Self-Paced Online vs. Cue-Based Offline Brain–Computer Interfaces for Inducing Neural Plasticity
<p>(<b>A</b>) Experimental setup for transcranial magnetic stimulation(TMS) measurements. (<b>B</b>) Extraction of the peak–peak amplitude of a motor-evoked potential (MEP). (<b>C</b>) Visual cue that was presented to the participants and an example of an averaged movement-related cortical potential (MRCP) from the 50 movements prior to the cue-based brain–computer interface (BCI) training. Note that in this example the peak negativity occurs prior to the task onset, and it is this latency of peak negativity with respect to the task onset that is considered to be stable throughout the cue-based BCI training. (<b>D</b>) The participants receive electrical stimulation when they imagine a movement. There is no visual cue provided in the self-paced BCI training.</p> "> Figure 2
<p>Peak–peak raw MEP amplitudes for the subjects.</p> "> Figure 3
<p>Percentage changes in MEP peak–peak amplitudes calculated for each subject. Error bars show mean ± 95% confidence interval (CI).</p> "> Figure 4
<p>(<b>A</b>) Peripheral nerve stimulation (PNS) intensity in mA and (<b>B</b>) TMS machine resting motor threshold (RMT) output in % for each subject. Error bars show mean ± SD.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Measurements and Stimulation
2.2.1. EEG
2.2.2. Motor-Evoked Potentials
2.2.3. Transcranial Magnetic Stimulation
2.2.4. Peripheral Nerve Stimulation
2.3. Experimental Setup
2.4. Brain–Computer Interface Systems
2.4.1. Cue-Based BCI (Offline)
2.4.2. Self-Paced BCI (Online)
2.5. Statistics
3. Results
3.1. MEP Size
3.2. BCI Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain-computer interfaces for communication and control. Clin. Neurophys. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Daly, J.J.; Wolpaw, J.R. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- Grosse-Wentrup, M.; Mattia, D.; Oweiss, K. Using brain–computer interfaces to induce neural plasticity and restore function. J. Neural Eng. 2011, 8, 025004. [Google Scholar] [CrossRef]
- Mrachacz-Kersting, N.; Kristensen, S.R.; Niazi, I.K.; Farina, D. Precise temporal association between cortical potentials evoked by motor imagination and afference induces cortical plasticity. J. Physiol. 2012, 590, 1669–1682. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, O.F.; Dremstrup Nielsen, K.; Voigt, M. Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions. Exp. Brain Res. 2006, 171, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Niazi, I.K.; Jiang, N.; Tiberghien, O.; Nielsen, J.F.; Dremstrup, K.; Farina, D. Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 2011, 8, 66009. [Google Scholar] [CrossRef] [PubMed]
- Jochumsen, M.; Niazi, I.K.; Mrachacz-Kersting, N.; Farina, D.; Dremstrup, K. Detection and classification of movement-related cortical potentials associated with task force and speed. J. Neural Eng. 2013, 10, 56015. [Google Scholar] [CrossRef] [PubMed]
- Jochumsen, M.; Niazi, I.K.; Navid, M.S.; Anwar, M.N.; Farina, D.; Dremstrup, K. Online multi-class brain-computer interface for detection and classification of lower limb movement intentions and kinetics for stroke rehabilitation. Brain Comp. Interfaces 2015, 2, 202–210. [Google Scholar] [CrossRef]
- Yilmaz, Özge; Birbaumer, N.; Ramos-Murguialday, A. Movement related slow cortical potentials in severely paralyzed chronic stroke patients. Front. Hum. Neurosci. 2015, 8. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, H.; Hallett, M. What is the Bereitschaftspotential? Clin. Neurophysiol. 2006, 117, 2341–2356. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef]
- Lew, E.; Chavarriaga, R.; Silvoni, S.; Millán, J.D.R. Detection of self-paced reaching movement intention from EEG signals. Front. Neuroeng. 2012, 5. [Google Scholar] [CrossRef]
- Xu, R.; Jiang, N.; Lin, C.; Mrachacz-Kersting, N.; Dremstrup, K.; Farina, D. Enhanced Low-latency Detection of Motor Intention from EEG for Closed-loop Brain-Computer Interface Applications. IEEE Trans. Biomed. Eng. 2013, 61, 288–296. [Google Scholar] [CrossRef]
- Niazi, I.K.; Mrachacz-Kersting, N.; Jiang, N.; Dremstrup, K.; Farina, D. Peripheral Electrical Stimulation Triggered by Self-Paced Detection of Motor Intention Enhances Motor Evoked Potentials. IEEE Trans. Neural Syst. Rehabil. Eng. 2012, 20, 595–604. [Google Scholar] [CrossRef]
- Xu, R.; Jiang, N.; Mrachacz-Kersting, N.; Lin, C.; Prieto, G.A.; Moreno, J.C.; Pons, J.L.; Dremstrup, K.; Farina, D. A Closed-Loop Brain–Computer Interface Triggering an Active Ankle–Foot Orthosis for Inducing Cortical Neural Plasticity. IEEE Trans. Biomed. Eng. 2014, 61, 2092–2101. [Google Scholar] [PubMed]
- Mrachacz-Kersting, N.; Voigt, M.; Stevenson, A.; Aliakbaryhosseinabadi, S.; Jiang, N.; Dremstrup, K.; Farina, D. The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity. Brain Res. 2017, 1674, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Mrachacz-Kersting, M.; Jiang, N.; Stevenson, A.J.T.; Niazi, I.K.; Kostic, V.; Pavlovic, A.; Radovanovic, S.; Djuric-Jovicic, M.; Agosta, F.; Dremstrup, K.; et al. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 2016, 115, 1410–1421. [Google Scholar] [CrossRef]
- Olsen, S.; Signal, N.; Niazi, I.K.; Christensen, T.; Jochumsen, M.; Taylor, D. Paired Associative Stimulation Delivered by Pairing Movement-Related Cortical Potentials With Peripheral Electrical Stimulation: An Investigation of the Duration of Neuromodulatory Effects. Neuromodulation 2018, 21, 362–367. [Google Scholar] [CrossRef]
- Ang, K.K.; Chua, K.S.G.; Phua, K.S.; Wang, C.; Chin, Z.Y.; Kuah, C.W.K.; Guan, C. A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke. Clin. EEG Neurosci. 2015, 46, 310–320. [Google Scholar] [CrossRef]
- Frolov, A.A.; Mokienko, O.; Lyukmanov, R.; Biryukova, E.; Kotov, S.; Turbina, L.; Nadareyshvily, G.; Bushkova, Y. Post-stroke Rehabilitation Training with a Motor-Imagery-Based Brain-Computer Interface (BCI)-Controlled Hand Exoskeleton: A Randomized Controlled Multicenter Trial. Front. Neurosci. 2017, 11, 400. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Guan, C.; Phua, K.S.; Wang, C.; Zhou, L.; Tang, K.Y.; Joseph, G.J.E.; Kuah, C.W.K.; Chua, K.S.G. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: Results of a three-armed randomized controlled trial for chronic stroke. Front. Neuroeng. 2014, 7. [Google Scholar] [CrossRef]
- Nijboer, F.; Bos, D.P.-O.; Blokland, Y.; Van Wijk, R.; Farquhar, J. Design requirements and potential target users for brain-computer interfaces – recommendations from rehabilitation professionals. Brain Comput. Interfaces 2014, 1, 50–61. [Google Scholar] [CrossRef]
- Leeb, R.; Perdikis, S.; Tonin, L.; Biasiucci, A.; Tavella, M.; Creatura, M.; Molina, A.; Al-Khodairy, A.; Carlson, T.; Millán, J.D. Transferring brain–computer interfaces beyond the laboratory: Successful application control for motor-disabled users. Artif. Intell. Med. 2013, 59, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Pisotta, I.; Pichiorri, F.; Kleih, S.; Paolucci, S.; Molinari, M.; Cincotti, F.; Kübler, A.; Mattia, D. Proof of Principle of a Brain-Computer Interface Approach to Support Poststroke Arm Rehabilitation in Hospitalized Patients: Design, Acceptability, and Usability. Arch. Phys. Med. Rehabil. 2015, 96, S71–S78. [Google Scholar] [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [Green Version]
- Kumpulainen, S.; Mrachacz-Kersting, N.; Peltonen, J.; Voigt, M.; Avela, J. The optimal interstimulus interval and repeatability of paired associative stimulation when the soleus muscle is targeted. Exp. Brain 2012, 221, 241–249. [Google Scholar] [CrossRef]
- Krueger, C. A Comparison of the General Linear Mixed Model and Repeated Measures ANOVA Using a Dataset with Multiple Missing Data Points. Boil. Nurs. 2004, 6, 151–157. [Google Scholar] [CrossRef]
- Boisgontier, M.P.; Cheval, B. The anova to mixed model transition. Neurosci. Biobehav. Rev. 2016, 68, 1004–1005. [Google Scholar] [CrossRef]
- Frömer, R.; Maier, M.; Rahman, R.A. Group-Level EEG-Processing Pipeline for Flexible Single Trial-Based Analyses Including Linear Mixed Models. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef]
- Jochumsen, M.; Cremoux, S.; Robinault, L.; Lauber, J.; Arceo, J.C.; Navid, M.S.; Nedergaard, R.W.; Rashid, U.; Haavik, H.; Niazi, I.K. Investigation of Optimal Afferent Feedback Modality for Inducing Neural Plasticity with A Self-Paced Brain-Computer Interface. Sensors 2018, 18, 3761. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models using lme4. Available online: cran.uvigo.es/web/packages/lme4/vignettes/lmer.pdf (accessed on 20 May 2019).
- Twisk, J.; Bosman, L.; Hoekstra, T.; Rijnhart, J.; Welten, M.; Heymans, M. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 2018, 10, 80–85. [Google Scholar]
- Emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 20 May 2019).
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 013081542X. [Google Scholar]
- Jochumsen, M.; Niazi, I.K.; Nedergaard, R.W.; Navid, M.S.; Dremstrup, K. Effect of subject training on a movement-related cortical potential-based brain-computer interface. Biomed. Signal Process. 2018, 41, 63–68. [Google Scholar] [CrossRef]
- Mrachacz-Kersting, N.; Aliakbaryhosseinabadi, S. Comparison of the Efficacy of a Real-Time and Offline Associative Brain-Computer-Interface. Front. Neurosci. 2018, 12. [Google Scholar] [CrossRef] [PubMed]
- Ridding, M.C.; Ziemann, U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 2010, 588, 2291–2304. [Google Scholar] [CrossRef]
- Müller-Dahlhaus, J.F.M.; Orekhov, Y.; Liu, Y.; Ziemann, U. Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp. Brain 2008, 187, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Ziemann, U.; Paulus, W.; Nitsche, M.A.; Pascual-Leone, A.; Byblow, W.D.; Berardelli, A.; Siebner, H.R.; Classen, J.; Cohen, L.G.; Rothwell, J.C. Consensus: Motor cortex plasticity protocols. Brain Stimul. 2008, 1, 164–182. [Google Scholar] [CrossRef] [PubMed]
- Chipchase, L.; Schabrun, S.; Hodges, P.; Schabrun, S. Peripheral electrical stimulation to induce cortical plasticity: A systematic review of stimulus parameters. Clin. Neurophysiol. 2011, 122, 456–463. [Google Scholar] [CrossRef] [Green Version]
Session | Time | Standard Error (mV) | ||
Self-paced | post- | 0.25 | 0.05 | z = −7.44, p < 0.001 |
Cue-based | post- | 0.18 | 0.04 | z = −8.53, p < 0.001 |
Self-paced | post 30- | 0.22 | 0.04 | z = −8.05, p < 0.001 |
Cue-based | post 30- | 0.21 | 0.04 | z = −7.95, p < 0.001 |
Session | Time | (%) | Standard Error (%) | |
Self-paced | post- | 93.26 | 19.82 | t[31.91] = 4.71, p < 0.001 |
Cue-based | post- | 44.66 | 20.46 | t[31.58] = 2.18, p = 0.04 |
Self-paced | post30- | 80.72 | 19.82 | t[31.91] = 4.07, p < 0.001 |
Cue-based | post30- | 62.51 | 20.46 | t[31.58] = 3.05, p < 0.01 |
Time | Self-Paced/Cue-Based (Ratio) | Standard Error (Ratio) | |
Post-intervention | 1.34 | 0.27 | z = 1.46, p = 0.15 |
30-min post-intervention | 1.06 | 0.21 | z = 0.29, p = 0.77 |
Time | Self-Paced − Cue-Based (%) | Standard Error (%) | |
Post-intervention | 48.59 | 21.04 | t[36.2] = 2.31, p = 0.03 |
30-min post-intervention | 18.21 | 21.04 | t[36.2] = 0.87, p = 0.39 |
Participant | True Positive Rate (%) | Number of False Positive Detections per Minute | Duration of the BCI Intervention (min) | Total Number of Movements Performed |
---|---|---|---|---|
1 | 74 | 0.8 | 12 | 68 |
2 | 79 | 0.2 | 14 | 63 |
3 | 77 | 1.0 | 7 | 65 |
4 | 77 | 0.4 | 19 | 65 |
5 | 72 | 2.0 | 15 | 69 |
6 | 74 | 0.8 | 13 | 68 |
7 | 78 | 1.0 | 14 | 64 |
8 | 81 | 2.0 | 11 | 62 |
9 | 72 | 0.4 | 19 | 69 |
10 | 78 | 1.7 | 16 | 64 |
11 | 72 | 1.5 | 11 | 69 |
12 | 69 | 1.3 | 12 | 72 |
13 | 70 | 0.3 | 21 | 71 |
14 | 74 | 1.2 | 9 | 68 |
15 | 79 | 2.7 | 13 | 63 |
Mean ± Std | 75 ± 3 | 1.2 ± 0.7 | 14 ± 4 | 67 ± 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jochumsen, M.; Navid, M.S.; Nedergaard, R.W.; Signal, N.; Rashid, U.; Hassan, A.; Haavik, H.; Taylor, D.; Niazi, I.K. Self-Paced Online vs. Cue-Based Offline Brain–Computer Interfaces for Inducing Neural Plasticity. Brain Sci. 2019, 9, 127. https://doi.org/10.3390/brainsci9060127
Jochumsen M, Navid MS, Nedergaard RW, Signal N, Rashid U, Hassan A, Haavik H, Taylor D, Niazi IK. Self-Paced Online vs. Cue-Based Offline Brain–Computer Interfaces for Inducing Neural Plasticity. Brain Sciences. 2019; 9(6):127. https://doi.org/10.3390/brainsci9060127
Chicago/Turabian StyleJochumsen, Mads, Muhammad Samran Navid, Rasmus Wiberg Nedergaard, Nada Signal, Usman Rashid, Ali Hassan, Heidi Haavik, Denise Taylor, and Imran Khan Niazi. 2019. "Self-Paced Online vs. Cue-Based Offline Brain–Computer Interfaces for Inducing Neural Plasticity" Brain Sciences 9, no. 6: 127. https://doi.org/10.3390/brainsci9060127
APA StyleJochumsen, M., Navid, M. S., Nedergaard, R. W., Signal, N., Rashid, U., Hassan, A., Haavik, H., Taylor, D., & Niazi, I. K. (2019). Self-Paced Online vs. Cue-Based Offline Brain–Computer Interfaces for Inducing Neural Plasticity. Brain Sciences, 9(6), 127. https://doi.org/10.3390/brainsci9060127