Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway
<p>The effect of DOX application on 9 different concentrations obtained by serial dilution in the concentration range of 10-1000 nM in HeLa cervix adenocarcinoma (<b>A</b>–<b>C</b>) and HaCaT human skin keratinocyte cell line (<b>D</b>–<b>F</b>) on compared to the vehicle group and the IC50 value of the chemotherapy agent (n = 6; data are mean ± standard deviation values, inhibition concentration (IC) values calculated by probit analysis). * Data are statistically significant compared to control, one-way ANOVA, Tukey HSD test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 2
<p>Effect of GA application on 9 different concentrations obtained by serial dilution between 10-1000 µM concentration range in HeLa cervix adenocarcinoma (<b>A</b>–<b>C</b>) and HaCaT human skin keratinocyte cell line (<b>D</b>–<b>F</b>) cell lines for 24, 48 and 72 hours on cell viability compared to the vehicle group and the IC50 value of GA (n = 6; data are mean ± standard deviation values, inhibition concentration (IC) values calculated by probit analysis). * Data are statistically significant compared to control, one-way ANOVA, Tukey HSD test, <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 3
<p>Cell morphology, nuclear structure, and apoptotic body formation (magnification: ×20) in HeLa cervical adenocarcinoma cell populations treated for 48 hours with vehicle control (<b>A</b>,<b>A1</b>), DOX IC50: 137.6 nM (<b>B</b>,<b>B1</b>), GA IC50: 239.2 μM (<b>C</b>,<b>C1</b>), and DOX IC50+GA IC50 (<b>D</b>,<b>D1</b>) (Arrow: apoptotic cell).</p> "> Figure 4
<p>H-scores were derived from semi-quantitative assessments of both staining intensity (scale 0–3) and the percentage of positive cells (0–100%) and, when multiplied, generated a score ranging from 0 to 300.</p> "> Figure 5
<p>Relative fold increases values of P53 and BAX gene expressions in HeLa cervical adenocarcinoma cell lines, DOX IC<sub>50</sub>: 137.6 nM, GA IC<sub>50</sub>: 239.2 μM, 48 h, after single and combined drug administration (data in multiple control with β-actin and GAPDH mRNA level). Method, n = 4 data mean ± SH), * means are statistically different, one-way ANOVA, Tukey HSD test, <span class="html-italic">p</span> values are given in the graph.</p> "> Figure 6
<p>PPI and interaction between various genes of cervical cancer.</p> "> Figure 7
<p>Enrichment analysis for the 530 common compound targets in cancer pathway.</p> "> Figure 8
<p>Enrichment analysis for the 331 common compound targets in human papilloma virüs infection and cervical cancer.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Cell Culture
2.2. MTT Assay
2.3. Determination of an Inhibitory Dose (IC50)
2.4. Apoptotic Assay
2.5. Determination of Gene Expression by RT-PCR
2.6. Total RNA Isolation
2.7. cDNA Synthesis
2.8. Quantitative Real-Time PCR Study (qRT-PCR)
2.9. Protein–Protein Interaction (PPI) Analysis
2.10. Enrichment Analysis
2.11. GO Functional Enrichment Analysis
2.12. Statistical Analysis
3. Results
3.1. Cell Viability
3.2. NucBlue Staining Results
3.3. Quantitative Real-Time PCR Analysis Results of Apoptotic Markers
3.4. Protein–Protein Interaction (PPI) (Bax, P53)
3.5. KEGG Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landry, J.J.; Pyl, P.T.; Rausch, T.; Zichner, T.; Tekkedil, M.M.; Stütz, A.M.; Jauch, A.; Aiyar, R.S.; Pau, G.; Delhomme, N.; et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 2013, 3, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Herzog, T.J.; Wright, J.D. The impact of cervical cancer on quality of life—The components and means for management. Gynecol. Oncol. 2007, 107, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Daimary, U.D.; Parama, D.; Rana, V.; Banik, K.; Kumar, A.; Harsha, C.; Kunnumakkara, A.B. Emerging roles of cardamonin, a multitargeted nutraceutical in the prevention and treatment of chronic diseases. Curr. Res. Pharmacol. Drug Discov. 2020, 2, 100008. [Google Scholar] [CrossRef] [PubMed]
- Banik, K.; Khatoon, E.; Harsha, C.; Rana, V.; Parama, D.; Thakur, K.K.; Bishayee, A.; Kunnumakkara, A.B. Wogonin and its analogs for the prevention and treatment of cancer: A systematic review. Phytother. Res. 2022, 36, 1854–1883. [Google Scholar] [CrossRef]
- Yu, A.F.; Chan, A.T.; Steingart, R.M. Cardiac Magnetic Resonance and Cardio-Oncology: Does T2 Signal the End of Anthracycline Cardiotoxicity? J. Am. Coll. Cardiol. 2019, 73, 792–794. [Google Scholar] [CrossRef]
- Marcq, G.; Jarry, E.; Ouzaid, I.; Hermieu, J.F.; Henon, F.; Fantoni, J.C.; Xylinas, E. Contemporary best practice in the use of neoadjuvant chemotherapy in muscle-invasive bladder cancer. Ther. Adv. Urol. 2019, 11, 1756287218823678. [Google Scholar] [CrossRef]
- Takemura, G.; Fujiwara, H. Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog. Cardiovasc. Dis. 2007, 49, 330–352. [Google Scholar] [CrossRef]
- Alves, A.C.; Magarkar, A.; Horta, M.; Lima, J.L.F.C.; Bunker, A.; Nunes, C.; Reis, S. Influence of doxorubicin on model cell membrane properties: Insights from in vitro and in silico studies. Sci. Rep. 2017, 7, 6343. [Google Scholar] [CrossRef]
- Muhammad, N.; Steele, R.; Isbell, T.S.; Philips, N.; Ray, R.B. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 2017, 8, 66226–66236. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Muhammad, N.; Steele, R.; Peng, G.; Ray, R.B. Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth. Oncotarget 2016, 7, 33202–33209. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- De, A.; De, A.; Papasian, C.; Hentges, S.; Banerjee, S.; Haque, I.; Banerjee, S.K. Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS ONE 2013, 8, e72748. [Google Scholar] [CrossRef] [PubMed]
- Sourani, Z.; Pourgheysari, B.; Beshkar, P.; Shirzad, H.; Shirzad, M. Gallic Acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J. Med. Sci. 2016, 41, 525–530. [Google Scholar] [PubMed]
- He, Z.; Li, B.; Rankin, G.O.; Rojanasakul, Y.; Chen, Y.C. Selecting bioactive phenolic compounds as potential agents to inhibit proliferation and VEGF expression in human ovarian cancer cells. Oncol. Lett. 2015, 9, 1444–1450. [Google Scholar] [CrossRef]
- Aborehab, N.M.; Osama, N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019, 19, 154. [Google Scholar] [CrossRef]
- Srivastava, S.; Somasagara, R.R.; Hegde, M.; Nishana, M.; Tadi, S.K.; Srivastava, M.; Choudhary, B.; Raghavan, S.C. Natural Flavonoid Interacts with DNA, Arrests Cell Cycle and Causes Tumor Regression by Activating Mitochondrial Pathway of Apoptosis. Sci. Rep. 2016, 6, 24049. [Google Scholar] [CrossRef]
- Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell. Biol. 2013, 45, 2821–2831. [Google Scholar] [CrossRef]
- You, B.R.; Moon, H.J.; Han, Y.H.; Park, W.H. Gallic acid inhibits the growth of HeLa cervical cancer cells via apoptosis and/or necrosis. Food. Chem. Toxicol. 2010, 48, 1334–1340. [Google Scholar] [CrossRef]
- You, B.R.; Park, W.H. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase. Toxicol. In Vitro 2010, 24, 1356–1362. [Google Scholar] [CrossRef]
- Park, W.H. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncol. Rep. 2017, 37, 1277–1283. [Google Scholar] [CrossRef]
- Dorniani, D.; Saifullah, B.; Barahuie, F.; Arulselvan, P.; Hussein, M.Z.; Fakurazi, S.; Twyman, L.J. Graphene oxide-Gallic Acid nanodelivery system for cancer therapy. Nanoscale Res. Lett. 2016, 11, 491. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhu, Q.; Chen, M.; Huang, Q.; Wang, W.; Li, Q.; Huang, Y.; Di, W. The changing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measurement of density-dependent chemoresistance in ovarian cancer. Oncotarget 2016, 7, 70803–70821. [Google Scholar] [CrossRef] [PubMed]
- Ou, T.T.; Wang, C.J.; Lee, Y.S.; Wu, C.H.; Lee, H.J. Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3beta release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells. Mol. Nutr. Food. Res. 2010, 54, 1781–1790. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, C.; Singh, R.P.; Dhanalakshmi, S.; Tyagi, A.K.; Tecklenburg, M.; Sclafani, R.A.; Agarwal, R. Silibinin upregulates the expression of cyclin-dependent kinase inhibitors and causes cell cycle arrest and apoptosis in human colon carcinoma HT-29 cells. Oncogene 2003, 22, 8271–8282. [Google Scholar] [CrossRef]
- Taylor, W.R.; Stark, G.R. Regulation of the G2/M transition by p53. Oncogene 2001, 20, 1803–1815. [Google Scholar] [CrossRef]
- Tsujimoto, Y. Cell death regulation by the Bcl-2 protein family in the mitochondria. J. Cell. Physiol. 2003, 195, 158–167. [Google Scholar] [CrossRef]
- Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene 2003, 22, 9030–9040. [Google Scholar] [CrossRef]
- Flatt, P.M.; Tang, L.J.; Scatena, C.D.; Szak, S.T.; Pietenpol, J.A. p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol. Cell. Biol. 2000, 20, 4210–4223. [Google Scholar] [CrossRef]
- Engeland, K. Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death Differ. 2018, 25, 114–132. [Google Scholar] [CrossRef]
- Wang, R.; Ma, L.; Weng, D.; Yao, J.; Liu, X.; Jin, F. Gallic acid induces apoptosis and enhances the anticancer efects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol. Rep. 2016, 35, 3075–3083. [Google Scholar] [CrossRef]
- Sánchez-Carranza, J.N.; Díaz, J.F.; Redondo-Horcajo, M.; Barasoain, I.; Alvarez, L.; Lastres, P.; Romero-Estrada, A.; Aller, P.; González-Maya, L. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation. Oncol. Rep. 2018, 39, 3007–3014. [Google Scholar] [CrossRef] [PubMed]
- Pargi, M.; Jain Raviraj, S.K.; Narayanappa, P.; Urumarudappa, S.K.J.; Malleshappa, P.; Malleshappa, K.H. Antiproliferative Effects of Artabotrys odoratissimus Fruit Extract and its Bioactive Fraction through Upregulation of p53/γH2AX Signals and G2/M Phase Arrest in MIA PaCa-2 Cells. Anticancer Agents Med. Chem. 2022, 22, 2998–3008. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carranza, J.N.; Alvarez, L.; Marquina-Bahena, S.; Salas-Vidal, E.; Cuevas, V.; Jiménez, E.W.; Veloz, G.R.A.; Carraz, M.; González-Maya, L. Phenolic Compounds Isolated from Caesalpinia coriaria Induce S and G2/M Phase Cell Cycle Arrest Differentially and Trigger Cell Death by Interfering with Microtubule Dynamics in Cancer Cell Lines. Molecules 2017, 22, 666. [Google Scholar] [CrossRef] [PubMed]
- Chipuk, J.E.; Kuwana, T.; Bouchier-Hayes, L.; Droin, N.M.; Newmeyer, D.D.; Schuler, M.; Green, D.R. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Imran, M.; Choi, J.H.; Park, Y.J.; Kim, Y.H.; Min, S.; Park, T.J.; Choi, Y.W. CDK4/6 inhibitors induce breast cancer senescence with enhanced anti-tumor immunogenic properties compared with DNA-damaging agents. Mol. Oncol. 2024, 18, 216–232. [Google Scholar] [CrossRef]
- Libalova, H.; Zavodna, T.; Margaryan, H.; Elzeinova, F.; Milcova, A.; Vrbova, K.; Barosova, H.; Cervena, T.; Topinka, J.; Rössner, P. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. Toxicol. In Vitro 2024, 94, 105710. [Google Scholar] [CrossRef]
- Beltzig, L.; Christmann, M.; Dobreanu, M.; Kaina, B. Genotoxic and Cytotoxic Activity of Fisetin on Glioblastoma Cells. Anticancer Res. 2024, 44, 901–910. [Google Scholar] [CrossRef]
P53: F: CACGAGCGCTGCTCAGATAGC, R: ACAGGCACAAACACGCACAAA |
BAX: F: TTCATCCAGGATCGAGCAGA, R: GCAAAGTAGAAGGCAACG |
β-Actin: F: CCTCTGAACCCTAAGGCCAAC, R: TGCCACAGGATTCCATACCC |
GAPDH; F: CGGAGTCAACGGATTTGGTCGTAT, R: GCCTTCTCCATGGTGGTGAAGAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarı, U.; Zaman, F.; Özdemir, İ.; Öztürk, Ş.; Tuncer, M.C. Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway. Biomedicines 2024, 12, 2632. https://doi.org/10.3390/biomedicines12112632
Sarı U, Zaman F, Özdemir İ, Öztürk Ş, Tuncer MC. Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway. Biomedicines. 2024; 12(11):2632. https://doi.org/10.3390/biomedicines12112632
Chicago/Turabian StyleSarı, Umut, Fuat Zaman, İlhan Özdemir, Şamil Öztürk, and Mehmet Cudi Tuncer. 2024. "Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway" Biomedicines 12, no. 11: 2632. https://doi.org/10.3390/biomedicines12112632
APA StyleSarı, U., Zaman, F., Özdemir, İ., Öztürk, Ş., & Tuncer, M. C. (2024). Gallic Acid Induces HeLa Cell Lines Apoptosis via the P53/Bax Signaling Pathway. Biomedicines, 12(11), 2632. https://doi.org/10.3390/biomedicines12112632