Impact of Augmented Reality and Game-Based Learning for Science Teaching: Lessons from Pre-Service Teachers
<p>Research design with 4 intervention groups. K and CSE were assessed before and after lesson.</p> "> Figure 2
<p>A line graph for the first model with a moderating effect, showing a stronger moderating effect for the non-AR interventions amongst all groups. The lines illustrate the CSE pre–post relationship of the intervention groups with/without AR.</p> "> Figure 3
<p>A line graph for the second model with a moderating effect, showing a stronger moderating effect for the non-AR intervention amongst both non-GAME groups. The lines illustrate the CSE pre–post relationship of the intervention groups with/without AR.</p> "> Figure 4
<p>A line graph for the third model with a moderating effect, showing a stronger moderating effect for the non-GAME intervention amongst both AR groups. The lines illustrate the K pre–post relationship of the intervention groups with/without GAME.</p> ">
Abstract
:1. Introduction
1.1. Augmented Reality in Science and Engineering Education
1.2. AR and Game-Based Learning
1.3. Potentials of AR for Science Education on Knowledge Acquisition and Self-Efficacy
1.4. Teachers as Key Players in Digital Change
1.5. Methodological Issues in Measuring AR’s Potential
1.6. Scope of Study
2. Materials and Methods
2.1. Intervention Design
2.2. Research Design
2.3. Sample
2.4. Data Analysis
3. Results
3.1. Interventions Lead to Improvement in Knowledge and Computer Self-Efficacy
3.2. AR Moderates the Increase in Computer Self-Efficacy
4. Discussion
4.1. All Interventions Lead to Improved Knowledge and Computer Self-Efficacy
4.2. AR Moderates the Pre–Post Relationship of Computer Self-Efficacy
4.3. GAME Moderates the Pre–Post Relationship of Knowledge
4.4. Implications for Future Development
4.4.1. Emphasizing Self-Efficacy in Technology Use
4.4.2. Contextualizing Technology Use in Teacher Education
4.4.3. Fostering Critical Reflection on Technology Integration
4.4.4. Balancing Innovation with Pedagogical Foundations
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
CSEpost = outcome variable; CSEpre = predictor; AR = moderator (groups A+B: N = 917) | coefficient of determination R2 = 0.5441 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 2701.3306 | 17.3472 | 0.0000 | 2391.8157 | 3010.8454 |
CSEpre (B) | 6.0191 | 8.6041 | 0.0000 | 4.6286 | 7.4095 |
GAME (A) | −27.3896 | −0.1251 | 0.9008 | −462.7249 | 407.9458 |
INT_1 (A × B) | −1.8365 | −1.7698 | 0.0803 | −3.8992 | 0.2261 |
CSEpost = outcome variable; CSEpre = predictor; GAME = moderator (all groups A–D: N = 177) | coefficient of determination R2 = 0.4434 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 2753.813 | 24.1352 | 0.0000 | 2528.3935 | 2978.7692 |
CSEpre (B) | 3.9215 | 6.2778 | 0.0000 | 2.6886 | 5.1545 |
GAME (A) | −50.7378 | −0.3189 | 0.7502 | −364.7901 | 263.3146 |
INT_1 (A × B) | 1.2634 | 1.5504 | 0.1229 | −0.3450 | 2.8717 |
CSEpost = outcome variable; CSEpre = predictor; GAME = moderator (groups A+C: N = 84) | coefficient of determination R2 = 0.3086 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 2539.7890 | 15.1204 | 0.0000 | 2205.5156 | 2874.0623 |
CSEpre (B) | 2.2886 | 2.2580 | 0.0267 | 0.2715 | 4.3057 |
GAME (A) | 157.5860 | 0.6945 | 0.4894 | −293.9875 | 609.1595 |
INT_1 (A × B) | 1.8939 | 1.4958 | 0.1386 | −0.6258 | 4.4136 |
CSEpost = outcome variable; CSEpre = predictor; GAME = moderator (groups B+D: N = 93) | coefficient of determination R2 = 0.5676 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 2933.4970 | 19.5562 | 0.0000 | 2635.4429 | 3231.5511 |
CSEpre (B) | 4.9286 | 6.4022 | 0.0000 | 3.3990 | 6.4583 |
GAME (A) | −231.3527 | −1.0728 | 0.2862 | −659.8320 | 197.1266 |
INT_1 (A × B) | 1.0905 | 1.0508 | 0.2962 | −0.9716 | 3.1526 |
Kpost = outcome variable; Kpre = predictor; AR = moderator (all groups A–D: N = 196) | coefficient of determination R2 = 0.2712 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 38,813.5660 | 26.4694 | 0.0000 | 35,921.3260 | 41,705.8059 |
Kpre (B) | 27.2537 | 5.4096 | 0.0000 | 17.3167 | 37.1907 |
AR (A) | 642.8834 | 0.3100 | 0.7569 | −3447.2918 | 4733.0587 |
INT_1 (A × B) | 4.8634 | 0.6866 | 0.4932 | −9.1075 | 18.8342 |
Kpost = outcome variable; Kpre = predictor; AR = moderator (groups A+B: N = 103) | coefficient of determination R2 = 0.2582 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 38,348.3333 | 19.6995 | 0.0000 | 34,485.7228 | 42,210.9437 |
Kpre (B) | 30.0988 | 4.4521 | 0.0000 | 16.6845 | 43.5132 |
AR (A) | 3417.5420 | 1.2834 | 0.2023 | −1866.0069 | 8701.0909 |
INT_1 (A × B) | −8.2697 | −0.8834 | 0.3791 | −26.8436 | 10.3042 |
Kpost = outcome variable; Kpre = predictor; AR = moderator (groups C+D: N = 93) | coefficient of determination R2= 0.3172 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 39,166.9176 | 17.9190 | 0.0000 | 34,823.8117 | 43,510.0234 |
Kpre (B) | 25.7895 | 3.4386 | 0.0009 | 10.8870 | 40.6920 |
AR (A) | −2073.1902 | −0.6449 | 0.5206 | −8460.3849 | 4314.0044 |
INT_1 (A × B) | 16.7094 | 1.5351 | 0.1283 | −4.9183 | 38.3371 |
Kpost = outcome variable; Kpre = predictor; GAME (all groups A–D: N = 196) | coefficient of determination R2 = 0.2738 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 39,801.0067 | 26.1837 | 0.0000 | 36,802.8279 | 42,799.1856 |
Kpre (B) | 33.7553 | 6.6335 | 0.0000 | 23.7185 | 43.7920 |
GAME (A) | −874.3225 | −0.4173 | 0.6769 | −5007.1320 | 3258.4871 |
INT_1 (A × B) | −7.4112 | −1.0369 | 0.3011 | −21.5090 | 6.6865 |
Kpost = outcome variable; Kpre = predictor; GAME (groups B+D: N = 98) | coefficient of determination R2 = 0.2395 | ||||
coefficient | t | p | 95% CI low | 95% CI up | |
Constant | 39,995.2724 | 19.0321 | 0.0000 | 35,822.7579 | 44,167.7870 |
Kpre (B) | 25.7895 | 3.5948 | 0.0005 | 11.5451 | 40.0339 |
GAME (A) | −3420.9532 | −1.1389 | 0.2576 | −9384.8266 | 2542.9203 |
INT_1 (A × B) | 4.3093 | 0.4168 | 0.6778 | −16.2206 | 24.8393 |
References
- Harzing, A.-W.; Alakangas, S. Google Scholar, Scopus and the Web of Science: A Longitudinal and Cross-Disciplinary Comparison. Scientometrics 2016, 106, 787–804. [Google Scholar] [CrossRef]
- Milgram, P.; Takemura, H.; Utsumi, A.; Kishino, F. Augmented reality: A class of displays on the reality-virtuality continuum. In Telemanipulator and Telepresence Technologies; Das, H., Ed.; SPIE: Bellingham, WA, USA, 1995; pp. 282–292. [Google Scholar] [CrossRef]
- Azuma, R.T. A Survey of Augmented Reality. Presence Teleoper. Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Peeters, H.; Habig, S.; Fechner, S. Does Augmented Reality Help to Understand Chemical Phenomena during Hands-On Experiments?–Implications for Cognitive Load and Learning. Multimodal Technol. Interact. 2023, 7, 9. [Google Scholar] [CrossRef]
- Yusof, C.S.; Amri, N.L.S.; Ismail, A.W. Bio-WTiP: Biology lesson in handheld augmented reality application using tangible interaction. IOP Conf. Ser. Mater. Sci. Eng. 2020, 979, 12002. [Google Scholar] [CrossRef]
- Rodríguez, F.C.; Frattini, G.; Krapp, L.F.; Martinez-Hung, H.; Moreno, D.M.; Roldán, M.; Salomón, J.; Stemkoski, L.; Traeger, S.; Dal Peraro, M.; et al. MoleculARweb: A Web Site for Chemistry and Structural Biology Education through Interactive Augmented Reality out of the Box in Commodity Devices. J. Chem. Educ. 2021, 98, 2243–2255. [Google Scholar] [CrossRef]
- Garcia-Bonete, M.-J.; Jensen, M.; Katona, G. A practical guide to developing virtual and augmented reality exercises for teaching structural biology. Biochem. Mol. Biol. Educ. 2019, 47, 16–24. [Google Scholar] [CrossRef]
- Destiara, M. The Practicality of Teaching Material Biology of Islamic-Science based on Augmented Reality. BIO-INOVED J. Biol. Pendidik. 2020, 2, 117. [Google Scholar] [CrossRef]
- Dinc, F.; De, A.; Goins, A.; Halic, T.; Massey, M.; Yarberry, F. ARChem: Augmented Reality Based Chemistry LAB Simulation for Teaching and Assessment. In Proceedings of the 19th International Conference on Information Technology Based Higher Education and Training (ITHET), Sydney, Australia, 4–6 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Kofoğlu, M.; Dargut, C.; Arslan, R. Development of Augmented Reality Application for Biology Education. J. Turk. Sci. Educ. 2020, 17, 62–72. [Google Scholar] [CrossRef]
- Küçük, S.; Kapakin, S.; Göktaş, Y. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load. Anat. Sci. Educ. 2016, 9, 411–421. [Google Scholar] [CrossRef]
- Hung, Y.-H.; Chen, C.-H.; Huang, S.-W. Applying augmented reality to enhance learning: A study of different teaching materials. J. Comput. Assist. Learn. 2017, 33, 252–266. [Google Scholar] [CrossRef]
- Hsiao, K.-F.; Chen, N.-S.; Huang, S.-Y. Learning while exercising for science education in augmented reality among adolescents. Interact. Learn. Environ. 2012, 20, 331–349. [Google Scholar] [CrossRef]
- Tarng, W.; Yu, C.-S.; Liou, F.-L.; Liou, H.-H. Development of a virtual butterfly ecological system based on augmented reality and mobile learning technologies. In Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; IEEE: New York, NY, USA, 2013; pp. 674–679. [Google Scholar] [CrossRef]
- Huang, T.-C.; Chen, C.-C.; Chou, Y.-W. Animating eco-education: To see, feel, and discover in an augmented reality-based experiential learning environment. Comput. Educ. 2016, 96, 72–82. [Google Scholar] [CrossRef]
- Czok, V.; Krug, M.; Müller, S.; Huwer, J.; Kruse, S.; Müller, W.; Weitzel, H. A Framework for Analysis and Development of Augmented Reality applications in Science Teaching. Educ. Sci. 2023, 13, 926. [Google Scholar] [CrossRef]
- Korenova, L.; Fuchsova, M. Visualisation in Basic Science and Engineering Education of Future Primary School Teachers in Human Biology Education Using Augmented Reality. Eur. J. Contemp. Educ. 2019, 8, 92–102. [Google Scholar] [CrossRef]
- Celik, C.; Guven, G.; Cakir, N.K. Integration of mobile augmented reality (MAR) applications into biology laboratory: Anatomic structure of the heart. Res. Learn. Technol. 2020, 28, 1–11. [Google Scholar] [CrossRef]
- Jamali, S.S.; Shiratuddin, M.F.; Wong, K.W.; Oskam, C.L. Utilising Mobile-Augmented Reality for Learning Human Anatomy. Procedia Soc. Behav. Sci. 2015, 197, 659–668. [Google Scholar] [CrossRef]
- Qamari, C.N.; Ridwan, M.R. Implementation of Android-based augmented reality as learning and teaching media of dicotyledonous plants learning materials in biology subject. In Proceedings of the 3rd International Conference on Science in Information Technology (ICSITech), Bandung, Indonesia, 25–26 October 2017; IEEE: New York, NY, USA, 2017; pp. 441–446. [Google Scholar] [CrossRef]
- Sarnat, E.M.; Hita Garcia, F.; Dudley, K.; Liu, C.; Fischer, G.; Economo, E.P. Ready Species One: Exploring the Use of Augmented Reality to Enhance Systematic Biology with a Revision of Fijian Strumigenys (Hymenoptera: Formicidae). Insect Syst. Divers. 2019, 3, 6. [Google Scholar] [CrossRef]
- Gillet, A.; Sanner, M.; Stoffler, D.; Olson, A. Tangible augmented interfaces for structural molecular biology. IEEE Comput. Graph. Appl. 2005, 25, 13–17. [Google Scholar] [CrossRef]
- Hoog, T.G.; Aufdembrink, L.M.; Gaut, N.J.; Sung, R.-J.; Adamala, K.P.; Engelhart, A.E. Rapid deployment of smartphone-based augmented reality tools for field and online education in structural biology. Biochem. Mol. Biol. Educ. 2020, 48, 448–451. [Google Scholar] [CrossRef]
- Safadel, P.; White, D. Facilitating Molecular Biology Teaching by Using Augmented Reality (AR) and Protein Data Bank (PDB). TechTrends 2019, 63, 188–193. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Liu, S.-Y. Using augmented reality to experiment with elements in a chemistry course. Comput. Hum. Behav. 2020, 111, 106418. [Google Scholar] [CrossRef]
- Chun Lam, M.; Kei Tee, H.; Muhammad Nizam, S.S.; Che Hashim, N.; Asylah Suwadi, N.; Yee Tan, S.; Aini Abd Majid, N.; Arshad, H.; Yee Liew, S. Interactive Augmented Reality with Natural Action for Chemistry Experiment Learning. Tem. J. 2020, 9, 351–360. [Google Scholar] [CrossRef]
- Maier, P.; Klinker, G.J. Evaluation of an Augmented-Reality-based 3D User Interface to Enhance the 3D-Understanding of Molecular Chemistry. In Proceedings of the 5th International Conference on Computer Supported Education, Aachen, Germany, 6–8 May 2013; SciTePress—Science and and Technology Publications: Setúbal, Portugal, 2013; pp. 294–302. [Google Scholar] [CrossRef]
- Gonzalez-Franco, M.; Pizarro, R.; Cermeron, J.; Li, K.; Thorn, J.; Hutabarat, W.; Tiwari, A.; Bermell-Garcia, P. Immersive Mixed Reality for Manufacturing Training. Front. Robot. AI 2017, 4, 3. [Google Scholar] [CrossRef]
- Shirazi, A.; Behzadan, A.H. Design and Assessment of a Mobile Augmented Reality-Based Information Delivery Tool for Construction and Civil Engineering Curriculum. J. Prof. Issues Eng. Educ. Pract. 2015, 141, 04014012. [Google Scholar] [CrossRef]
- Nandyansah, W.; Suprapto, N.; Mubarok, H. Picsar (Physics Augmented Reality) as a Learning Media to Practice Abstract Thinking Skills in Atomic Model. J. Phys. Conf. Ser. 2020, 1491, 12049. [Google Scholar] [CrossRef]
- Singh, G.; Mantri, A.; Sharma, O.; Dutta, R.; Kaur, R. Evaluating the impact of the augmented reality learning environment on electronics laboratory skills of engineering students. Comput. Appl. Eng. Educ. 2019, 27, 1361–1375. [Google Scholar] [CrossRef]
- Theodorou, P.; Kydonakis, P.; Botzori, M.; Skanavis, C. Augmented reality proves to be a breakthrough in Environmental Education. In Proceedings of the Protection and Restoration of the Environment XIV, Thessaloniki, Greece, 3–6 July 2018. [Google Scholar] [CrossRef]
- Rodrigues, R.; Pombo, L.; Marques, M.; Ribeiro, S.; Ferreira-Santos, J.; Draghi, J. Value of a Mobile Game-Based App Towards Education for Sustainability. In Proceedings of the International Conferences on E-Society 2023 and Mobile Learning 2023, Lisbon, Portugal, 11–13 March 2023; pp. 375–382. [Google Scholar]
- Wang, K.; Tekler, Z.D.; Cheah, L.; Herremans, D.; Blessing, L. Evaluating the Effectiveness of an Augmented Reality Game Promoting Environmental Action. Sustainability 2021, 13, 13912. [Google Scholar] [CrossRef]
- Porro, S.; Spadoni, E.; Bordegoni, M.; Carulli, M. Design of an Intrinsically Motivating AR Experience for Environmental Awareness. Proc. Des. Soc. 2022, 2, 1679–1688. [Google Scholar] [CrossRef]
- Altinpulluk, H. Determining the trends of using augmented reality in education between 2006–2016. Educ. Inf. Technol. 2019, 24, 1089–1114. [Google Scholar] [CrossRef]
- Xu, W.-W.; Su, C.-Y.; Hu, Y.; Chen, C.-H. Exploring the Effectiveness and Moderators of Augmented Reality on Science Learning: A Meta-analysis. J. Sci. Educ. Technol. 2022, 31, 621–637. [Google Scholar] [CrossRef]
- Nguyen, D.; Meixner, G. Gamified Augmented Reality Training for An Assembly Task: A Study About User Engagement. In Proceedings of the Federated Conference on Computer Science and Information Systems, Poznan, Poland, 9–12 September 2018; IEEE: New York, NY, USA, 2019; pp. 901–904. [Google Scholar] [CrossRef]
- Chen, C.-H. Impacts of augmented reality and a digital game on students’ science learning with reflection prompts in multimedia learning. Educ. Technol. Res. Dev. 2020, 68, 3057–3076. [Google Scholar] [CrossRef]
- Meekaew, N.; Ketpichainarong, W. An Augmented Reality to Support Mobile Game-Based Learning in Science Museum on Biodiversity. In Proceedings of the 7th International Congress on Advanced Applied Informatics (IIAI-AAI), Yonago, Japan, 8–13 July 2018; IEEE: New York, NY, USA, 2018; pp. 250–255. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K.; Evangelidis, G. Augmented Reality and Gamification in Education: A Systematic Literature Review of Research, Applications, and Empirical Studies. Appl. Sci. 2022, 12, 6809. [Google Scholar] [CrossRef]
- Lampropoulos, G.; Keramopoulos, E.; Diamantaras, K.; Evangelidis, G. Integrating Augmented Reality, Gamification, and Serious Games in Computer Science Education. Educ. Sci. 2023, 13, 618. [Google Scholar] [CrossRef]
- Jiang, H.; Zhu, D.; Chugh, R.; Turnbull, D.; Jin, W. Virtual reality and augmented reality-supported K-12 STEM learning: Trends, advantages and challenges. Educ. Inf. Technol. 2025. [Google Scholar] [CrossRef]
- Tilton, J.; Hartnett, M. What are the influences on teacher mobile technology self-efficacy within secondary school classrooms? J. Open Flex. Distance Learn. 2016, 20, 79–93. [Google Scholar] [CrossRef]
- Krug, M.; Thoms, L.-J.; Huwer, J. Augmented Reality in the Science Classroom—Implementing Pre-Service Teacher Training in the Competency Area of Simulation and Modeling According to the DiKoLAN Framework. Educ. Sci. 2023, 13, 1016. [Google Scholar] [CrossRef]
- Vogelsang, C.; Finger, A.; Laumann, D.; Thyssen, C. Vorerfahrungen, Einstellungen und motivationale Orientierungen als mögliche Einflussfaktoren auf den Einsatz digitaler Werkzeuge im naturwissenschaftlichen Unterricht. ZfDN 2019, 25, 115–129. [Google Scholar] [CrossRef]
- Max, A.-L.; Lukas, S.; Weitzel, H. The relationship between self-assessment and performance in learning TPACK: Are self-assessments a good way to support preservice teachers’ learning? J. Comput. Assist. Learn. 2022, 38, 1160–1172. [Google Scholar] [CrossRef]
- Gundel, E.M. Understanding the Effects of Mixed Reality Simulation on Pre-Service Teacher Self-Efficacy. Ph.D. Thesis, Western Conneticut State University, Danbury, CT, USA, 2018. Available online: https://www.proquest.com/docview/2075116364 (accessed on 24 March 2024).
- Chiang, T.H.C.; Yang, S.J.; Hwang, G.-J. An Augmented Reality-based Mobile Learning System to Improve Students’ Learning Achievements and Motivations in Natural Science Inquiry Activities. Educ. Technol. Soc. 2014, 17, 352–365. [Google Scholar]
- Martin-Gutierrez, J.; Fernández, M.D. Applying Augmented Reality in Engineering Education to Improve Academic Performance & Student Motivation. Int. J. Eng. Educ. 2014, 30, 625–635. [Google Scholar]
- Altmeyer, K.; Kapp, S.; Thees, M.; Malone, S.; Kuhn, J.; Brünken, R. The use of augmented reality to foster conceptual knowledge acquisition in STEM laboratory courses—Theoretical background and empirical results. Br. J. Educ. Technol. 2020, 51, 611–628. [Google Scholar] [CrossRef]
- Ibáñez, M.B.; Di Serio, Á.; Villarán, D.; Delgado Kloos, C. Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Comput. Educ. 2014, 71, 1–13. [Google Scholar] [CrossRef]
- Ferrer-Torregrosa, J.; Torralba, J.; Jimenez, M.A.; García, S.; Barcia, J.M. ARBOOK: Development and Assessment of a Tool Based on Augmented Reality for Anatomy. J. Sci. Educ. Technol. 2015, 24, 119–124. [Google Scholar] [CrossRef]
- Cai, S.; Liu, C.; Wang, T.; Liu, E.; Liang, J.-C. Effects of learning physics using Augmented Reality on students’ self-efficacy and conceptions of learning. Br. J. Educ. Technol. 2021, 52, 235–251. [Google Scholar] [CrossRef]
- Dehghani, M.; Mohammadhasani, N.; Hoseinzade Ghalevandi, M.; Azimi, E. Applying AR-based infographics to enhance learning of the heart and cardiac cycle in biology class. Interact. Learn. Environ. 2023, 31, 185–200. [Google Scholar] [CrossRef]
- Weng, C.; Otanga, S.; Christianto, S.M.; Chu, R.J.-C. Enhancing Students’ Biology Learning by Using Augmented Reality as a Learning Supplement. J. Educ. Comput. Res. 2020, 58, 747–770. [Google Scholar] [CrossRef]
- Thees, M.; Kapp, S.; Strzys, M.P.; Beil, F.; Lukowicz, P.; Kuhn, J. Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Comput. Hum. Behav. 2020, 108, 106316. [Google Scholar] [CrossRef]
- Ciloglu, T.; Ustun, A.B. The Effects of Mobile AR-based Biology Learning Experience on Students’ Motivation, Self-Efficacy, and Attitudes in Online Learning. J. Sci. Educ. Technol. 2023, 32, 309–337. [Google Scholar] [CrossRef]
- Kaminskienė, L.; Järvelä, S.; Lehtinen, E. How does technology challenge teacher education? Int. J. Educ. Technol. High. Educ. 2022, 19, 64. [Google Scholar] [CrossRef]
- Keller, S.; Rumann, S.; Habig, S. Cognitive Load Implications for Augmented Reality Supported Chemistry Learning. Information 2021, 12, 96. [Google Scholar] [CrossRef]
- Huwer, J.; Lauer, L.; Seibert, J.; Thyssen, C.; Dörrenbächer-Ulrich, L.; Perels, F. Re-Experiencing Chemistry with Augmented Reality: New Possibilities for Individual Support. World J. Chem. Educ. 2018, 6, 212–217. [Google Scholar] [CrossRef]
- Radu, I. Augmented reality in education: A meta-review and cross-media analysis. Pers. Ubiquitous Comput. 2014, 18, 1533–1543. [Google Scholar] [CrossRef]
- Koumpouros, Y. Revealing the true potential and prospects of augmented reality in education. Smart Learn. Environ. 2024, 11, 2. [Google Scholar] [CrossRef]
- Buchner, J.; Buntins, K.; Kerres, M. The impact of augmented reality on cognitive load and performance: A systematic review. J. Comput. Assist. Learn. 2022, 38, 285–303. [Google Scholar] [CrossRef]
- Hallinger, P.; Wang, R.; Chatpinyakoop, C.; Nguyen, V.-T.; Nguyen, U.-P. A bibliometric review of research on simulations and serious games used in educating for sustainability, 1997–2019. J. Clean. Prod. 2020, 256, 120358. [Google Scholar] [CrossRef]
- Ayyagari, R.; Grover, V.; Purvis, R. Technostress: Technological Antecedents and Implications. MIS Q. 2011, 35, 831. [Google Scholar] [CrossRef]
- Fajri, F.A.; Haribowo, P.R.K.; Amalia, N.; Natasari, D. Gamification in e-learning: The mitigation role in technostress. Int. J. Eval. Res. Educ. 2021, 10, 606. [Google Scholar] [CrossRef]
- Reiß, S.; Sarris, V. Experimentelle Psychologie: Von der Theorie zur Praxis, 2nd ed.; Pearson Studium Psychologie: München, Germany, 2012. [Google Scholar]
- Holden, H.; Rada, R. Understanding the Influence of Perceived Usability and Technology Self-Efficacy on Teachers’ Technology Acceptance. J. Res. Technol. Educ. 2011, 43, 343–367. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 3rd ed.; The Guilford Press: New York, NY, USA, 2022. [Google Scholar]
- Kamarainen, A.M.; Metcalf, S.; Grotzer, T.; Browne, A.; Mazzuca, D.; Tutwiler, M.S.; Dede, C. EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Comput. Educ. 2013, 68, 545–556. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Lin, Y.-H. Learner autonomy in team-based learning: A case study of mechanical engineering education. J. Eng. Educ. Transform. 2023, 36, 65–75. [Google Scholar] [CrossRef]
Data Set | Sample Size N | Sex | Age | Course of Study |
---|---|---|---|---|
1 (K) | N = 196 | Female = 77% Male = 23% Diverse = 0% | 18–36 M = 20.31 SD = 2.434 | elementary school education = 64.3% secondary (WHRS) = 28.6% others = 6.6% missing values = 0.5% |
A: n = 55 | ||||
B: n = 48 | ||||
C: n = 43 | ||||
D: n = 50 | ||||
2 (CSE) | N = 177 | Female = 78% Male = 22% Diverse = 0% | 18–36 M = 20.27 SD = 2.441 | elementary school education = 63.3% secondary (WHRS) = 28.8% others = 7.3% missing values = 0.6% |
A: n = 46 | ||||
B: n = 38 | ||||
C: n = 45 | ||||
D: n = 48 |
Intervention Groups | Sample | N= | Predictor | Moderator | Outcome Variable |
---|---|---|---|---|---|
A, B, C, D | Total | 177 | CSEpre | AR | CSEpost |
A+C | GAME groups | 91 | |||
B+D | Non-GAME groups | 86 | |||
A, B, C, D | Total | 177 | CSEpre | GAME | CSEpost |
A+B | AR groups | 84 | |||
C+D | Non-AR groups | 93 | |||
A, B, C, D | Total | 196 | Kpre | AR | Kpost |
A+C | GAME groups | 103 | |||
B+D | Non-GAME groups | 93 | |||
A, B, C, D | Total | 196 | Kpre | GAME | Kpost |
A+B | AR groups | 98 | |||
C+D | Non-AR groups | 98 |
Multivariate Test of Repeated Measures ANOVA for K (N = 196) | ||||||
---|---|---|---|---|---|---|
Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
time | 0.862 | 30.834 | 1.000 | 192.000 | <0.001 | 0.138 |
time × group | 0.988 | 0.804 | 3.000 | 192.000 | 0.493 | 0.012 |
Multivariate Test of Repeated Measures ANOVA for CSE (N = 177) | ||||||
---|---|---|---|---|---|---|
Value | F | Hypothesis df | Error df | Sig. | Partial Eta Squared | |
time | 0.885 | 21.777 | 1.000 | 173.000 | <0.001 | 0.112 |
time × group | 0.998 | 0.726 | 3.000 | 173.000 | 0.538 | 0.012 |
(a) Summary of moderated regression analysis predicting CSEpost (N = 177) | ||||||
Coefficient | t | p | 95% CI low | 95% CI up | ||
Constant | 2836.5179 | 26.3046 | 0.0000 | 2623.6787 | 3049.3571 | |
CSEpre (B) | 5.5256 | 10.6970 | 0.0000 | 4.5060 | 6.5452 | |
AR (A) | 227.5977 | −1.4540 | 0.1478 | −536.5620 | 81.3665 | |
INT_1 (A × B) | −2.0411 | −2.5529 | 0.0115 | −3.6192 | −0.4630 | |
(b) Conditional effects of the focal predictor (CSEpre) | ||||||
AR | Effect | SE | t | p | 95% CI low | 95% CI up |
0 (nonAR) | 5.5256 | 0.5166 | 10.6970 | 0.0000 | 4.5060 | 6.5452 |
1 (AR) | 3.4845 | 0.6103 | 5.7096 | 0.0000 | 2.2799 | 4.6890 |
(a) Summary of moderated regression analysis predicting CSEpost (N = 86) | ||||||
Coefficient | t | p | 95% CI low | 95% CI up | ||
Constant | 2960.5230 | 19.9312 | 0.0000 | 2665.0344 | 3256.0117 | |
CSEpre (B) | 4.9286 | 6.4690 | 0.0000 | 3.4130 | 6.4442 | |
AR (A) | −420.6977 | −1.8820 | 0.0634 | −865.3969 | 24.0015 | |
INT_1 (A × B) | −2.6400 | −2.0893 | 0.0398 | −5.1537 | −0.1263 | |
(b) Conditional effects of the focal predictor (CSEpre) | ||||||
AR | Effect | SE | t | p | 95% CI low | 95% CI up |
0 (nonAR) | 4.9286 | 0.7619 | 6.4690 | 0.0000 | 3.4130 | |
1 (AR) | 2.2886 | 1.0081 | 2.2703 | 0.0258 | 0.2833 | 4.2940 |
(a) Summary of moderated regression analysis predicting Kpost (N = 98) | ||||||
Coefficient | t | p | 95% CI low | 95% CI up | ||
Constant | 39,796.0411 | 18.1322 | 0.0000 | 35,438.2607 | 44,153.8215 | |
Kpre (B) | 42.4989 | 5.9272 | 0.0000 | 28.2623 | 56.7355 | |
GAME (A) | 1370.1023 | 0.4691 | 0.6401 | −4428.6622 | 7168.8669 | |
INT_1 (A × B) | −20.6698 | −2.0951 | 0.0388 | −40.2583 | −1.0813 | |
(b) Conditional effects of the focal predictor (Kpre) | ||||||
GAME | Effect | SE | t | p | 95% CI low | 95% CI up |
0 (non-GAME) | 42.4989 | 7.1702 | 5.9272 | 0.0000 | 28.2623 | 56.7355 |
1 (GAME) | 21.8291 | 6.7764 | 3.2214 | 0.0018 | 8.3745 | 35.2838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czok, V.; Weitzel, H. Impact of Augmented Reality and Game-Based Learning for Science Teaching: Lessons from Pre-Service Teachers. Appl. Sci. 2025, 15, 2844. https://doi.org/10.3390/app15052844
Czok V, Weitzel H. Impact of Augmented Reality and Game-Based Learning for Science Teaching: Lessons from Pre-Service Teachers. Applied Sciences. 2025; 15(5):2844. https://doi.org/10.3390/app15052844
Chicago/Turabian StyleCzok, Valerie, and Holger Weitzel. 2025. "Impact of Augmented Reality and Game-Based Learning for Science Teaching: Lessons from Pre-Service Teachers" Applied Sciences 15, no. 5: 2844. https://doi.org/10.3390/app15052844
APA StyleCzok, V., & Weitzel, H. (2025). Impact of Augmented Reality and Game-Based Learning for Science Teaching: Lessons from Pre-Service Teachers. Applied Sciences, 15(5), 2844. https://doi.org/10.3390/app15052844