Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study
"> Figure 1
<p>Terrain configuration across the Vipava valley (126 m a.s.l.), which is to the north closed by the Trnovski gozd and to the south by the Karst plateau. Both lidar and in-situ monitoring stations were located in Ajdovščina. An additional in-situ station was at Otlica (826 m a.s.l., horizontally displaced by 5 km). Both stations are denoted by red dots. The prevailing wind directions in April 2016 were from NE to SE (inlaid figure), where the color bar represents wind speed in m/s. Wind measurements were performed in Ajdovščina.</p> "> Figure 2
<p>(<b>a</b>) Linear correlation between the aethalometer- and OPC-based absorption coefficients (<math display="inline"><semantics> <msub> <mi>b</mi> <mrow> <mi>AE</mi> <mn>33</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>b</mi> <mi>OPC</mi> </msub> </semantics></math>) at 950 nm; (<b>b</b>) Linear correlation between the PM concentrations obtained from lidar measurements at the beginning of the complete overlap range (0.2 km) and PM concentration obtained from the OPC. The results are based on the April 2016 data.</p> "> Figure 3
<p>(<b>a</b>) Meteorological conditions in the Vipava valley. Wind speed is shown in blue and rainfall in red. Rainy periods, highlighted by gray shades, separate four episodes (EP1, EP2, EP3, EP4). (<b>b</b>) Temporal evolution of PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math> (red), PM<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>C</mi> <mi>o</mi> <mi>a</mi> <mi>r</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </semantics></math> (1 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m < particle size < 10 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m, green) and BC concentration (black) at Ajdovščina, where the two selected cases are marked by light shades. (<b>c</b>) Daily average of the PBL height from each 30 min sampling, and corresponding standard deviation at Ajdovščina. Retrieved from lidar measurements, which were performed during cloud-free periods. All datasets were collected between 1–30 April 2016.</p> "> Figure 4
<p>(<b>a</b>) DREAM model forecast of vertical and horizontal distribution of Saharan dust concentration. Vertical dashed line represents Otlica. (<b>b</b>) HYSPLIT backward trajectories over 72 h, arriving over Vipava valley at 6:00 CET on 6 April 2016. Different trajectory colors indicate different altitudes (0.5 km is green, 1 km is blue and 2 km is red). Trajectories mainly originate from North Africa.</p> "> Figure 5
<p>Temporal variation of aerosol layers over the Vipava valley between 5 April 2016 at 20:00 and 6 April 2016 at 5:00 CET, in terms of the range-corrected lidar signal. The gap in the lidar data is due to technical issues. Two elevated aerosol layers can be seen during the measurement, the higher one at 1.5–2.5 km, and the lower one at 0.8–1.2 km above the ground.</p> "> Figure 6
<p>Radiosonde profiles from Ljubljana (blue) at 5:00 CET and Udine (red) at 1:00 CET on 6 April 2016. (<b>a</b>) Virtual potential temperature (<math display="inline"><semantics> <msub> <mi>θ</mi> <mi>V</mi> </msub> </semantics></math>), (<b>b</b>) temperature, (<b>c</b>) relative humidity, (<b>d</b>) wind speed, and (<b>e</b>) wind direction. The two black horizontal lines represent the range of PBL heights between the two measurements.</p> "> Figure 7
<p>(<b>a</b>) Variation of BC and PM concentrations and PBL height (estimated from Lidar measurements). The peak of BC concentration was found to be 9 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>g/m<math display="inline"><semantics> <msup> <mrow/> <mn>3</mn> </msup> </semantics></math>, between 8:00 and 10:00 CET. Due to the increase of the PBL height in the daytime, the BC concentrations at Otlica and Ajdovščina are comparable after 12:00 CET. (<b>b</b>) PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math> and PM<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>C</mi> <mi>o</mi> <mi>a</mi> <mi>r</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </semantics></math> were derived from measurements in Ajdovščina, while the AAE was measured at both sites. Comparable values of AAE at Otlica and Ajdovščina imply similar composition of aerosol types.</p> "> Figure 8
<p>Profiles of <math display="inline"><semantics> <msubsup> <mi>PM</mi> <mrow> <mn>10</mn> </mrow> <mi>lidar</mi> </msubsup> </semantics></math>, obtained between 5 April 2016, 21:00 CET and 6 April 2016, 17:30 CET. Black dots represent the mean value of mass concentration obtained using the conversion factor measured at Ajdovščina. Yellow dots represent the mass concentration obtained using the conversion factor for mineral dust, based on [<a href="#B15-remotesensing-11-00106" class="html-bibr">15</a>]. Error bars show total uncertainty on <math display="inline"><semantics> <msubsup> <mi>PM</mi> <mrow> <mn>10</mn> </mrow> <mi>lidar</mi> </msubsup> </semantics></math>, where the blue error bars correspond only to the uncertainty (<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>m</mi> </msub> </semantics></math>) due to the refractive index. The horizontal black line denotes the top of the PBL. The black circle represents the average value of the OPC measurement of PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math>, and the error bar its temporal variation.</p> "> Figure 9
<p>SEM images of water-insoluble particles collected from rainwater on 8 April 2016. (<b>a</b>) Coarse crystalline mineral particles with several fragments of diatoms (marked with blue arrows) composed mainly of Si, well-rounded quartz, and different alumino-silicate minerals (feldspars, clay minerals, micas); (<b>b</b>) agglomerate of Fe-oxide alumino-silicate mineral; (<b>c</b>) Mg-dominated fibrous alumino-silicate mineral, most probably palygorskite; (<b>d</b>) alumino-silicate minerals with dominating Fe, Mg, K probably biotite; (<b>e</b>) mixture of mineral particles and soot agglomerate (red arrow), fibrous mineral (yellow arrow) represents palygorskite; and (<b>f</b>) alumino-silicates (blue arrow) and tar balls (green arrow).</p> "> Figure 10
<p>Temporal variation of aerosol distribution over the Vipava valley between 19:00 to 24:00 CET on 30 April 2016, in terms of the range-corrected lidar signal. Two significant high aerosol loading periods can be seen during the measurement, which started around 21:00 and 22:30.</p> "> Figure 11
<p>Evolution of concentrations of BC, PM concentrations at both sites, and and PBL height between 18:00 to 00:00 on 2016, 30th April: (<b>a</b>) The BC at two measurement sites and PBL height are used for checking the aerosol mixing state; (<b>b</b>) the PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math>, PM<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>C</mi> <mi>o</mi> <mi>a</mi> <mi>r</mi> <mi>s</mi> <mi>e</mi> </mrow> </msub> </semantics></math> were measured at Ajdovščina station, and AAE was monitored at both sites.</p> "> Figure 12
<p>Profiles of <math display="inline"><semantics> <msubsup> <mi>PM</mi> <mrow> <mn>10</mn> </mrow> <mi>lidar</mi> </msubsup> </semantics></math>, obtained between 18:00 and 24:00 CET on 30 April 2016. Black dots represent the mean value of mass concentration obtained using the conversion factor measured at Ajdovščina. Error bars show total uncertainty on <math display="inline"><semantics> <msubsup> <mi>PM</mi> <mrow> <mn>10</mn> </mrow> <mi>lidar</mi> </msubsup> </semantics></math>, where the blue error bars correspond only to the uncertainty (<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>m</mi> </msub> </semantics></math>) due to the refractive index. The black circle represents the average value of the OPC measurement of PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math> and the error bar its temporal variation.</p> "> Figure 12 Cont.
<p>Profiles of <math display="inline"><semantics> <msubsup> <mi>PM</mi> <mrow> <mn>10</mn> </mrow> <mi>lidar</mi> </msubsup> </semantics></math>, obtained between 18:00 and 24:00 CET on 30 April 2016. Black dots represent the mean value of mass concentration obtained using the conversion factor measured at Ajdovščina. Error bars show total uncertainty on <math display="inline"><semantics> <msubsup> <mi>PM</mi> <mrow> <mn>10</mn> </mrow> <mi>lidar</mi> </msubsup> </semantics></math>, where the blue error bars correspond only to the uncertainty (<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>m</mi> </msub> </semantics></math>) due to the refractive index. The black circle represents the average value of the OPC measurement of PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math> and the error bar its temporal variation.</p> "> Figure 13
<p>SEM images of aerosol sample collected on 30 April—the bonfire night: (<b>a</b>) Externally mixed soot particles (blue arrow) and particles consisting of organic material (OM, yellow arrow); (<b>b</b>) OM (yellow arrow); (<b>c</b>) OM; (<b>d</b>) fresh soot agglomerate; (<b>e</b>) aged soot; (<b>f</b>) internal mixture of soot agglomerate and OM-soot is imbedded in OM. Black circles are holes in nuclepore filter.</p> "> Figure 14
<p>Correlation between BC concentration and PM<math display="inline"><semantics> <mrow> <msub> <mrow/> <mn>1</mn> </msub> <mo>/</mo> </mrow> </semantics></math>PM<math display="inline"><semantics> <msub> <mrow/> <mn>10</mn> </msub> </semantics></math> ratio (<b>a</b>) and between BC and PM<math display="inline"><semantics> <msub> <mrow/> <mn>1</mn> </msub> </semantics></math> (<b>b</b>) for the entire campaign (1–30 April 2016). In (<b>a</b>), data points corresponding to Case 1 (mineral dust) are plotted in red and those corresponding to Case 2 (biomass burning) in violet. In (<b>b</b>), the color of the data points represents AAE value.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Sites
2.2. Instrumentation
2.2.1. Lidar
2.2.2. In-Situ Instruments
2.2.3. Meteorological Measurements
2.3. Sampling and Microscopy
2.4. Retrieval of Mass Concentration Profiles
Uncertainties
2.5. Retrieval of Aerosol Optical Properties
2.6. Compatibility of the Datasets
3. Results and Discussion
3.1. Campaign Overview
3.2. Case 1: Mineral Dust
3.2.1. Mass Concentration Profiles
3.2.2. Saharan Dust Characterization
3.3. Case 2: Biomass Burning Aerosols
3.3.1. Mass Concentration Profiles
3.3.2. Characterization of Biomass Burning Aerosols
3.4. Analysis of Aerosol Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brunekreef, B.; Holgate, S. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef]
- Organization, W.H. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide; Report on a WHO Working Group; World Health Organization: Bonn, Germany, 2003. [Google Scholar]
- Weissmann, M.; Braun, F.; Gantner, L.; Mayr, G.; Rahm, S.; Reitebuch, O. The Alpine mountain–Plain circulation: Airborne Doppler lidar measurements and numerical simulations. Mon. Weather Rev. 2005, 133, 3095–3109. [Google Scholar] [CrossRef]
- Ding, K.; Liu, J.; Ding, A.; Liu, Q.; Zhao, T.; Shi, J.; Han, Y.; Wang, H.; Jiang, F. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia. Atmos. Chem. Phys. 2015, 15, 2843–2866. [Google Scholar] [CrossRef] [Green Version]
- Lang, M.N.; Gohm, A.; Wagner, J. The impact of embedded valleys on daytime pollution transport over a mountain range. Atmos. Chem. Phys. 2015, 15, 11981–11998. [Google Scholar] [CrossRef] [Green Version]
- Henne, S.; Furger, M.; Nyeki, S.; Steinbacher, M.; Neininger, B.; De Wekker, S.; Dommen, J.; Spichtinger, N.; Stohl, A.; Prévôt, A. Quantification of topographic venting of boundary layer air to the free troposphere. Atmos. Chem. Phys. 2004, 4, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Belis, C.; Cancelinha, J.; Duane, M.; Forcina, V.; Pedroni, V.; Passarella, R.; Tanet, G.; Douglas, K.; Piazzalunga, A.; Bolzacchini, E.; et al. Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo (a) pyrene. Atmos. Environ. 2011, 45, 7266–7275. [Google Scholar] [CrossRef]
- Ferrero, L.; Castelli, M.; Ferrini, B.; Moscatelli, M.; Perrone, M.; Sangiorgi, G.; D’Angelo, L.; Rovelli, G.; Moroni, B.; Scardazza, F.; et al. Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate. Atmos. Chem. Phys. 2014, 14, 9641–9664. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.; Gilardoni, S.; Stenström, K.; Niedzialek, J.; Jimenez, J.; Belis, C. Sources for PM air pollution in the Po Plain, Italy: II. Probabilistic uncertainty characterization and sensitivity analysis of secondary and primary sources. Atmos. Environ. 2012, 50, 203–213. [Google Scholar] [CrossRef]
- Bucci, S.; Cristofanelli, P.; Decesari, S.; Marinoni, A.; Sandrini, S.; Größ, J.; Wiedensohler, A. Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns. Atmos. Chem. Phys. 2018, 18, 5371–5389. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G. Trends and variability of atmospheric PM 2.5 and PM 10–2.5 concentration in the Po Valley, Italy. Atmos. Chem. Phys. 2016, 16, 15777–15788. [Google Scholar] [CrossRef]
- Ferrero, L.; Mocnik, G.; Ferrini, B.; Perrone, M.; Sangiorgi, G.; Bolzacchini, E. Vertical profiles of aerosol absorption coefficient from micro-Aethalometer data and Mie calculation over Milan. Sci. Total Environ. 2011, 409, 2824–2837. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Stanič, S.; Bergant, K.; Bolte, T.; Coren, F.; He, T.; Hrabar, A.; Jerman, J.; Mladenovič, A.; Turšič, J.; et al. Monitoring presence and streaming patterns of Icelandic volcanic ash during its arrival to Slovenia. Biogeosciences 2011, 8, 2351. [Google Scholar] [CrossRef]
- Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; et al. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmos. Chem. Phys. 2016, 16, 1081–1104. [Google Scholar] [CrossRef] [Green Version]
- Córdoba-Jabonero, C.; Sicard, M.; Ansmann, A.; Águila, A.; Baars, H. Separation of the optical and mass features of particle components in different aerosol mixtures by using POLIPHON retrievals in synergy with continuous polarized Micro-Pulse Lidar (P-MPL) measurements. Atmos. Meas. Tech. 2018, 11, 4775–4795. [Google Scholar] [CrossRef]
- He, T.; Stanič, S.; Gao, F.; Bergant, K.; Veberič, D.; Song, X.; Dolžan, A. Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements. Atmos. Meas. Tech. 2012, 5, 891–900. [Google Scholar] [CrossRef] [Green Version]
- He, T.Y.; Gao, F.; Stanič, S.; Veberič, D.; Bergant, K.; Dolžan, A.; Song, X.Q. Scanning mobile lidar for aerosol tracking and biological aerosol identification. Remote Sens. Int. Soc. Opt. Photonics 2010, 7832. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “dual-spot” Aethalometer: An improved measurement of aerosol black carbon with real-time loading compensation. Atmos. Meas. Tech. 2015, 8, 1965. [Google Scholar] [CrossRef]
- Sandradewi, J.; Prévôt, A.S.; Szidat, S.; Perron, N.; Alfarra, M.R.; Lanz, V.A.; Weingartner, E.; Baltensperger, U. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environ. Sci. Technol. 2008, 42, 3316–3323. [Google Scholar] [CrossRef]
- Schnaiter, M.; Horvath, H.; Möhler, O.; Naumann, K.H.; Saathoff, H.; Schöck, O. UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J. Aerosol Sci. 2003, 34, 1421–1444. [Google Scholar] [CrossRef]
- Healy, R.M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.H.; Wang, J.; Hilker, N.; Evans, G.J.; Doerksen, G.; et al. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmos. Environ. 2017, 161, 34–47. [Google Scholar] [CrossRef]
- Liu, Y.; Daum, P. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J. Aerosol Sci. 2000, 31, 945–957. [Google Scholar] [CrossRef]
- Weinzierl, B.; Sauer, D.; Esselborn, M.; Petzold, A.; Veira, A.; Rose, M.; Mund, S.; Wirth, M.; Ansmann, A.; Tesche, M.; et al. Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region—an overview of the airborne in situ and lidar measurements during SAMUM-2. Tellus B Chem. Phys. Meteorol. 2011, 63, 589–618. [Google Scholar] [CrossRef]
- Willis, W.B.; Eichinger, W.E.; Prueger, J.H.; Hapeman, C.J.; Li, H.; Buser, M.D.; Hatfield, J.L.; Wanjura, J.D.; Holt, G.A.; Torrents, A.; et al. Lidar method to estimate emission rates from extended sources. J. Atmos. Ocean. Technol. 2017, 34, 335–345. [Google Scholar] [CrossRef]
- Scarnato, B.; China, S.; Nielsen, K.; Mazzoleni, C. Perturbations of the optical properties of mineral dust particles by mixing with black carbon: A numerical simulation study. Atmos. Chem. Phys. 2015, 15, 6913–6928. [Google Scholar] [CrossRef]
- Kitchen, M. Representativeness errors for radiosonde observations. Q. J. R. Meteorol. Soc. 1989, 115, 673–700. [Google Scholar] [CrossRef]
- Mole, M. Study of the Properties of Air Flow Over Orographic Barrier. Ph.D. Thesis, University of Nova Gorica, Nova Gorica, Slovenia, 2017. [Google Scholar]
- Klett, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220. [Google Scholar] [CrossRef]
- Vaughan, M.; Winker, D.M.; Powell, K. CALIOP algorithm theoretical basis document, part 2: Feature detection and layer properties algorithms. Rep. PC-SCI 2005, 202, 87. [Google Scholar]
- Liu, J.; Huang, J.; Chen, B.; Zhou, T.; Yan, H.; Jin, H.; Huang, Z.; Zhang, B. Comparisons of PBL heights derived from CALIPSO and ECMWF reanalysis data over China. J. Quant. Spectrosc. Radiat. Transf. 2015, 153, 102–112. [Google Scholar] [CrossRef]
- Willis, W.B.; Eichinger, W.E.; Prueger, J.H.; Hapeman, C.J.; Li, H.; Buser, M.D.; Hatfield, J.L.; Wanjura, J.D.; Holt, G.A.; Torrents, A.; et al. Particulate capture efficiency of a vegetative environmental buffer surrounding an animal feeding operation. Agric. Ecosyst. Environ. 2017, 240, 101–108. [Google Scholar] [CrossRef]
- Mätzler, C. MATLAB functions for Mie scattering and absorption, version 2. IAP Res. Rep. 2002, 8, 1–24. [Google Scholar]
- He, C.; Liou, K.; Takano, Y.; Zhang, R.; Levy Zamora, M.; Yang, P.; Li, Q.; Leung, L.R. Variation of the radiative properties during black carbon aging: theoretical and experimental intercomparison. Atmos. Chem. Phys. 2015, 15, 11967–11980. [Google Scholar] [CrossRef] [Green Version]
- China, S.; Scarnato, B.; Owen, R.C.; Zhang, B.; Ampadu, M.T.; Kumar, S.; Dzepina, K.; Dziobak, M.P.; Fialho, P.; Perlinger, J.A.; et al. Morphology and mixing state of aged soot particles at a remote marine free troposphere site: Implications for optical properties. Geophys. Res. Lett. 2015, 42, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.; Eck, T.; Christopher, S.; Koppmann, R.; Dubovik, O.; Eleuterio, D.; Holben, B.; Reid, E.; Zhang, J. A review of biomass burning emissions part III: Intensive optical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 827–849. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Schkolnik, G.; Chand, D.; Hoffer, A.; Andreae, M.; Erlick, C.; Swietlicki, E.; Rudich, Y. Constraining the density and complex refractive index of elemental and organic carbon in biomass burning aerosol using optical and chemical measurements. Atmos. Environ. 2007, 41, 1107–1118. [Google Scholar] [CrossRef]
- Zotter, P.; Herich, H.; Gysel, M.; El-Haddad, I.; Zhang, Y.; Močnik, G.; Hüglin, C.; Baltensperger, U.; Szidat, S.; Prévôt, A.S.H. Evaluation of the absorption Ångström exponents for traffic and wood burning in the Aethalometer-based source apportionment using radiocarbon measurements of ambient aerosol. Atmos. Chem. Phys. 2017, 17, 4229–4249. [Google Scholar] [CrossRef] [Green Version]
- Platt, S.M.; Haddad, I.; Zardini, A.A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; et al. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos. Chem. Phys. 2013, 13, 9141–9158. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.K.; Corbin, J.C.; Bruns, E.A.; Massabó, D.; Slowik, J.G.; Drinovec, L.; Močnik, G.; Prati, P.; Vlachou, A.; Baltensperger, U.; et al. Production of particulate brown carbon during atmospheric aging of residential wood-burning emissions. Atmos. Chem. Phys. 2018, 18, 17843–17861. [Google Scholar] [CrossRef]
- Kahnert, M.; Nousiainen, T.; Lindqvist, H. Models for integrated and differential scattering optical properties of encapsulated light absorbing carbon aggregates. Opt. Express 2013, 21, 7974–7993. [Google Scholar] [CrossRef] [PubMed]
- Adler, B. Boundary-Layer Processes Producing Mesoscale Water-Vapour Variability Over a Mountainous Island; KIT Scientific Publishing: Karlsruhe, Germany, 2014; Volume 67. [Google Scholar]
- Formenti, P.; Schütz, L.; Balkanski, Y.; Desboeufs, K.; Ebert, M.; Kandler, K.; Petzold, A.; Scheuvens, D.; Weinbruch, S.; Zhang, D. Recent progress in understanding physical and chemical properties of African and Asian mineral dust. Atmos. Chem. Phys. 2011, 11, 8231–8256. [Google Scholar] [CrossRef] [Green Version]
- Saleh, R.; Hennigan, C.; McMeeking, G.; Chuang, W.; Robinson, E.; Coe, H.; Donahue, N.; Robinson, A. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 2013, 13, 7683–7693. [Google Scholar] [CrossRef] [Green Version]
- Aouizerats, B.; Van der Werf, G.R.; Balasubramanian, R.; Betha, R. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event. Atmos. Chem. Phys. 2015, 15, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.; Winker, D.; Vaughan, M.; Hu, Y.; Trepte, C.; Ferrare, R.; Lee, K.; Hostetler, C.; Kittaka, C.; Rogers, R.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
Measured | Case 1 | Case 2 | ||
---|---|---|---|---|
Quantities | Ajdovščina | Otlica | Ajdovščina | Otlica |
PM [g/m] | ||||
PM [g/m] | ||||
BC [g/m] | ||||
MEE [m/g] | ||||
LR [sr] | 55 | 50 | ||
AAE | ||||
PM/PM | ||||
BC/PM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Stanič, S.; Bergant, K.; Eichinger, W.; Močnik, G.; Drinovec, L.; Vaupotič, J.; Miler, M.; Gosar, M.; Gregorič, A. Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study. Remote Sens. 2019, 11, 106. https://doi.org/10.3390/rs11020106
Wang L, Stanič S, Bergant K, Eichinger W, Močnik G, Drinovec L, Vaupotič J, Miler M, Gosar M, Gregorič A. Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study. Remote Sensing. 2019; 11(2):106. https://doi.org/10.3390/rs11020106
Chicago/Turabian StyleWang, Longlong, Samo Stanič, Klemen Bergant, William Eichinger, Griša Močnik, Luka Drinovec, Janja Vaupotič, Miloš Miler, Mateja Gosar, and Asta Gregorič. 2019. "Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study" Remote Sensing 11, no. 2: 106. https://doi.org/10.3390/rs11020106
APA StyleWang, L., Stanič, S., Bergant, K., Eichinger, W., Močnik, G., Drinovec, L., Vaupotič, J., Miler, M., Gosar, M., & Gregorič, A. (2019). Retrieval of Vertical Mass Concentration Distributions—Vipava Valley Case Study. Remote Sensing, 11(2), 106. https://doi.org/10.3390/rs11020106