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Very high resolution mapping of coral reef state using airborne 1 

bathymetric LiDAR surface-intensity and drone imagery 2 

Very high resolution (VHR) airborne data enable detection and physical 3 
measurements of individual coral reef colonies. The bathymetric LiDAR system, 4 
as an active remote sensing technique, accurately computes the coral reef 5 
ecosystem’s surface and reflectance using a single green wavelength at the 6 
decimetre scale over 1-to-100 km2 areas. A passive multispectral camera 7 
mounted on an airborne drone can build a blue-green-red (BGR) orthorectified 8 
mosaic at the centimetre scale over 0.01-to-0.1 km

2
 areas. A combination of these 9 

technologies is used for the first time here to map coral reef ecological state at the 10 
submeter scale. Airborne drone BGR values (0.03 m pixel size) serve to calibrate 11 
airborne bathymetric LiDAR surface and intensity data (0.5 m pixel size). A 12 
classification of five ecological states is then mapped through an artificial neural 13 
network (ANN). The classification was developed over a small area (0.01 km

2
) in 14 

the lagoon of Moorea Island (French Polynesia) at VHR (0.5 m pixel size) and 15 
then extended to the whole lagoon (46.83 km2). The ANN was first calibrated 16 
with 275 samples to determine the class of coral state through LiDAR-based 17 
predictors, then the classification was validated through 135 samples, reaching a 18 
satisfactory performance (overall accuracy = 0.75). 19 

Keywords: coral reefs, state, LiDAR, drone, neural network 20 

1. Introduction 21 

Coral reefs host 25% of the marine biodiversity but are increasingly subject to global 22 

ocean-climate changes and local anthropogenic activities (Bellwood 2004). Fine-scale 23 

monitoring of coral reef ecosystems and associated ecosystem services is needed for 24 

their management and spatial planning. Coral reef mapping usually relies on remote 25 

sensing for cost-effectively identifying their structural complexity, benthic composition, 26 

and regime surrogates over large areas (Goodman, Samuel and Stuart 2013; Hedley et 27 

al. 2016). Spaceborne multispectral imagery demonstrates great spatial potential to 28 

accurately map coral reef colonies (Collin, Hench, and Planes 2012), habitats (Collin et 29 

al. 2016), health (Collin and Planes 2012; Collin, Archambault, and Planes 2014) and 30 

resilience (Rowlands et al. 2012; Knudby et al. 2013; Collin, Nadaoka, and Bernardo 31 

2015). Airborne passive hyperspectral imagery, provided with dozens of spectral bands, 32 

enables coral reef benthos, substrates and bathymetry to be significantly improved 33 

(Leiper et al. 2014). Airborne (usually on manned aircraft) active light detection and 34 

ranging (LiDAR) is now the reference system for measuring bathymetry, outperforming 35 

waterborne sound detection and ranging (SoNAR) devices, which are strongly impeded 36 

by shallow features, specifically in the coastal realm where coral reefs thrive (Costa, 37 

Battista, and Pittman 2009). LiDAR-derived morphometry indices can reveal efficient 38 

proxies for ecosystem characteristics, for example, estimates of reef fish assemblages 39 

(Wedding et al. 2008). Yet despite the increase in discrimination power showed over 40 

benthic habitats bathed with turbid waters, LiDAR indices have not been used to date to 41 

exploit the spectral information associated with water-penetrating green LiDAR 42 

wavelength for coral reef monitoring (Collin, Archambault, and Long 2008; Collin, 43 

Archambault, and Long 2011; Collin, Long, and Archambault 2011). 44 

Unmanned airborne vehicles (UAVs, or simply ‘drones’) are becoming an 45 

integral component of the scientific toolbox for coral reef research and management. 46 

Equipped with blue-green-red (BGR) spectral cameras, drones are able to measure coral 47 
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reef bathymetry and derived terrain roughness at very high resolution (VHR) using the 1 

photogrammetry approach (Leon et al. 2015; Casella et al. 2017). The 3D point cloud, 2 

permitting 2D orthorectified BGR mosaics and 2.5D digital surface models (DSM), 3 

results from the multi-angle information of a single scene made possible by spatially-4 

even acquisition of BGR imagery from a moving airborne drone flying at low altitude 5 

(from 30 to 150 m): so-called “structure-from-motion”. The images and by-products 6 

yield spatial resolution at centimetre scale (i.e., 0.03 m pixel size). Coral reef states can 7 

be significantly distinguished using the resulting 0.03 m BGR orthomosaic drone 8 

dataset, enabling classification of reef ecological states. 9 

Here we describe methodology for creating the first coral reef ecological state 10 

map at VHR based solely on regional airborne LiDAR “predictors” trained with local 11 

“response” imagery from drone. The bathymetric LiDAR Riegl VQ-820-G, mounted on 12 

a small plane or helicopter, serves as the remotely-sensed 1-to-100 km
2
 predictors with 13 

four measurements of surface and intensity (green) per m
2
. The BGR GoPro, mounted 14 

on a consumer-grade airborne drone (DJI phantom 2), is used as the remotely-sensed 15 

0.01-to-0.1 km
2 

response. Spearheading machine learners in satellite-based coastal 16 

prediction (Collin, Etienne, and Feunteun 2017), an artificial neural network (ANN) 17 

classifier is developed to provide a robust, yet simple, algorithm linking the two 18 

datasets. Our study takes place on one of the best-studied islands in the world (Cressey 19 

2015): Moorea (French Polynesia, Fig. 1), a volcanic island with fringing, barrier and 20 

outer coral reefs in the central South Pacific Ocean. It contributes to efforts to build a 21 

4D model – an Island Digital Ecosystem Avatar (IDEA) – of Moorea and to simulate of 22 

future states of the social-ecological system in support of scenario-based planning 23 

(Davies et al. 2016). We follow a drone-based assessment of ecological state (coral reef 24 

state classification; Table 1) and combine it with LiDAR-based data to spatially classify 25 

the coral reef state at VHR over a small area and then extend this to the whole island. 26 

Findings are discussed with a view to how this approach could advance an automated 27 

workflow for coral reef mapping. 28 

Figure 1 29 

Table 1 30 

2. Materials and methods 31 

2.1. Study site 32 

The study site is located in the northern lagoon of Moorea Island (17°33′S, 149°50′W) 33 

in the Society Archipelago (French Polynesia, Fig. 1a). Moorea demonstrates a highly 34 

resilient coral reefs (Adjeroud et al. 2009), especially its outer slope, which following 35 

the extremely low coral cover (2%) due to 2007-2010 outbreak of corallivore crown-of-36 

thorne sea star (Acanthaster planci) and 2010 Oli cyclone strike, is recovering to record 37 

rates close to 70% (Chancerelle, pers. comm.). Located inside the 46.83 km
2
 Moorea 38 

lagoon, the study site covers 11 710 m
2
 with maximum depth of 2 m. It is bathed in 39 

oligotrophic, thus clear, seawater including various taxa of reef building corals (Porites, 40 

Acropora, Pocillopora, Montipora), red calcareous algae (Lithothamnium), fleshy algae 41 

(red, brown and green) and a diversity of geomorphic features (rubble, sand and 42 

pavement). 43 
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2.2. Drone visible response 1 

A drone-based spectral survey (Fig. 1b) was carried out on 17 August 2015 using a 2 

BGR camera (GoPro Hero 4) mounted on a consumer-grade drone (DJI Phantom 2). 3 

Calm sea and low sun elevation angle were optimal conditions for this survey. A series 4 

of 360 geolocated BGR photographs, acquired at 30 m altitude at nadir, were mosaicked 5 

then processed using the photogrammetry software Agisoft Photoscan 6 

(http://www.agisoft.ru). Constrained by nine ground control points and three scale bars, 7 

the resulting orthorectified mosaic (WGS 84 datum and UTM 6S projection) has 0.03 m 8 

resolution (see Casella et al. 2017 for further details) and was therefore deemed as 9 

precise enough to be used as air-truth (Fig. 1c, Collin, Lambert, and Etienne 2018). A 10 

total of 410 sampling points over the BGR orthomosaic, corresponding to as many 11 

LiDAR soundings, were visually interpreted by an expert and classified into five 12 

ecological states (Fig. 2a and Table 1), each one composed of 55 training and 27 13 

validation sub-datasets. 14 

Figure 2 15 

2.3. LiDAR surface and intensity predictors 16 

The airborne LiDAR campaign was conducted from 10 to 26 June 2015 (one month 17 

before the drone flight) using a Riegl VQ-820-G hydrographic laser scanner mounted 18 

on a small plane. The sensor was operated at 251 kHz, providing minimum sounding 19 

density of four points per m
2
 (0.5 m) and vertical accuracy of 0.15 m, computed from 20 

43798 comparisons (Pastol, Chamberlain, and Sinclair 2016). This bathymetric LiDAR 21 

pulses an electromagnetic radiation (532 nm wavelength, namely green) from the 22 

aircraft and records its travel time in air and water by means of a waveform (Collin, 23 

Archambault, and Long 2008). LiDAR surface and intensity are computed on-the-fly 24 

for each sounding by converting the time between sea surface and bottom green echoes 25 

into distance (knowing the light speed into water), and by recording the peak of bottom 26 

green echo, respectively. Maximum depth ever recorded by bathymetric LiDAR 27 

reached 76.1 m in Moorea Island during the studied survey (Pastol, Chamberlain, and 28 

Sinclair 2016) given the water clarity due to oligotrophic waters. Since our Moorea 29 

study limits to the shallow waters (< 10 m depth), LiDAR intensity has been directly 30 

processed with no water correction. As each LiDAR surface and intensity sounding is 31 

duly located by the combination of HR global navigation satellite system and inertial 32 

measurement unit, digital surface and intensity models (DSM and DIM, Fig. 2b and 2c) 33 

can be calculated using ordinary kriging method applied to LiDAR sounding clouds. 34 

LiDAR points and rasters were geographically referenced to WGS84 UTM 6S and 35 

altimetrically zeroed as the mean sea level (SHOM 2016). Drone-derived imagery was 36 

registered with LiDAR data using a 1
st
 degree polynom function and resampled with 37 

cubic convolution. 38 

2.4. Artificial neural network classification 39 

Given their performance in a comparative analysis (Collin, Etienne, and Feunteun 40 

2017), we use an ANN approach as a classification procedure binding the drone-based 41 

air-truth and LiDAR-based variables. 42 

The ANN builds non-linear classifications by minimizing least squares using a 43 

multi-layer perceptron classifying ecological state response, h(X), (Table 1) with the 44 

LiDAR surface and intensity predictors, X, through a constant, k, and intermediate 45 
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weighted, wi, functions called neurons, ni (Heermann and Khazenie 1992): 1 

 ( )∑=
i ii XnwkXh )()(  (1) 2 

Neurons ni are hereinafter based on hyperbolic tangents. ANN constrained by a 3 

single hidden layer provided with two neurons so the number of neurons to be in 4 

synergy with the number of inputs (predictors, Fig. 3). Trained by the 275 calibration 5 

samples, the ANN will be validated by the remaining 135 validation samples. 6 

Figure 3 7 

2.5. Performance analysis 8 

The agreement between validation and classified pixels in the five ecological states was 9 

quantified using the confusion matrix, from which overall, producer’s and user’s 10 

accuracies (OA, PA and UA, respectively) were computed (Congalton and Green 2009). 11 

PA and UA were calculated as the correctly classified pixels in each coral state divided 12 

by the number of calibration pixels of the corresponding state, and the total number of 13 

pixels that were classified in that state, respectively. OA was reckoned as the correctly 14 

classified pixels in all states divided by the total number of pixels.  15 

3. Results 16 

3.1. Local coral reef state at very high resolution 17 

The OA of the ANN classification reached a satisfactory performance (OA=0.75), 18 

showing that the dual combination of LiDAR surface and intensity variables had a 19 

robust explanatory power of the variability of coral reef states (Table 2). Contrary to 20 

coral reef states 1, 5 and 3 that were adequately assigned (UA=0.84, 0.80 and 0.74, 21 

respectively), intermediate coral reef states 2 and 4 were moderately classified with UA 22 

of 0.68 and 0.68, respectively (Table 2). Contrary to UA statistics, PA measures were 23 

evenly correct (From 0.81 to 0.71, Table 2). The ANN classifier was applied to each 24 

pixel of LiDAR DSM and DIM (Fig 2b and 2c, respectively) in order to continuously 25 

map ecological state (Fig. 4b) provided with 0.5 m spatial resolution (142 × 422 pixels).  26 

Table 2 27 

Figure 4 28 

3.2. Moorea coral reef state at very high resolution 29 

Insofar as the ANN prediction was adequate enough to be extended, the digital 30 

ecological classification was mapped at the island scale. Moorea LiDAR DSM and DIM 31 

were first rasterized at 0.5 m spatial resolution (Fig. 5a and 5b) and then entered as 32 

inputs to the ANN classification, which produced a digital model of coral reef 33 

ecological state over the whole island (Fig. 5c, 40364 × 34588 pixels). Moorea classes 34 

are dominated by sand on pavement (56.8%), followed by Porites stony corals (14.1%) 35 

and Microalgae on rubble (13.8%), then Acropora/Pocillopora/Montipora stony corals 36 

with red calcareous algae (10.9%), and finally Acropora/Pocillopora/Montipora stony 37 

corals (4.4%). Overall, the coverage of hard corals (from state 1 to 3) appears 38 

significantly greater in the leeward side than the windward side. 39 

Figure 5 40 
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4. Discussion 1 

4.1. Airborne drone as “air-truth” 2 

The five coral reef ecological states were based on VHR BGR orthorectified mosaic 3 

derived from a consumer-grade multispectral camera driven by an airborne drone. This 4 

innovative procedure is supported by our knowledge of in situ coral reef features that 5 

can be discriminated at the centimetre scale. Insofar as both ecological composition and 6 

structural complexity are easily deduced from the BGR dataset, relatively inexpensive 7 

drone deployment can be used to obtain air-truth data directly even in places with little 8 

technical capacity. The geolocated photographs can be remotely processed and analysed 9 

in the cloud, given a suitable internet connection. With an easy-to-implement flight 10 

planning mobile application, rapid surveys could be conducted at even very remote 11 

locations with little infrastructure/capacity after short-terms events such as 12 

cyclone/storm and bleaching. The number of states could be increased by either flying 13 

at lower altitude (to gain in spatial resolution) or using drone-mounted LiDAR that can 14 

enhance the vertical accuracy, for example, to differentiate coral from macroalgae 15 

(Leiper et al. 2014).  16 

 The use of this air-truth, in the form of a cost-efficient UAV-borne BGR 17 

orthomosaic, has a strong potential to be applicable to other worldwide coral lagoons 18 

and even to a large panel of coastal and aquatic areas, provided with relatively clear 19 

waters. This air-truth leverages a high ratio of covered space unit per time unit while 20 

collecting centimetre-scale data, considerably outperforming submerged acquisitions, 21 

hindered by the very high viscosity of water.   22 

4.2. Airborne LiDAR surface and intensity 23 

The gradient of ecological states (from 1, well-developed hard coral, to 5, sand) was 24 

positively correlated with both surface (r=0.93) and intensity (r=0.93), showing that 25 

coral coverage decreases with depth and LiDAR green reflectance. The coral shrinkage 26 

with depth can be explained by the coral growth and structural complexification 27 

towards the surface (as a photosynthetic symbiont), what corroborates results derived 28 

from a spaceborne reef health proxy (Collin, Hench, and Planes 2012). The negative 29 

trend between coral state and green reflectance coincides with in situ spectral 30 

measurements, making explicit a greater reflectance of increasingly depigmented blue- 31 

and brown-mode coral reefs in the coral health chart (Leiper et al. 2009). This increase 32 

in green reflectance (decrease in green absorbance) is linked to the loss of peridinin 33 

pigments contained in symbiotic zooxanthellae living in coral tissues (Collin and Planes 34 

2012). Even if most bathymetric LiDAR systems use the single green wavelength, this 35 

electromagnetic radiation is relevant to distinguish coral reef state as highlighted in the 36 

elaboration of both the green-purple and the “red edge”-green normalized difference 37 

ratios (Collin, Hench, and Planes 2012; Collin, Archambault, Planes 2014, 38 

respectively). 39 

 Inner classification results (UA) revealed that coral- and sand-dominant states 40 

(1, 3 and 5) were successfully recognized, contrary to both assemblages of corals and 41 

rubble colonized by calcareous and micro-algae (2 and 4), respectively. We could 42 

assume that the spectral mixing due to the presence of algae on relatively “pure” states 43 

was not very effectively resolved by the ANN classifier built from only LiDAR surface 44 

and intensity. We advocate the experiment of a coral reef state classification using an 45 

innovative bathymetric LiDAR, augmented by an added spectral wavelength (i.e. 355 46 
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nm, as the third harmonic of the 1064-nm laser), likely to detect the coral fluorescence 1 

as well as intermediate states (Sasano et al. 2012).  2 

4.3. Moorea coral reef states’ spatial patterns 3 

The coral reef state classification, spatially-classified at VHR, is a strong asset to outline 4 

hotspots of health coral reefs, thus of associated biodiversity and ecosystem services. 5 

The centimetre and decimetre scales targeted in this study greatly enhance the spatial 6 

resolution of coral reefs’ diagnoses and prognoses, surpassing other recent studies using 7 

object-based image analysis, which bottom at 2 m or 10 m (Phinn, Roelfsema, Mumby 8 

2012; Roelfsema et al. 2013). LiDAR-based spatially-explicit classification, provided 9 

with decimetre sounding density over 100 km
2
, offers an unpublished map of Moorea 10 

coral reefs’ health. Two main spatial patterns emerged from the spatially-explicit 11 

classification: westward polarization of healthy fringing reefs and northward 12 

polarization of healthy barrier reefs. 13 

Wide healthy fringing reefs along west shorelines strongly contrast with thin 14 

ones along eastern coast. This outstanding geographic difference is very susceptible to 15 

be the consequence of the dominant easterly winds (i.e., Southeast trade winds), which 16 

entail significantly greater amounts of rain then carried sediment, which, in turn, deposit 17 

onto and stress coral colonies (Fabricius 2005), impeding development of eastern 18 

fringing coral reefs. 19 

More extended barrier reefs are obvious in the northern compared to southern 20 

lagoon. This patterning might be explained by the two dominant swell systems 21 

originating from South: 40% SE and 25% SSW (Etienne 2012). Swell average height 22 

tends to be higher than 4 m during Austral winter, what creates, at the reef, significant 23 

wave height greater than 8 m (e.g. Teahupoo spot in Southern Tahiti Iti, Etienne 2012). 24 

The exposure to this high to very high energy flow hinders the efficient settlement of 25 

coral larvae and breaks the coral assemblage structure (Madin and Connolly 2006). This 26 

interpretation is corroborated by the third dominant swell system (22% NE, Etienne 27 

2012), which constrains NE lagoon to exhibit slightly less extended barrier reefs 28 

compared to NW. 29 

5. Conclusion 30 

This original research has demonstrated that airborne bathymetric LiDAR data are able 31 

to reliably map five ecological states in coral reef systems at VHR over shallow, clear 32 

waters. Reef state information can be gleaned from an airborne drone equipped with a 33 

multispectral imaging sensor. Novel findings can be summarized as follows: 34 

(1) Coral reef state at the colony-scale (pixel size = 0.03 m) can be sourced from a 35 

BGR camera mounted on an airborne low-altitude drone; 36 

(2) LiDAR surface and intensity are powerful predictors of coral reef ecological 37 

state at the colony-scale (pixel size = 0.03 m); 38 

(3) ANN is an efficient classification approach to predict ecological state based only 39 

LiDAR surface and intensity (OA=0.75); 40 

(4) LiDAR surface and intensity are powerful predictors of ecological state at the 41 

landscape scale (pixel size = 0.5 m); 42 

(5) Healthy fringing and barrier coral reefs in Moorea are located on the western 43 

and northern parts of the lagoon, respectively. 44 
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 1 
Figure 1. (a) Moorea Island (French Polynesia) was surveyed by bathymetric LiDAR at island 2 
scale (10-26 June 2015) and over a small study area by airborne drone (17 August 2015; red 3 
rectangle). (b) Natural-coloured (blue-green-red) drone survey provides spectral information at 4 
0.03 m pixel size (2133 × 6095 pixels), enabling resolution of coral reef (c) assembled colonies, 5 
(d) single colonies on sand/pavement, or (e) anthropogenic features. 6 
 7 
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 1 
Figure 2. Maps of the (a) natural-coloured imagery with 410 air-truth sampling sites (red 2 
transparent disks), (b) bathymetric LiDAR surface soundings, and (c) bathymetric LiDAR 3 
intensity (532 nm wavelength) soundings. (a) is at 0.03 m, whereas (b) and (c) are at 0.5 m pixel 4 
size. 5 
 6 

 7 
Figure 3. Conceptual flowchart explaining how the combination of LiDAR surface and 8 
intensity can predict the ecological state class through an intermediate hidden layer provided 9 
with two neurons. 10 
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 1 
Figure 4. (a) Natural-coloured (blue-green-red) airborne drone orthomosaic (2133 × 6095 2 
pixels, 0.03 m pixel size), along with (b) digital coral reef state classification based on the drone 3 
response, LiDAR surface and intensity predictors and two-neuroned artificial neural network 4 
classifier (142 × 422 pixels with 0.5 m pixel size). 5 
 6 
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 1 
Figure 5. Digital (a) surface, (b) intensity (532 nm wavelength), and (c) coral reef state 2 
classification derived from bathymetric LiDAR soundings (40364 × 34588 pixels at 0.5 m pixel 3 
size). 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
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Table 1. Ecological description of the five coral reefscape states identified on airborne drone 1 
blue-green-red imagery (0.03 m spatial resolution) enabling a coral reef state classification to be 2 
created and colour-coded. 3 

Drone-

based state 

     

Ecological 

compositio

n 

Acropora/ 

Pocillopora/ 

Montipora 

stony corals 

Acropora/ 

Pocillopora/ 

Montipora 

stony corals 

with red 

calcareous 

algae 

Porites stony 

corals 

Microalgae 

on rubble 

Sand on 

pavement 

Structural 

complexity 

Very High 

roughness 

High 

roughness 

Medium 

roughness 

Low 

roughness 

Very low 

roughness 

Coral reef 

state 
1 2 3 4 5 

Colour 

class 
     

 4 
Table 2. Confusion matrix synthesizing the quality of the artificial neural network classification 5 
applied to the independent 135 validation pixels (27 pixels per coral reef state). 6 
  Reference class   

 STATE 1 2 3 4 5 Total UA 

Classified 

class 

1 21 2 2 0 0 25 0.84 

2 4 17 3 1 0 25 0.68 

3 1 3 20 2 1 27 0.74 

4 0 1 1 19 7 28 0.68 

5 0 1 2 3 24 30 0.80 

 Total 26 24 28 25 32 135  

 PA 0.80 0.71 0.71 0.76 0.75   

 7 
 8 
 9 
 10 
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