Simultaneous Use of Ground-Based and Satellite Observation to Evaluate Atmospheric Air Pollution over Amman, Jordan
<p>(<b>a</b>) Topography of Jordan and neighboring countries provided by Shuttle Radar Topography Mission project (SRTM) and (<b>b</b>) Landsat 8 true color image of Amman, ground-based particulate matter station, and some important locations surrounding Amman.</p> "> Figure 2
<p>Daily average PM concentrations were measured at the in situ station with markups for sand and dust episodes (SDS), precipitation, and clean air periods.</p> "> Figure 3
<p>(<b>a</b>) Time series of the PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math> concentration in addition to the surface wind speed, HV, and RH recordings on 7 June 2018. (<b>b</b>) Terra-MODIS with 10 km resolution (MOD04).(<b>c</b>) Angström exponent (AE) with 1 degree resolution (MOD08 and MYD08).</p> "> Figure 4
<p>(<b>a</b>) CALIPSO satellite ground track (red line) and the location of Amman (green circle) on 7 June 7 2018. (<b>b</b>) Cross-section of attenuated backscatter coefficient in arbitrary units (AU) by CALIPSO over Amman and the neighboring area. Vertical profile of optical and physical properties of aerosols within the region determined by a dashed line in <a href="#atmosphere-14-00274-f004" class="html-fig">Figure 4</a>a in (<b>c</b>) total particle backscatter coefficient. (<b>d</b>) Particle depolarization ratio; the horizontal red dashed line is drawn to depict a two-layer structure in the atmosphere. (<b>e</b>) Dust and non-dust backscatter coefficient. (<b>f</b>) Dust and non-dust mass concentration.</p> "> Figure 5
<p>(<b>a</b>) SEVIRI false-color images at 06:00 UTC and (<b>b</b>) 12:00 UTC on 6 June 2018. In these RGB images, clouds appear in orange or brown, dust in magenta or pink, sandy regions in white, and dry land in pale blue. (<b>c</b>) Backward trajectories during the past 72 h by the HYSPLIT model on 7 June 2018 calculated at different heights and overlaid by MODIS Deep Blue AOD. (<b>d</b>,<b>e</b>) Corresponding surface wind speed and direction at 06:00 UTC and 12:00 UTC by the ECMWF reanalysis.</p> "> Figure 6
<p>Sand and dust storm episode observed on 25 July 2018, which was an S-type SDS. (<b>a</b>) PM concentrations observed during the ground-based measurement, (<b>b</b>) MODIS 1 degree Deep Blue aerosol optical depth, and (<b>c</b>) MODIS 1 degree Deep Blue angström exponent.</p> "> Figure 7
<p>(<b>a</b>) CALIPSO satellite ground track (red line) and the location of Amman (green circle) on 25 July 2018. (<b>b</b>) Cross-section of attenuated backscatter coefficient in arbitrary units (AU) by CALIPSO over Amman and the neighboring area. Vertical profile of optical and physical properties of aerosols within the region determined by a dashed line in <a href="#atmosphere-14-00274-f007" class="html-fig">Figure 7</a>a in (<b>c</b>) total particle backscatter coefficient. (<b>d</b>) Particle depolarization ratio. (<b>e</b>) Dust and non-dust backscatter coefficient. (<b>f</b>) Dust and non-dust mass concentration.</p> "> Figure 8
<p>(<b>a</b>) Backward trajectories during the past 132 h by the HYSPLIT model on 25 July 2018 calculated at different heights, overlaid by MODIS Deep Blue AOD (on 21 July 2018) and corresponding CALIPSO ground track during transport path. (<b>b</b>) The attenuated backscatter coefficient in arbitrary units (AU). (<b>c</b>) The CALIPSO aerosol subtype classification. The horizontal axis for all panels of <a href="#atmosphere-14-00274-f008" class="html-fig">Figure 8</a>b,c is the same. This axis shows latitude from <math display="inline"><semantics> <msup> <mn>27</mn> <mo>∘</mo> </msup> </semantics></math> N to <math display="inline"><semantics> <msup> <mn>34</mn> <mo>∘</mo> </msup> </semantics></math> N.</p> "> Figure 9
<p>(<b>a</b>) Bar plots show the median (horizontal line), 25–75 percentile (box), and 5–95 percentile (whisker) of layer-mean particlulate linear depolarization ratio and lidar ratio at 532 nm wavelength, the same for color ratio and relative humidity. (<b>b</b>) Polar scatter plots of daily IPDR values along the period of study. (<b>c</b>) Monthly distribution of the observed layer containing different aerosol types (Dust, Polluted dust, Pollution).</p> "> Figure 10
<p>Histogram of (<b>a</b>) lofted-layer top heights and (<b>b</b>) depths during January 2018–December 2019. The type of observed aerosol layer has also been shown by a pie chart for each category.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement Location and Study Region
2.2. Ground-Based Measurement
2.3. Satellite Data
2.3.1. CALIPSO
2.3.2. MODIS
2.3.3. MSG-SEVIRI, RGB Dust Product
2.4. Reanalysis Models
2.5. POLIPHON Method
3. Results
- S-type originated from the Sahara region,
- SL-type originated from Sahara and the Levant region (i.e., SDS combined from these two regions), and
- SLA-type originated from all three regions. This type is the most commonly reported in Jordan.
3.1. Overview of the PM Concentrations
3.2. Case Study 1: 7 June 2018
3.3. Case Study 2: 25 July 2018
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heese, B.; Floutsi, A.A.; Baars, H.; Althausen, D.; Hofer, J.; Herzog, A.; Mewes, S.; Radenz, M.; Schechner, Y.Y. The vertical aerosol type distribution above Israel–2 years of lidar observations at the coastal city of Haifa. Atmos. Chem. Phys. 2022, 22, 1633–1648. [Google Scholar] [CrossRef]
- Hussein, T.; Li, X.; Bakri, Z.; Alastuey, A.; Arar, S.; Al-Hunaiti, A.; Viana, M.; Petäjä, T. Organic and Elemental Carbon in the Urban Background in an Eastern Mediterranean City. Atmosphere 2022, 13, 197. [Google Scholar] [CrossRef]
- Hussein, T.; Dada, L.; Hakala, S.; Petäjä, T.; Kulmala, M. Urban aerosol particle size characterization in Eastern Mediterranean conditions. Atmosphere 2019, 10, 710. [Google Scholar] [CrossRef] [Green Version]
- Hussein, T.; Saleh, S.S.A.; dos Santos, V.N.; Abdullah, H.; Boor, B.E. Black carbon and particulate matter concentrations in Eastern Mediterranean urban conditions: An assessment based on integrated stationary and mobile observations. Atmosphere 2019, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Berresheim, H.; Borrmann, S.; Crutzen, P.; Dentener, F.; Fischer, H.; Feichter, J.; Flatau, P.; Heland, J.; Holzinger, R.; et al. Global air pollution crossroads over the Mediterranean. Science 2002, 298, 794–799. [Google Scholar] [CrossRef] [Green Version]
- Rogozovsky, I.; Ansmann, A.; Althausen, D.; Heese, B.; Engelmann, R.; Hofer, J.; Baars, H.; Schechner, Y.; Lyapustin, A.; Chudnovsky, A. Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements. Atmos. Environ. 2021, 247, 118163. [Google Scholar] [CrossRef]
- Hussein, T.; Li, X.; Al-Dulaimi, Q.; Daour, S.; Atashi, N.; Viana, M.; Alastuey, A.; Sogacheva, L.; Arar, S.; Al-Hunaiti, A.; et al. Particulate matter concentrations in a middle eastern city–An insight to sand and dust storm episodes. Aerosol Air Qual. Res. 2020, 20, 2780–2792. [Google Scholar] [CrossRef]
- Pey, J.; Querol, X.; Alastuey, A.; Forastiere, F.; Stafoggia, M. African dust outbreaks over the Mediterranean Basin during 2001–2011: PM 10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos. Chem. Phys. 2013, 13, 1395–1410. [Google Scholar] [CrossRef] [Green Version]
- Dayan, U.; Ziv, B.; Shoob, T.; Enzel, Y. Suspended dust over southeastern Mediterranean and its relation to atmospheric circulations. Int. J. Climatol. J. R. Meteorol. Soc. 2008, 28, 915–924. [Google Scholar] [CrossRef]
- Ganor, E.; Osetinsky, I.; Stupp, A.; Alpert, P. Increasing trend of African dust, over 49 years, in the eastern Mediterranean. J. Geophys. Res. Atmos. 2010, 115, D07201. [Google Scholar] [CrossRef]
- Engelmann, R.; Kanitz, T.; Baars, H.; Heese, B.; Althausen, D.; Skupin, A.; Wandinger, U.; Komppula, M.; Stachlewska, I.S.; Amiridis, V.; et al. The automated multiwavelength Raman polarization and water-vapor lidar Polly XT: The neXT generation. Atmos. Meas. Tech. 2016, 9, 1767–1784. [Google Scholar] [CrossRef] [Green Version]
- Radenz, M.; Seifert, P.; Baars, H.; Floutsi, A.A.; Yin, Z.; Bühl, J. Automated time–height-resolved air mass source attribution for profiling remote sensing applications. Atmos. Chem. Phys. 2021, 21, 3015–3033. [Google Scholar] [CrossRef]
- Nisantzi, A.; Mamouri, R.E.; Ansmann, A.; Schuster, G.; Hadjimitsis, D.G. Middle East versus Saharan dust extinction-to-backscatter ratios. Atmos. Chem. Phys. 2015, 15, 7071–7084. [Google Scholar] [CrossRef] [Green Version]
- Mamouri, R.E.; Ansmann, A.; Nisantzi, A.; Kokkalis, P.; Schwarz, A.; Hadjimitsis, D. Low Arabian dust extinction-to-backscatter ratio. Geophys. Res. Lett. 2013, 40, 4762–4766. [Google Scholar] [CrossRef]
- Papayannis, A.; Amiridis, V.; Mona, L.; Tsaknakis, G.; Balis, D.; Bösenberg, J.; Chaikovski, A.; De Tomasi, F.; Grigorov, I.; Mattis, I.; et al. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002). J. Geophys. Res. Atmos. 2008, 113, D10204. [Google Scholar] [CrossRef] [Green Version]
- Mamouri, R.E.; Ansmann, A. Fine and coarse dust separation with polarization lidar. Atmos. Meas. Tech. 2014, 7, 3717–3735. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Mačak, M.B.; Stanič, S.; Bergant, K.; Gregorič, A.; Drinovec, L.; Močnik, G.; Yin, Z.; Yi, Y.; Müller, D.; et al. Investigation of Aerosol Types and Vertical Distributions Using Polarization Raman Lidar over Vipava Valley. Remote Sens. 2022, 14, 3482. [Google Scholar] [CrossRef]
- Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.; Močnik, G.; Drinovec, L.; Vaupotič, J.; Miler, M.; Gosar, M.; Gregorič, A. Retrieval of vertical mass concentration distributions—Vipava valley case study. Remote Sens. 2019, 11, 106. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Hussein, T.; Alameer, A.; Jaghbeir, O.; Albeitshaweesh, K.; Malkawi, M.; Boor, B.E.; Koivisto, A.J.; Löndahl, J.; Alrifai, O.; Al-Hunaiti, A. Indoor particle concentrations, size distributions, and exposures in middle eastern microenvironments. Atmosphere 2019, 11, 41. [Google Scholar] [CrossRef]
- Kishcha, P.; Volpov, E.; Starobinets, B.; Alpert, P.; Nickovic, S. Dust dry deposition over Israel. Atmosphere 2020, 11, 197. [Google Scholar] [CrossRef] [Green Version]
- Atashi, N.; Rahimi, D.; Al Kuisi, M.; Jiries, A.; Vuollekoski, H.; Kulmala, M.; Vesala, T.; Hussein, T. Modeling long-term temporal variation of dew formation in Jordan and its link to climate change. Water 2020, 12, 2186. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34, L19803. [Google Scholar] [CrossRef] [Green Version]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Hu, Y.; Winker, D.; Vaughan, M.; Lin, B.; Omar, A.; Trepte, C.; Flittner, D.; Yang, P.; Nasiri, S.L.; Baum, B.; et al. CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol. 2009, 26, 2293–2309. [Google Scholar] [CrossRef] [Green Version]
- Di Girolamo, P.; Gagliardi, R.; Pappalardo, G.; Spinelli, N.; Velotta, R.; Berardi, V. Two wavelength lidar analysis of stratospheric aerosol size distribution. J. Aerosol Sci. 1995, 26, 989–1001. [Google Scholar] [CrossRef]
- Burton, S.; Ferrare, R.; Hostetler, C.; Hair, J.; Rogers, R.; Obland, M.; Butler, C.; Cook, A.; Harper, D.; Froyd, K. Aerosol classification using airborne High Spectral Resolution Lidar measurements–methodology and examples. Atmos. Meas. Tech. 2012, 5, 73–98. [Google Scholar] [CrossRef] [Green Version]
- Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A. Aerosol classification by airborne high spectral resolution lidar observations. Atmos. Chem. Phys. 2013, 13, 2487–2505. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, M.A.; Powell, K.A.; Winker, D.M.; Hostetler, C.A.; Kuehn, R.E.; Hunt, W.H.; Getzewich, B.J.; Young, S.A.; Liu, Z.; McGill, M.J. Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Ocean. Technol. 2009, 26, 2034–2050. [Google Scholar] [CrossRef]
- Liu, Z.; Vaughan, M.; Winker, D.; Kittaka, C.; Getzewich, B.; Kuehn, R.; Omar, A.; Powell, K.; Trepte, C.; Hostetler, C. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. J. Atmos. Ocean. Technol. 2009, 26, 1198–1213. [Google Scholar] [CrossRef]
- Young, S.A.; Vaughan, M.A.; Garnier, A.; Tackett, J.L.; Lambeth, J.D.; Powell, K.A. Extinction and optical depth retrievals for CALIPSO’s Version 4 data release. Atmos. Meas. Tech. 2018, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, R.; Mattoo, S.; Munchak, L.; Remer, L.; Sayer, A.; Patadia, F.; Hsu, N. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.; Remer, L.; Kleidman, R.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.; Tanré, D.; Remer, L.A.; Vermote, E.; Chu, A.; Holben, B. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Hsu, N.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.; Hansell, R.; Seftor, C.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Reinhardt, B.; Buras, R.; Bugliaro, L.; Wilbert, S.; Mayer, B. Determination of circumsolar radiation from Meteosat Second Generation. Atmos. Meas. Tech. 2014, 7, 823–838. [Google Scholar] [CrossRef] [Green Version]
- Joro, S.; Samain, O.; Yildirim, A.; Van De Berg, L.; Lutz, H.J.; EUMETSAT. Towards an improved active fire monitoring product for MSG satellites. In Proceedings of the EUMETSAT Meteorological Satellite Conference, Darmstadt, Germany, 8–12 September 2008; pp. 8–12. [Google Scholar]
- Knippertz, P.; Todd, M.C. Mineral dust aerosols over the Sahara: Meteorological controls on emission and transport and implications for modeling. Rev. Geophys. 2012, 50, RG1007. [Google Scholar] [CrossRef]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Draxler, R.R. Hysplit (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL Ready Website. 2003. Available online: http://www.arl.noaa.gov/ready/hysplit4.html (accessed on 1 November 2022).
- ERA, C. Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS) 2017. Available online: https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 (accessed on 1 November 2022).
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Newsletter 2016, 147, 5–6. [Google Scholar]
- Mamouri, R.E.; Ansmann, A. Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles. Atmos. Meas. Tech. 2017, 10, 3403–3427. [Google Scholar] [CrossRef]
- Panahifar, H.; Moradhaseli, R.; Khalesifard, H.R. Monitoring atmospheric particulate matters using vertically resolved measurements of a polarization lidar, in-situ recordings and satellite data over Tehran, Iran. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tesche, M.; Ansmann, A.; Müller, D.; Althausen, D.; Engelmann, R.; Freudenthaler, V.; Groß, S. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Ansmann, A.; Mamouri, R.E.; Hofer, J.; Baars, H.; Althausen, D.; Abdullaev, S.F. Dust mass, cloud condensation nuclei, and ice-nucleating particle profiling with polarization lidar: Updated POLIPHON conversion factors from global AERONET analysis. Atmos. Meas. Tech. 2019, 12, 4849–4865. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Nagai, T.; Zaizen, Y.; Mano, Y. Backscattering linear depolarization ratio measurements of mineral, sea-salt, and ammonium sulfate particles simulated in a laboratory chamber. Appl. Opt. 2010, 49, 4441–4449. [Google Scholar] [CrossRef] [PubMed]
- Ansmann, A.; Seifert, P.; Tesche, M.; Wandinger, U. Profiling of fine and coarse particle mass: Case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes. Atmos. Chem. Phys. 2012, 12, 9399–9415. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, C.; Hu, Q.; Dong, Y.; Liu, H.; Xing, C.; Tan, W. Quantify the Contribution of Dust and Anthropogenic Sources to Aerosols in North China by Lidar and Validated with CALIPSO. Remote. Sens. 2021, 13, 1811. [Google Scholar] [CrossRef]
- Tesche, M.; Wandinger, U.; Ansmann, A.; Althausen, D.; Müller, D.; Omar, A. Ground-based validation of CALIPSO observations of dust and smoke in the Cape Verde region. J. Geophys. Res. Atmos. 2013, 118, 2889–2902. [Google Scholar] [CrossRef]
No. | Instrument | Model |
---|---|---|
1 | High volume sampler | Cascade heads: PM1025-CAV, MCV, S.A. Filter media: Pallflex, PALLXQ250ETDS0150, TISSUQUARTZ 2500 QAT-UP. |
2 | Optical particle sizer | OPS, TSI model 3330, USA |
3 | Scanning mobility particle sizer | NanoScan SMPS 3910, TSI, Minnesota, USA |
4 | Weather station | WH-1080, Clas Ohlson: Art.no. 36-3242 |
Aerosol Type | Parameter | ||
---|---|---|---|
S (sr) | mm | (g/cm) | |
Coarse dust | 40 | 0.9 | 2.6 |
Fine dust | 35 | 0.3 | 2.6 |
Non-dust | 60 | 0.18 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panahifar, H.; Bayat, F.; Hussein, T. Simultaneous Use of Ground-Based and Satellite Observation to Evaluate Atmospheric Air Pollution over Amman, Jordan. Atmosphere 2023, 14, 274. https://doi.org/10.3390/atmos14020274
Panahifar H, Bayat F, Hussein T. Simultaneous Use of Ground-Based and Satellite Observation to Evaluate Atmospheric Air Pollution over Amman, Jordan. Atmosphere. 2023; 14(2):274. https://doi.org/10.3390/atmos14020274
Chicago/Turabian StylePanahifar, Hossein, Farizeh Bayat, and Tareq Hussein. 2023. "Simultaneous Use of Ground-Based and Satellite Observation to Evaluate Atmospheric Air Pollution over Amman, Jordan" Atmosphere 14, no. 2: 274. https://doi.org/10.3390/atmos14020274
APA StylePanahifar, H., Bayat, F., & Hussein, T. (2023). Simultaneous Use of Ground-Based and Satellite Observation to Evaluate Atmospheric Air Pollution over Amman, Jordan. Atmosphere, 14(2), 274. https://doi.org/10.3390/atmos14020274