Reefs. J. Exp. Mar. Biol. Ecol. 2016, 478, 34–44. [Google Scholar] [CrossRef]
- Curd, A.; Pernet, F.; Corporeau, C.; Delisle, L.; Firth, L.B.; Nunes, F.L.; Dubois, S.F. Connecting organic to mineral: How the physiological state of an ecosystem-engineer is linked to its habitat structure. Ecol. Indic. 2019, 98, 49–60. [Google Scholar] [CrossRef]
- Dubois, S.; Commito, J.A.; Olivier, F.; Retière, C. Effects of Epibionts on Sabellaria Alveolata (L.) Biogenic Reefs and Their Associated Fauna in the Bay of Mont Saint-Michel. Estuar. Coast. Shelf Sci. 2006, 68, 635–646. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Collin, A.; Archambault, P.; Planes, S. Revealing the regime of shallow coral reefs at patch scale by continuous spatial modeling. Front. Mar. Sci. 2014, 1, 65. [Google Scholar] [CrossRef]
- Collin, A.; Long, B.; Archambault, P. Coastal kelp forest habitat in the Baie des Chaleurs, Gulf of St. Lawrence, Canada. In Seafloor Geomorphology as Benthic Habitat; Harris, P.T., Baker, E.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 201–211. [Google Scholar]
- Zacharias, M.; Niemann, O.; Borstad, G. An assessment and classification of a multispectral bandset for the remote sensing of intertidal seaweeds. Can. J. Remote Sens. 1992, 18, 263–274. [Google Scholar] [CrossRef]
- Lisco, S.; Moretti, M.; Moretti, V.; Cardone, F.; Corriero, G.; Longo, C. Sedimentological Features of Sabellaria Spinulosa Biocontructions. Mar. Pet. Geol. 2017, 87, 203–212. [Google Scholar] [CrossRef]
- Collin, A.; James, D.; Jeanson, M.; Claudet, J. Mapping tropical coastal social-ecological systems using unmanned airborne vehicle (UAV). In Proceedings of the Marine Geological & Biological Habitat Mapping (Geohab 2019), Saint Petersburg, Russia, 14 May 2019; Ryabchuk, P., Ed.; Geohab: Saint-Petersburg, Russia, 2019. [Google Scholar]
Class | Description | Ground Photographs |
---|---|---|
Gravel | Siliceous and calcareous sediment particles of 2–200 mm | |
Sand | Siliceous and calcareous sediment particles of 0.06–2 mm | |
Mud | Siliceous and calcareous sediment particles of <0.002–0.06 mm | |
Reef | Colonies of honeycomb worm Sabellaria alveolata | |
Water | Tidal channels and ponds |
RGB | RGB+RE | RGB+NIR | RGB+RE+NIR | |
---|---|---|---|---|
Without DSM | 82.98 | 85.00 | 85.56 | 86.20 |
With DSM | 86.40 | 87.78 | 86.72 | 87.96 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collin, A.; Dubois, S.; James, D.; Houet, T. Improving Intertidal Reef Mapping Using UAV Surface, Red Edge, and Near-Infrared Data. Drones 2019, 3, 67. https://doi.org/10.3390/drones3030067
Collin A, Dubois S, James D, Houet T. Improving Intertidal Reef Mapping Using UAV Surface, Red Edge, and Near-Infrared Data. Drones. 2019; 3(3):67. https://doi.org/10.3390/drones3030067
Chicago/Turabian StyleCollin, Antoine, Stanislas Dubois, Dorothée James, and Thomas Houet. 2019. "Improving Intertidal Reef Mapping Using UAV Surface, Red Edge, and Near-Infrared Data" Drones 3, no. 3: 67. https://doi.org/10.3390/drones3030067