Baseline Imaging Derived Predictive Factors of Response Following [177Lu]Lu-PSMA-617 Therapy in Salvage Metastatic Castration-Resistant Prostate Cancer: A Lesion- and Patient-Based Analysis
<p>Flow-chart of the retrospective included patients.</p> "> Figure 2
<p>Example of two patients: responder and non-responder after two cycles of [<sup>177</sup>Lu]Lu-PSMA-617 treatment. (<b>a</b>): Responder (TL-PSMA reduction 95.01%, PSA-reduction: 99.5%): 78-year-old men with a Gleason score of nine, a ECOG performance score zero and a SUV<sub>peak</sub> of the most avid lesion of 17.7. Activity first cycle [<sup>177</sup>Lu]Lu-PSMA-617: 6.3 GBq, activity second cycle [<sup>177</sup>Lu]Lu-PSMA-617: 6.3 GBq. TL-PSMA pre-treatment: 1961.02 SUV<sub>lbm,peak</sub>*cm<sup>3</sup>, TL-PSMA post-treatment: 97.79 SUV<sub>lbm,peak</sub>*cm<sup>3</sup>. (<b>b</b>): Non-responder (TL-PSMA increase: 750.77%, PSA-increase: 566.7%): 69-year-old men with a Gleason score of eight, a ECOG performance score of two and a SUV<sub>peak</sub> of the most avid lesion of 9.48. Activity first cycle [<sup>177</sup>Lu]Lu-PSMA-617: 6.2 GBq, activity second cycle [<sup>177</sup>Lu]Lu-PSMA-617: 6.2GBq. TL-PSMA pre-treatment: 260.58 SUV<sub>lbm,peak</sub>*cm<sup>3</sup>, TL-PSMA post-treatment: 2216.94 SUV<sub>lbm,peak</sub>*cm<sup>3</sup>.</p> "> Figure 3
<p>Receiver Operating Characteristics-curves for the predicting of imaging-based response including bootstrap-corrected c-statistic of the three separately tested models in logistic regression. (<b>a</b>): SUV<sub>peak</sub> all measured lesions together, (<b>b</b>): SUV<sub>peak</sub> lymph node metastases, (<b>c</b>): SUV<sub>peak</sub> bone metastases. Legend: AUC = Area under the curve, SUV = Standardized uptake value.</p> "> Figure 4
<p>SUV<sub>peak</sub> values per response category on the tumor-level. Legend: iCR = Imaging complete response, iPD = Imaging progression disease, iPR = Imaging partial response, iSD = Imaging stable disease, SUV = Standardized uptake value.</p> "> Figure 5
<p>Relationship between metastasis type, response, and accumulation. Numbers in the plot indicate the number of tumors in the corresponding group. Legend: iCR = Imaging complete response, iPD = Imaging progression disease, iPR = Imaging partial response, iSD = Imaging stable disease, SUV = Standardized uptake value.</p> "> Figure 6
<p>Kaplan–Meier curves showing the significant survival probability, expressed as a percentage, following the first cycle of [<sup>177</sup>Lu]Lu-PSMA-617 treatment. (<b>a</b>): ECOG performance score, (<b>b</b>): Primary prostate in situ yes or no, (<b>c</b>): Imaging-based response (≥30 TL-PSMA reduction) yes or no, (<b>d</b>): Biochemical response (>50% PSA reduction) yes or no. Legend: ECOG = Eastern Cooperative Oncology Group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Image Acquisition and Reconstruction
2.3. Imaging Analysis
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Lesion-Level
3.2. Patient-Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | Median Value (IQR) |
---|---|
Hematological parameters | |
| 7.6 (7.0–8.2) |
| 271.0 (223.0–319.0) |
Biochemical parameters | |
| 103.0 (68.0–192.0) |
| 24.5 (20.3–39.8) |
| 40.5 (38.2–41.5) |
| 232.0 (195.5–363.0) |
| 28.5 (20.3–64.5) |
| 210.0 (70.75–547.50) |
Characteristic | Median Value (IQR) |
---|---|
Administered [68Ga]Ga-PSMA-11 baseline scan, MBq/kg | 1.61 (1.55–2.06) |
Administered [68Ga]Ga-PSMA-11 post-treatment scan, MBq/kg | 1.55 (1.50–1.59) |
Incubation time baseline scan, minutes | 62 (57–71) |
Incubation time post-treatment scan, minutes | 66 (58–75) |
Time between baseline and post-treatment scan, days | 109 (96–149) |
Administered [177Lu]Lu-PSMA-617 first cycle, MBq | 6049 (5965–6932) |
Administered [177Lu]Lu-PSMA-617 second cycle, MBq | 6235 (5968–7108) |
Time between pre-treatment [68Ga]Ga-PSMA-11 and first [177Lu]Lu-PSMA-617 cycle, days | 30 (17–52) |
Time between first and second [177Lu]Lu-PSMA-617 cycle, days | 43 (42–50) |
Time between second [177Lu]Lu-PSMA-617 cycle and post-treatment [68Ga]Ga-PSMA-11, days | 32 (32–34) |
Time between pre-treatment [68Ga]Ga-PSMA-11 and post-treatment [68Ga]Ga-PSMA-11, days | 109 (96–149) |
Time between second [177Lu]Lu-PSMA-617 cycle and post-therapy PSA measurement, days | 35 (32–38) |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Esteve, J.; et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075. [Google Scholar] [CrossRef] [Green Version]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- van Kalmthout, L.; Braat, A.; Lam, M.; van Leeuwaarde, R.; Krijger, G.; Ververs, T.; Mehra, N.; Bins, A.; Hunting, J.; de Keizer, B. First Experience With 177Lu-PSMA-617 Therapy for Advanced Prostate Cancer in the Netherlands. Clin. Nucl. Med. 2019, 44, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi Kumar, A.; Murphy, D.G.; et al. [(177)Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 825–833. [Google Scholar] [CrossRef]
- Yadav, M.P.; Ballal, S.; Bal, C.; Sahoo, R.K.; Damle, N.A.; Tripathi, M.; Seth, A. Efficacy and Safety of 177Lu-PSMA-617 Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer Patients. Clin. Nucl. Med. 2020, 45, 19–31. [Google Scholar] [CrossRef]
- Ahmadzadehfar, H.; Schlolaut, S.; Fimmers, R.; Yordanova, A.; Hirzebruch, S.; Schlenkhoff, C.; Gaertner, F.C.; Awang, Z.H.; Hauser, S.; Essler, M. Predictors of overall survival in metastatic castration-resistant prostate cancer patients receiving [(177)Lu]Lu-PSMA-617 radioligand therapy. Oncotarget 2017, 8, 103108–103116. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, K.; Ahmadzadehfar, H.; Kratochwil, C.; Haberkorn, U.; Schafers, M.; Essler, M.; Baum, R.P.; Kulkarni, H.R.; Schmidt, M.; Drzezga, A.; et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. J. Nucl. Med. 2017, 58, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, K.; Boegemann, M.; Yordanova, A.; Eveslage, M.; Schafers, M.; Essler, M.; Ahmadzadehfar, H. PSMA targeted radioligandtherapy in metastatic castration resistant prostate cancer after chemotherapy, abiraterone and/or enzalutamide. A retrospective analysis of overall survival. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 12–19. [Google Scholar] [CrossRef]
- Huang, K.; Schatka, I.; Rogasch, J.M.M.; Lindquist, R.L.; De Santis, M.; Erber, B.; Radojewski, P.; Brenner, W.; Amthauer, H. Explorative analysis of a score predicting the therapy response of patients with metastatic, castration resistant prostate cancer undergoing radioligand therapy with (177)Lu-labeled prostate-specific membrane antigen. Ann. Nucl. Med. 2020, 35, 314–320. [Google Scholar] [CrossRef]
- Emmett, L.; Crumbaker, M.; Ho, B.; Willowson, K.; Eu, P.; Ratnayake, L.; Epstein, R.; Blanksby, A.; Horvath, L.; Guminski, A.; et al. Results of a Prospective Phase 2 Pilot Trial of (177)Lu-PSMA-617 Therapy for Metastatic Castration-Resistant Prostate Cancer Including Imaging Predictors of Treatment Response and Patterns of Progression. Clin. Genitourin Cancer 2019, 17, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Manafi-Farid, R.; Harsini, S.; Saidi, B.; Ahmadzadehfar, H.; Herrmann, K.; Briganti, A.; Walz, J.; Beheshti, M. Factors predicting biochemical response and survival benefits following radioligand therapy with [(177)Lu]Lu-PSMA in metastatic castrate-resistant prostate cancer: A review. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4028–4041. [Google Scholar] [CrossRef] [PubMed]
- Ahmadzadehfar, H.; Eppard, E.; Kurpig, S.; Fimmers, R.; Yordanova, A.; Schlenkhoff, C.D.; Gartner, F.; Rogenhofer, S.; Essler, M. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget 2016, 7, 12477–12488. [Google Scholar] [CrossRef] [PubMed]
- Boellaard, R.; Delgado-Bolton, R.; Oyen, W.J.; Giammarile, F.; Tatsch, K.; Eschner, W.; Verzijlbergen, F.J.; Barrington, S.F.; Pike, L.C.; Weber, W.A.; et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 328–354. [Google Scholar] [CrossRef]
- van der Sar, E.C.A.; de Keizer, B.; Lam, M.; Braat, A. Competition (‘Steal’ Phenomenon) between [(68)Ga]Ga-PSMA-11 Uptake in Prostate Tumor Tissue Versus Healthy Tissue. Pharmaceutics 2021, 13, 699. [Google Scholar] [CrossRef]
- Janmahasatian, S.; Duffull, S.B.; Ash, S.; Ward, L.C.; Byrne, N.M.; Green, B. Quantification of lean bodyweight. Clin. Pharmacokinet. 2005, 44, 1051–1065. [Google Scholar] [CrossRef]
- Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M.A. From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009, 50 (Suppl. 1), 122S–150S. [Google Scholar] [CrossRef] [Green Version]
- Jansen, B.H.E.; Kramer, G.M.; Cysouw, M.C.F.; Yaqub, M.M.; de Keizer, B.; Lavalaye, J.; Booij, J.; Vargas, H.A.; Morris, M.J.; Vis, A.N.; et al. Healthy Tissue Uptake of (68)Ga-Prostate-Specific Membrane Antigen, (18)F-DCFPyL, (18)F-Fluoromethylcholine, and (18)F-Dihydrotestosterone. J. Nucl. Med. 2019, 60, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Schmidkonz, C.; Cordes, M.; Schmidt, D.; Bauerle, T.; Goetz, T.I.; Beck, M.; Prante, O.; Cavallaro, A.; Uder, M.; Wullich, B.; et al. (68)Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1862–1872. [Google Scholar] [CrossRef]
- Schmuck, S.; von Klot, C.A.; Henkenberens, C.; Sohns, J.M.; Christiansen, H.; Wester, H.J.; Ross, T.L.; Bengel, F.M.; Derlin, T. Initial Experience with Volumetric (68)Ga-PSMA I&T PET/CT for Assessment of Whole-Body Tumor Burden as a Quantitative Imaging Biomarker in Patients with Prostate Cancer. J. Nucl. Med. 2017, 58, 1962–1968. [Google Scholar] [CrossRef] [Green Version]
- Werner, R.A.; Bundschuh, R.A.; Bundschuh, L.; Lapa, C.; Yin, Y.; Javadi, M.S.; Buck, A.K.; Higuchi, T.; Pienta, K.J.; Pomper, M.G.; et al. Semiquantitative Parameters in PSMA-Targeted PET Imaging with [(18)F]DCFPyL: Impact of Tumor Burden on Normal Organ Uptake. Mol. Imaging Biol. 2020, 22, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Scher, H.I.; Morris, M.J.; Stadler, W.M.; Higano, C.; Basch, E.; Fizazi, K.; Antonarakis, E.S.; Beer, T.M.; Carducci, M.A.; Chi, K.N.; et al. Trial Design and Objectives for Castration-Resistant Prostate Cancer: Updated Recommendations From the Prostate Cancer Clinical Trials Working Group 3. J. Clin. Oncol. 2016, 34, 1402–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scher, H.I.; Halabi, S.; Tannock, I.; Morris, M.; Sternberg, C.N.; Carducci, M.A.; Eisenberger, M.A.; Higano, C.; Bubley, G.J.; Dreicer, R.; et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: Recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 2008, 26, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandus, J.; Eppard, E.; Gaertner, F.C.; Kurpig, S.; Fimmers, R.; Yordanova, A.; Hauser, S.; Feldmann, G.; Essler, M.; Ahmadzadehfar, H. Predictors of Response to Radioligand Therapy of Metastatic Castrate-Resistant Prostate Cancer with 177Lu-PSMA-617. J. Nucl. Med. 2017, 58, 312–319. [Google Scholar] [CrossRef]
- Gafita, A.; Calais, J.; Grogan, T.R.; Hadaschik, B.; Wang, H.; Weber, M.; Sandhu, S.; Kratochwil, C.; Esfandiari, R.; Tauber, R.; et al. Nomograms to predict outcomes after (177)Lu-PSMA therapy in men with metastatic castration-resistant prostate cancer: An international, multicentre, retrospective study. Lancet Oncol. 2021, 22, 1115–1125. [Google Scholar] [CrossRef]
- Mihatsch, P.W.; Beissert, M.; Pomper, M.G.; Bley, T.A.; Seitz, A.K.; Kubler, H.; Buck, A.K.; Rowe, S.P.; Serfling, S.E.; Hartrampf, P.E.; et al. Changing Threshold-Based Segmentation Has No Relevant Impact on Semi-Quantification in the Context of Structured Reporting for PSMA-PET/CT. Cancers 2022, 14, 270. [Google Scholar] [CrossRef]
- Im, H.J.; Bradshaw, T.; Solaiyappan, M.; Cho, S.Y. Current Methods to Define Metabolic Tumor Volume in Positron Emission Tomography: Which One is Better? Nucl. Med. Mol. Imaging 2018, 52, 5–15. [Google Scholar] [CrossRef]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Bronzel, M.; Apostolidis, C.; Weichert, W.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017, 58, 1624–1631. [Google Scholar] [CrossRef] [Green Version]
- Krenning, E.P.; Valkema, R.; Kooij, P.P.; Breeman, W.A.; Bakker, W.H.; deHerder, W.W.; vanEijck, C.H.; Kwekkeboom, D.J.; deJong, M.; Pauwels, S. Scintigraphy and radionuclide therapy with [indium-111-labelled-diethyl triamine penta-acetic acid-D-Phe1]-octreotide. Ital. J. Gastroenterol. Hepatol. 1999, 31 (Suppl. 2), S219–S223. [Google Scholar]
- Kuo, P.H.; Benson, T.; Messmann, R.; Groaning, M. Why We Did What We Did: PSMA-PET/CT Selection Criteria for the VISION Trial. J. Nucl. Med. 2022, 63, 816–818. [Google Scholar] [CrossRef]
Characteristic | Value |
---|---|
Patients, number | 32 |
Age, years (mean, SD) | 70 (6.75) |
Baseline PSA, ng/mL (median, IQR) | 210.0 (70.75–547.50) a |
Weight, kg (median, IQR) | 87 (76.25–95.75) |
Gleason-score (following ISUP grade group): number of patients (%) | |
- 1 | 2 (6.2) |
- 2/3 | 4 (12.5) |
- 4 | 5 (15.6) |
- 5 | 14 (43.8) |
- Not reported | 7 (21.9) |
Prior therapy: number of patients (%) | |
Surgical resection of primary tumor | 15 (46.9) |
Docetaxel and/or cabazitaxel | 26 (81.3) |
Abiraterone and/or enzalutamide | 31 (96.9) |
223Radium | 13 (40.6) |
ECOG performance score: number of patients (%) | |
- 0 | 12 (37.5) |
- 1 | 16 (50.0) |
- 2 | 4 (12.5) |
Regular need for pain medication, number of patients (%) | 15 (46.9) |
Extension of disease: number of patients (%) | |
Lymph node metastasis | 24 (75) |
Bone metastasis | 30 (93.8) |
Visceral metastasis | 7 (21.9) |
Characteristic | Baseline | After 2 Cycles of [177Lu]Lu-PSMA-617 |
---|---|---|
PSMA-TV, mL (median, IQR) | 702.17 (340.54–1376.33) | 386.5 (188.8–973.8) |
TL-PSMA, SUVlbm,peak*cm3 (median, IQR) | 3755.54 (1804.3–9435.3) | 2112.96 (1102.53–4849.83) |
SUVpeak (median, IQR) | ||
| 13.70 (9.29–20.56) | 8.80 (6.13–14.09) |
| 7.40 (3.94–13.40) | 4.54 (2.36–8.85) |
| 6.84 (2.92–16.09) | 4.07 (1.92–8.09) |
| 7.33 (3.74–13.72) | 8.15 (2.77–9.28) |
SUVmax (median, IQR) | ||
| 16.99 (13.03–21.77) | 10.69 (7.12–17.20) |
| 10.54 (6.43–19.61) | 6.38 (3.46–11.67) |
| 9.92 (4.36–21.05) | 5.49 (2.59–10.16) |
| 12.80 (5.34–15.20) | 9.75 (3.39–10.79) |
Overall survival, months (median, IQR) | 10 (7–17) | |
Death, number of patients (%) | 28 (87.5) |
Parameter | iCR (n) % | iPR (n) % | iSD (n) % | iPD (n) % | Total |
---|---|---|---|---|---|
Patient-level (TL-PSMA) | NA | 21 (66%) | 6 (19%) | 5 (16%) | 32 |
Lesion-level (SUVpeak) | |||||
| 8 (9%) | 49 (57%) | 18 (21%) | 11 (13%) | 86 |
| 24 (20%) | 51 (43%) | 31 (26%) | 13 (11%) | 119 |
| 1 (6%) | 7 (41%) | 5 (29%) | 4 (24%) | 17 |
| 1 (7%) | 8 (53%) | 6 (40%) | 0 | 15 |
| 34 (14%) | 115 (49%) | 60 (25%) | 28 (12%) | 237 |
Coefficient | Exp(coeff) | p-Value | |
---|---|---|---|
Outcome = log(SUVpeak) | <0.001 a | ||
Non-responders | ref | ||
Responders | 0.59 (0.35–0.83) | 1.80 (1.42–2.29) | <0.001 |
Outcome = log(SUVmax) | <0.001 a | ||
Non-responders | ref | ||
Responders | 0.61 (0.38–0.84) | 1.84 (1.46–2.31) | <0.001 |
Outcome = log(SUVpeak) | <0.001 a | ||
iPD | ref | ||
iSD | 0.62 (0.28–0.96) | 1.86 (1.32–2.62) | <0.001 |
iPR | 1.33 (1.01–1.66) | 3.79 (2.74–5.25) | <0.001 |
iCR | −0.01 (−0.4–0.38) | 0.99 (0.67–1.46) | 0.960 |
Outcome = log(SUVmax) | <0.001 a | ||
iPD | ref | ||
iSD | 0.54 (0.22–0.87) | 1.72 (1.24–2.38) | 0.001 |
iPR | 1.28 (0.97–1.59) | 3.6 (2.64–4.92) | <0.001 |
iCR | 0.01 (−0.37–0.38) | 1.01 (0.69–1.47) | 0.965 |
Response Category | SUVpeak |
---|---|
iPD | 3.32 (2.44–4.51) |
iSD | 6.19 (5.02–7.63) |
iPR | 12.6 (10.75–14.77) |
iCR | 3.29 (2.5–4.32) |
Response Category | SUVmax |
iPD | 4.99 (3.69–6.74) |
iSD | 8.58 (6.96–10.57) |
iPR | 17.96 (15.26–21.15) |
iCR | 5.03 (3.85–6.57) |
Parameter | Biochemical Response (PSA Reduction > 50% y/n) | Imaging-Based Response (TL-PSMA Reduction ≥ 30% y/n) |
---|---|---|
OR, 95% CI, p-value | OR, 95% CI, p-value | |
Baseline PSA (log) (ug/mL) | 1.74 (0.859–3.54, p = 0.096) | 2.074 (1.043–4.12, p = 0.019) |
Age (years) | 1.07 (0.951–1.20, p = 0.252) | 1.06 (0.939–1.196, p = 0.336) |
Total activity [177Lu]Lu-PSMA-617 (GBq) | 0.535 (0.234–1.22, p = 0.092) | 0.966 (0.534–1.748, p = 0.910) |
ECOG performance score ≥ 1 | 0.334 (0.069–1.628, p = 0.169) | 0.577 (0.112–2.979, p = 0.506) |
Need of pain medication y/n | 0.713 (0.144–3.53, p = 0.678) | 0.315 (0.064–1.557, p = 0.151) |
Previous [223Ra]Ra-dichloride y/n | 2.276 (0.412–12.6, p = 0.338) | 3.597 (0.596–21.7, p = 0.138) |
Lymph node involvement y/n | 0.545 (0.092–3.25, p = 0.503) | 0.648 (0.102–4.128, p = 0.641) |
Visceral metastases y/n | 0.201 (0.019–2.172, p = 0.144) | 0.332 (0.054–2.02, p = 0.232) |
Prostate in situ y/n | 1.358 (0.292–6.31, p = 0.696) | 0.874 (0.183–4.169, p = 0.866) |
Baseline Hb | 0.718 (0.293–1.76, p = 0.464) | 0.735 (0.334–1.618, p = 0.435) |
Baseline Plt | 0.999 (0.989–1.01, p = 0.789) | 1.001 (0.991–1.01, p = 0.858) |
Baseline ALP | 0.997 (0.986–1.01, p = 0.563) | 1.001 (0.992–1.01, p = 0.810) |
Baseline AST | 0.964 (0.888–1.05, p = 0.353) | 0.973 (0.916–1.034, p = 0.369) |
Baseline Alb | 1.035 (0.677–1.58, p = 0.874) | 0.865 (0.617–1.213, p = 0.381) |
Baseline LDH | 0.999 (0.994–1.00, p = 0.786) | 0.998 (0.994–1.003, p = 0.494) |
Baseline GGT | 0.980 (0.947–1.01, p = 0.177) | 0.984 (0.960–1.009, p = 0.158) |
SUVpeak of primary tumor | 1.016 (0.932–1.11, p = 0.719) | 1.005 (0.916–1.102, p = 0.915) |
SUVpeak of most avid metastasis | 1.03 (0.987–1.074, p = 0.152) | 1.107 (0.977–1.254, p = 0.015) |
SUVmax of primary tumor | 1.00 (0.933–1.08, p = 0.911 | 0.994 (0.921–1.072, p = 0.872) |
SUVmax of most avid metastasis | 1.022 (0.987–1.059, p = 0.210) | 1.049 (0.985–1.117, p = 0.050) |
PSMA-TV (L) | 0.567 (0.224–1.44, p = 0.113) | 0.807 (0.501–1.30, p = 0.372) |
TL-PSMA (SUVlbm,peak*m3) | 1.359 (0.827–2.233, p = 0.167) | 1.309 (0.823–2.081, p = 0.211) |
TL-PSMA ≥ 30% y/n | 23,363.18 (0.00–1.34 × 1028, p < 0.001) | NA |
PSA > 50% y/n | NA | 16,300 (0.00–9.6 × 1029, p < 0.001) |
Parameter | HR | p-Value |
---|---|---|
PSMA-TV (per liter) | 1.25 | 0.113 |
TL-PSMA (per 1000) | 1.04 | 0.316 |
Highest SUVpeak | 0.98 | 0.121 |
Highest SUVmax | 0.99 | 0.163 |
SUVpeak ≥ 14.87 | 0.42 | 0.115 |
Gleason (following ISUP grade group) | 0.386 | |
1 | ref | |
2/3 | 0.27 | 0.169 |
4 | 0.35 | 0.245 |
5 | 0.26 | 0.090 |
Unknown | 0.15 | 0.034 |
ECOG performance score | 0.104 | |
0 | ref | |
1 | 0.99 | 0.971 |
2 | 4.09 | 0.026 |
Lymph node involvement | 0.89 | 0.800 |
Visceral metastases | 1.30 | 0.565 |
Biochemical response (PSA reduction > 50%) = yes | 0.429 | 0.047 |
Imaging-based response (TL-PSMA reduction ≥ 30%) = yes | 0.457 | 0.061 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Sar, E.C.A.; Kühr, A.J.S.; Ebbers, S.C.; Henderson, A.M.; de Keizer, B.; Lam, M.G.E.H.; Braat, A.J.A.T. Baseline Imaging Derived Predictive Factors of Response Following [177Lu]Lu-PSMA-617 Therapy in Salvage Metastatic Castration-Resistant Prostate Cancer: A Lesion- and Patient-Based Analysis. Biomedicines 2022, 10, 1575. https://doi.org/10.3390/biomedicines10071575
van der Sar ECA, Kühr AJS, Ebbers SC, Henderson AM, de Keizer B, Lam MGEH, Braat AJAT. Baseline Imaging Derived Predictive Factors of Response Following [177Lu]Lu-PSMA-617 Therapy in Salvage Metastatic Castration-Resistant Prostate Cancer: A Lesion- and Patient-Based Analysis. Biomedicines. 2022; 10(7):1575. https://doi.org/10.3390/biomedicines10071575
Chicago/Turabian Stylevan der Sar, Esmée C. A., Adinda J. S. Kühr, Sander C. Ebbers, Andrew M. Henderson, Bart de Keizer, Marnix G. E. H. Lam, and Arthur J. A. T. Braat. 2022. "Baseline Imaging Derived Predictive Factors of Response Following [177Lu]Lu-PSMA-617 Therapy in Salvage Metastatic Castration-Resistant Prostate Cancer: A Lesion- and Patient-Based Analysis" Biomedicines 10, no. 7: 1575. https://doi.org/10.3390/biomedicines10071575
APA Stylevan der Sar, E. C. A., Kühr, A. J. S., Ebbers, S. C., Henderson, A. M., de Keizer, B., Lam, M. G. E. H., & Braat, A. J. A. T. (2022). Baseline Imaging Derived Predictive Factors of Response Following [177Lu]Lu-PSMA-617 Therapy in Salvage Metastatic Castration-Resistant Prostate Cancer: A Lesion- and Patient-Based Analysis. Biomedicines, 10(7), 1575. https://doi.org/10.3390/biomedicines10071575