Classification of Logging Data Using Machine Learning Algorithms
<p>Machine learning models.</p> "> Figure 2
<p>Well log data processing and classification quality assessment.</p> "> Figure 3
<p>Floating data window with size 5.</p> "> Figure 4
<p>Well log dataset with floating data window size up_w = 5 and dn_w = 5.</p> ">
Abstract
:1. Introduction
- The main results of well log data interpretation using machine learning for different types of deposits are presented;
- A uranium well log (UWL) dataset is presented and described, allowing us to set up machine learning methods for ROZ detection and lithological classification;
- This paper presents the state-of-the-art result in solving ROZ detection and lithological classification tasks obtained using the UWL dataset;
- The influence of floating window size on the quality of classification is investigated.
2. Related Works
- Lithological classification.
- The identification of reservoirs.
- Stratigraphic classification.
- The estimation of rock permeability.
- The identification of reservoir oxidation.
- The technology of extraction dictates the necessity of identifying impermeable layers with a thickness of 20 cm (this is a requirement of the regulatory documentation) within the ore-bearing horizon with a thickness of 60–80 m. In some cases, one identified layer in petroleum geophysics corresponds to the entire interpreted ore-bearing horizon in uranium geophysics [1].
- The set of recorded logging data is much smaller compared to oil and gas fields. In fact, only fairly simple variations in electrical logging (AR, SP, IL) are available. Gamma logging cannot be used for lithological classification because the contribution to the recorded gamma radiation from radium and its decay products is two orders of magnitude greater than that from lithology. Of the neutron methods, only fission neutron logging is used, aimed at the direct determination of uranium [1].
- Difficulties with extracting and tying the core due to the characteristics of the section (sand and clay).
- Use of experts’ assessments, which contain a significant degree of subjectivity [16].
- The regulatory framework, interpretation methods, and standard set of logging methods were inherited from the USSR and underwent only minor changes in Kazakhstan.
- There are no publicly available datasets that allow for a comparative analysis of classification and forecasting methods based on well logging data from uranium deposits.
3. Method
3.1. Data Preprocessing
- ‘up5’:up_w = 5 (size of the top of the data window).
- ‘dn150’:dn_w = 150 (size of the bottom of the data window).
- ‘t5’:test_part = 5 (which part of the dataset will be the test part. In this case, it is the 5th of 10 possible test parts).
- ‘n1’:norm = 1 (whether the input parameters were normalized; 1—normalized, 0—not normalized).
3.2. Training and Evaluating Machine Learning Models
- The dataset is not balanced. It means that the number of objects of different classes in the dataset is different—class 2: 6876; class 1: 35,812;class 8: 28,073 (ROZ).
- In the ROZ classification task, objects of all three classes are equally important for the researcher.
- 3.
- In the lithological classification (LC) problem, the correct classification of low-permeability rocks (clay—7) and the overall accuracy of the classifier are important.
4. Results
4.1. ROZ Identification
4.2. Lithological Classification
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Metrics | Formula | Explanation | |
---|---|---|---|
Regression models | Mean absolute error—MAE | where n is the sample size; the real value of the target variable for the i-th example; calculated value of the i-th example; | |
Determination coefficient | |||
Linear correlation coefficient (or Pearson correlation coefficient) | where | ||
Classification models | Accuracy | where is the number of correct answers and N is the total number of possible answers of the model | |
Precision | where true positive (TP) and true negative (TN) are cases of correct operation of the classifier. Accordingly, false negatives (FNs) and false positives (FPs) are cases of misclassification | ||
Recall | |||
F1 score |
Appendix B
Dw_N | Classifier | Acc | f1_Score_Class1 | f1_Score_Class2 | f1_Score_Class8 | f1_Score_Macro | f1_Score_Micro | Duration |
---|---|---|---|---|---|---|---|---|
5 | LGBM | 0.807 | 0.805 | 0.633 | 0.659 | 0.699 | 0.807 | 22.2 |
5 | RBF SVM | 0.792 | 0.786 | 0.627 | 0.632 | 0.682 | 0.792 | 1596 |
25 | LGBM | 0.808 | 0.805 | 0.661 | 0.673 | 0.713 | 0.808 | 52 |
25 | RBF SVM | 0.794 | 0.782 | 0.630 | 0.650 | 0.688 | 0.794 | 3274 |
50 | LGBM | 0.814 | 0.815 | 0.668 | 0.681 | 0.721 | 0.814 | 81.1 |
50 | RBF SVM | 0.795 | 0.780 | 0.603 | 0.662 | 0.682 | 0.795 | 5743.5 |
Appendix C
F1_Score | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dw_N | Model | Acc | 1 | 3 | 4 | 5 | 6 | 7 | 9 | f1_Macro | f1_Micro | Duration |
5 | LGBM | 0.55 | 0.695 | 0.295 | 0.168 | 0.29 | 0.015 | 0.643 | 0 | 0.301 | 0.55 | 3.98 |
XGB | 0.565 | 0.705 | 0.292 | 0.159 | 0.433 | 0 | 0.623 | 0 | 0.344 | 0.565 | 120.97 | |
MLP | 0.599 | 0.739 | 0.266 | 0.078 | 0.022 | 0 | 0.671 | 0 | 0.276 | 0.599 | 32.001 | |
10 | LGBM | 0.565 | 0.706 | 0.344 | 0.209 | 0.247 | 0.063 | 0.629 | 0 | 0.314 | 0.565 | 4.731 |
RFC | 0.588 | 0.729 | 0.318 | 0.197 | 0.16 | 0.043 | 0.608 | 0 | 0.324 | 0.588 | 24.25 | |
XGB | 0.577 | 0.715 | 0.348 | 0.19 | 0.337 | 0.089 | 0.628 | 0 | 0.359 | 0.577 | 114.24 | |
MLP | 0.62 | 0.758 | 0.328 | 0.11 | 0.059 | 0 | 0.646 | 0 | 0.3 | 0.62 | 37.518 | |
25 | LGBM | 0.578 | 0.719 | 0.375 | 0.206 | 0.185 | 0.022 | 0.65 | 0 | 0.308 | 0.578 | 9.851 |
RFC | 0.608 | 0.745 | 0.337 | 0.213 | 0.143 | 0.027 | 0.641 | 0 | 0.332 | 0.608 | 58.774 | |
XGB | 0.609 | 0.744 | 0.392 | 0.21 | 0.263 | 0.028 | 0.671 | 0 | 0.364 | 0.609 | 260.25 | |
MLP | 0.641 | 0.774 | 0.402 | 0.18 | 0.142 | 0 | 0.668 | 0 | 0.341 | 0.641 | 50.892 | |
50 | LGBM | 0.61 | 0.754 | 0.4 | 0.241 | 0.178 | 0.012 | 0.644 | 0 | 0.318 | 0.61 | 17.161 |
RFC | 0.639 | 0.773 | 0.405 | 0.224 | 0.17 | 0 | 0.649 | 0 | 0.35 | 0.639 | 104.44 | |
XGB | 0.636 | 0.768 | 0.415 | 0.243 | 0.301 | 0.005 | 0.683 | 0 | 0.381 | 0.636 | 435.20 | |
MLP | 0.659 | 0.792 | 0.454 | 0.228 | 0.198 | 0 | 0.674 | 0 | 0.37 | 0.659 | 81.985 | |
100 | LGBM | 0.634 | 0.776 | 0.434 | 0.253 | 0.153 | 0.011 | 0.665 | 0 | 0.327 | 0.634 | 32.906 |
RFC | 0.656 | 0.79 | 0.431 | 0.245 | 0.216 | 0 | 0.649 | 0 | 0.368 | 0.656 | 195.50 | |
XGB | 0.659 | 0.791 | 0.441 | 0.247 | 0.308 | 0 | 0.692 | 0 | 0.391 | 0.659 | 732.61 | |
MLP | 0.656 | 0.796 | 0.432 | 0.253 | 0.188 | 0 | 0.666 | 0 | 0.368 | 0.656 | 102.92 | |
200 | LGBM | 0.65 | 0.794 | 0.471 | 0.277 | 0.091 | 0.019 | 0.636 | 0 | 0.327 | 0.65 | 46.825 |
RFC | 0.681 | 0.81 | 0.489 | 0.282 | 0.199 | 0 | 0.633 | 0 | 0.381 | 0.681 | 658.43 | |
XGB | 0.694 | 0.819 | 0.492 | 0.295 | 0.28 | 0.008 | 0.705 | 0 | 0.41 | 0.694 | 1319.5 | |
MLP | 0.649 | 0.789 | 0.455 | 0.234 | 0.18 | 0 | 0.652 | 0 | 0.364 | 0.649 | 157.25 |
References
- Mukhamediev, R.I.; Kuchin, Y.; Amirgaliyev, Y.; Yunicheva, N.; Muhamedijeva, E. Estimation of Filtration Properties of Host Rocks in Sandstone-Type Uranium Deposits Using Machine Learning Methods. IEEE Access 2022, 10, 18855–18872. [Google Scholar] [CrossRef]
- Amirova, U.; Uruzbaeva, N. Overview of the development of the world market of Uranium. Univers. Econ. Law Electron. Sci. J. 2017, 6, 1–8. [Google Scholar]
- Baldwin, J.L.; Bateman, R.M.; Wheatley, C.L. Application of a neural network to the problem of mineral identification from well logs. Log Anal. 1990, 31, SPWLA-1990-v31n5a1. [Google Scholar]
- Poulton, M.M. Computational Neural Networks for Geophysical Data Processing; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Benaouda, D.; Wadge, G.; Whitmarsh, R.; Rothwell, R.; MacLeod, C. Inferring the lithology of borehole rocks by applying neural network classifiers to downhole logs: An example from the Ocean Drilling Program. Geophys. J. Int. 1999, 136, 477–491. [Google Scholar] [CrossRef]
- Saggaf, M.; Nebrija, E.L. Estimation of missing logs by regularized neural networks. AAPG Bull. 2003, 87, 1377–1389. [Google Scholar] [CrossRef]
- Kumar, T.; Seelam, N.K.; Rao, G.S. Lithology prediction from well log data using machine learning techniques: A case study from Talcher coalfield, Eastern India. J. Appl. Geophys. 2022, 199, 104605. [Google Scholar] [CrossRef]
- Kim, J. Lithofacies classification integrating conventional approaches and machine learning technique. J. Nat. Gas Sci. Eng. 2022, 100, 104500. [Google Scholar] [CrossRef]
- Thongsamea, W.; Kanitpanyacharoena, W.; Chuangsuwanich, E. Lithological Classification from Well Logs using Machine Learning Algorithms. Bull. Earth Sci. Thail. 2018, 10, 31–43. [Google Scholar]
- Liang, H.; Xiong, J.; Yang, Y.; Zou, J. Research on Intelligent Recognition Technology in Lithology Based on Multi-parameter. Fusion 2023. [Google Scholar] [CrossRef]
- Mohamed, I.M.; Mohamed, S.; Mazher, I.; Chester, P. Formation lithology classification: Insights into machine learning methods. In Proceedings of the SPE Annual Technical Conference and Exhibition, Calgary, AB, Canada, 30 September–2 October 2019. [Google Scholar]
- Ahmadi, M.-A.; Ahmadi, M.R.; Hosseini, S.M.; Ebadi, M. Connectionist model predicts the porosity and permeability of petroleum reservoirs by means of petro-physical logs: Application of artificial intelligence. J. Pet. Sci. Eng. 2014, 123, 183–200. [Google Scholar] [CrossRef]
- Gholami, R.; Moradzadeh, A.; Maleki, S.; Amiri, S.; Hanachi, J. Applications of artificial intelligence methods in prediction of permeability in hydrocarbon reservoirs. J. Pet. Sci. Eng. 2014, 122, 643–656. [Google Scholar] [CrossRef]
- Zhong, Z.; Carr, T.R.; Wu, X.; Wang, G. Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA. Geophysics 2019, 84, B363–B373. [Google Scholar] [CrossRef]
- Khan, H.; Srivastav, A.; Kumar Mishra, A.; Anh Tran, T. Machine learning methods for estimating permeability of a reservoir. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 2118–2131. [Google Scholar] [CrossRef]
- Kuchin, Y.I.; Mukhamediev, R.I.; Yakunin, K.O. One method of generating synthetic data to assess the upper limit of machine learning algorithms performance. Cogent Eng. 2020, 7, 1718821. [Google Scholar] [CrossRef]
- Merembayev, T.; Yunussov, R.; Yedilkhan, A. Machine learning algorithms for stratigraphy classification on uranium deposits. Procedia Comput. Sci. 2019, 150, 46–52. [Google Scholar] [CrossRef]
- Kuchin, Y.I.; Mukhamediev, R.I.; Yakunin, K.O. Quality of data classification under conditions of inconsistency of expert estimations. Cloud Sci. 2019, 6, 109–126. (In Russian) [Google Scholar]
- Mukhamediev, R.I.; Kuchin, Y.; Popova, Y.; Yunicheva, N.; Muhamedijeva, E.; Symagulov, A.; Abramov, K.; Gopejenko, V.; Levashenko, V.; Zaitseva, E.; et al. Determination of Reservoir Oxidation Zone Formation in Uranium Wells Using Ensemble Machine Learning Methods. Mathematics 2023, 11, 4687. [Google Scholar] [CrossRef]
- Dacknov, V.N. Interpretation of the Results of Geophysical Studies of Well Sections; Nedra: Moskow, Russia, 1982; p. 448. (In Russian) [Google Scholar]
- Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.; Gopejenko, V.; Yakunin, K.; et al. Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions, Opportunities and Challenges. Mathematics 2022, 10, 2552. [Google Scholar] [CrossRef]
- Singh, H.; Seol, Y.; Myshakin, E.M. Automated well-log processing and lithology classification by identifying optimal features through unsu-pervised and supervised machine-learning algorithms. SPE J. 2020, 25, 2778–2800. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Al Daoud, E. Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. Int. J. Comput. Inf. Eng. 2019, 13, 6–10. [Google Scholar]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory analysis. Nonparametric discrimination: Consistency properties. Int. Stat. Rev. /Rev. Int. De Stat. 1989, 57, 238–247. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Galushkin, A.I. Neural Networks: Fundamentals of Theory; Telecom: Perm, Russia, 2010; p. 496. (In Russian) [Google Scholar]
- Bayes, T. An essay towards solving a problem in the doctrine of chances. Biometrika 1958, 45, 296–315. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional Networks for Images, Speech, and Time Series. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1995; p. 3361. [Google Scholar]
- Xueqing, Z.; Zhansong, Z.; Chaomo, Z. Bi-LSTM deep neural network reservoir classification model based on the innovative input of logging curve response sequences. IEEE Access 2021, 9, 19902–19915. [Google Scholar] [CrossRef]
- Patidar, A.K.; Singh, S.; Anand, S. Subsurface Lithology Classification Using Well Log Data, an Application of Supervised Machine Learning. In Workshop on Mining Data for Financial Applications; Springer Nature: Singapore, 2022; pp. 227–240. [Google Scholar]
- Zhang, J.; He, Y.; Zhang, Y.; Li, W.; Zhang, J. Well-Logging-Based Lithology Classification Using Machine Learning Methods for High-Quality Reservoir Identification: A Case Study of Baikouquan Formation in Mahu Area of Junggar Basin, NW China. Energies 2022, 15, 3675. [Google Scholar] [CrossRef]
- Xing, Y.; Yang, H.; Yu, W. An approach for the classification of rock types using machine learning of core and log data. Sustainability 2023, 15, 8868. [Google Scholar] [CrossRef]
- Maxwell, K.; Rajabi, M.; Esterle, J. Automated classification of metamorphosed coal from geophysical log data using supervised machine learning techniques. Int. J. Coal Geol. 2019, 214, 103284. [Google Scholar] [CrossRef]
- Al-Mudhafar, W.J. Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms. J. Pet. Explor. Prod. Technol. 2017, 7, 1023–1033. [Google Scholar] [CrossRef]
- Liu, J.J.; Liu, J.C. Integrating deep learning and logging data analytics for lithofacies classification and 3D modeling of tight sandstone reservoirs. Geosci. Front. 2022, 13, 101311. [Google Scholar] [CrossRef]
- Rogulina, A.; Zaytsev, A.; Ismailova, L.; Kovalev, D.; Katterbauer, K.; Marsala, A. Similarity learning for well logs prediction using machine learning algorithms. In Proceedings of the International Petroleum Technology Conference, Dhahran, Saudi Arabia, 21–23 February 2022. D032S158R005. [Google Scholar]
- Zhong, R.; Johnson, R.L., Jr.; Chen, Z. Using machine learning methods to identify coal pay zones from drilling and logging-while-drilling (LWD) data. SPE J. 2020, 25, 1241–1258. [Google Scholar] [CrossRef]
- Hou, M.; Xiao, Y.; Lei, Z.; Yang, Z.; Lou, Y.; Liu, Y. Machine learning algorithms for lithofacies classification of the gulong shale from the Songliao Basin, China. Energies 2023, 16, 2581. [Google Scholar] [CrossRef]
- Schnitzler, N.; Ross, P.S.; Gloaguen, E. Using machine learning to estimate a key missing geochemical variable in mining exploration: Applica-tion of the Random Forest algorithm to multi-sensor core logging data. J. Geochem. Explor. 2019, 205, 106344. [Google Scholar] [CrossRef]
- Joshi, D.; Patidar, A.K.; Mishra, A.; Mishra, A.; Agarwal, S.; Pandey, A.; Choudhury, T. Prediction of sonic log and correlation of lithology by comparing geophysical well log data using machine learning principles. GeoJournal 2021, 88, 47–68. [Google Scholar] [CrossRef]
- Al-Khudafi, A.M.; Al-Sharifi, H.A.; Hamada, G.M.; Bamaga, M.A.; Kadi, A.A.; Al-Gathe, A.A. Evaluation of different tree-based machine learning approaches for formation lithology classification. In Proceedings of the ARMA/DGS/SEG International Geomechanics Symposium, Al Khobar, Saudi Arabia, 30 October–2 November 2023; p. ARMA-IGS-2023-0026. [Google Scholar] [CrossRef]
- Merembayev, T.; Yunussov, R.; Yedilkhan, A. Machine learning algorithms for classification geology data from well logging. In Proceedings of the 14th International Conference on Electronics Computer and Computation (ICECCO), Kaskelen, Kazakhstan, 29 November–1 December 2018; pp. 206–212. [Google Scholar]
- Wenhua, W.; Zhuwen, W.; Ruiyi, H.; Fanghui, X.; Xinghua, Q.; Yitong, C. Lithology classification of volcanic rocks based on conventional logging data of machine learning: A case study of the eastern depression of Liaohe oil field. Open Geosci. 2021, 13, 1245–1258. [Google Scholar] [CrossRef]
- Kuchin, Y.; Mukhamediev, R.; Yunicheva, N.; Symagulov, A.; Abramov, K.; Mukhamedieva, E.; Levashenko, V. Application of machine learning methods to assess filtration properties of host rocks of uranium deposits in Kazakhstan. Appl. Sci. 2023, 13, 10958. [Google Scholar] [CrossRef]
- Kuchin, Y.; Yakunin, K.; Mukhamedyeva, E.; Mukhamedyev, R. Project on creating a classifier of lithological types for uranium deposits in Kazakhstan. J. Phys. Conf. Ser. 2019, 1405, 012001. [Google Scholar] [CrossRef]
- Pedregosa, F. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Scikit-Learn. Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 1 February 2024).
- Ali, M. PyCaret: An Open Source, Low-Code Machine Learning Library in Python. PyCaret Version 1.0.0. 2020. Available online: https://www.pycaret.org (accessed on 1 February 2024).
- Arnaut, F.; Kolarski, A.; Srećković, V.A. Machine Learning Classification Workflow and Datasets for Ionospheric VLF Data Exclusion. Data 2024, 9, 17. [Google Scholar] [CrossRef]
- Raschka, S. MLxtend: Providing Machine Learning and Data Science Utilities and Extensions to Python’s Scientific Computing Stack. J. Open Source Softw. 2018, 3, 638. [Google Scholar] [CrossRef]
- Raschka, S. Available online: https://rasbt.github.io/mlxtend/ (accessed on 3 May 2023).
- Scikit-Optimize. Sequential Model-Based Optimization in Python. Available online: https://scikit-optimize.github.io/stable/ (accessed on 4 August 2024).
- Zahedi, L.; Mohammadi, F.G.; Rezapour, S.; Ohland, M.W.; Amini, M.H. Search algorithms for automated hyper-parameter tuning. arXiv 2021, arXiv:2104.14677. [Google Scholar]
№ | Classifier | Abbreviated Name | References |
---|---|---|---|
1. | Light gradient boosting machine | LGBM | [23,24,25] |
2. | Random forest classifier | RF | [26] |
3. | Extreme gradient boosting | XGB | [27] |
4. | k-nearest neighbors | kNN | [28] |
5. | Decision tree | DT | [29] |
6. | Artificial neural network or multilayer perceptron | MLP or ANN | [30,31] |
7. | Naive Bayes classifier | NB | [32] |
8. | Support vector machines with linear kernel | Linear SVM | [33] |
9. | Support vector machines with rbf kernel | RBF SVM | [33] |
10. | Long short-term memory | LSTM | [34] |
11. | Convolution neural network | CNN | [35] |
Extracted Resources | Task | Model | Results | Ref. |
---|---|---|---|---|
Oil | 1, 2 | Bidirectional LSTM | Acc = 92.69% | [36] |
Oil, gas | 1 | DT, RF | f1 = 0.97 (RF), f1 = 0.94 (DT) | [37] |
Oil | 1, 2 | UL, SL | UL = 80%, SL = 90% | [22] |
Oil | 1, 2 | XGBoost and RF | Acc = 0.882 (XGB) | [38] |
Oil, gas | 1 | kNN, RF, XGB, MLP | Acc = 0.79 | [39] |
Coal | 1 | XGB, RF, ANN | Acc = 0.99 (RF) | [40] |
Oil | 4 | DFFNN, XBG, LR | R2 = 0.9551 (LR) | [41] |
Oil, gas | 1 | ANN | Acc = 0.88 (ANN) | [11] |
Oil, gas | 1 | Hybrid model based on CNN and LSTM | Acc = 87.3% (CNN-LSTM) | [42] |
Oil, gas | 2 | XGB, LogR | ROC AUC = 0.824 | [43] |
Coal | 1 | LR, SVM, ANN, RF, XGB | Acc > 0.9 | [44] |
Coal | 1 | SVM, MLP, DT, RF, XG | Acc = 0.8 | [7] |
Oil, gas | 1 | MLP, SVM, XGB, RF | Acc = 0.868 (XGB) and Acc = 0.884 (RF) | [45] |
Geothermal wells | 1 | kNN, SVM, XGB | Acc = 0.9067 (XGB) | [9] |
Sulfide ore | 1 | RF | R > 0.66 between calculated and measured Na concentration in core | [46] |
Oil | 1 | UL | Acc = 0.5840 | [47] |
Oil | 1 | RF | F1 = 0.913 | [48] |
Uranium | 1, 3 | RF, kNN, XGB | Acc = 0.65 (1), Acc = 0.95 (3) | [49] |
Oil, gas | 1 | SVM, RF | Acc = 0.9746 | [50] |
Uranium | 4 | ANN, XGB | R = 0.7 (XGB) | [1] |
Uranium | 4 | XGB, LGBM, RF, DFFNN, SVM | R2 = 0.710, R = 0.845 (LGBM) | [51] |
Uranium | 1 | kNN, LogR, DT, SVM, XGB, ANN, LSTM | Acc = 0.54 (XGB) | [52] |
Uranium | 5 | SVM, ANN, RF, XGB, LGBM | f1_weighted = 0.72 (XGB) | [19] |
Code | Rock Name | AR (Ohm*m) | Filtration Coefficient (m/Day) |
---|---|---|---|
1 | gravel, pebbles | medium | 12–20 |
2 | coarse sand | medium | 8–15 |
3 | medium-grained sand | medium | 5–12 |
4 | fine-grained sand | medium | 1–7 |
5 | sandstones | high | 0–0.1 |
6 | silt, siltstone | low | 0.8–1 |
7 | clay | low | 0.1–0.8 |
8 | gypsum, dolomite | high | 0–0.1 |
9 | carbonate rocks | high | 0–0.1 |
№ | Classifier | Acc | f1_Score_Class1 | f1_Score_Class2 | f1_Score_Class8 | f1_Score_Macro | f1_Score_Micro | Duration |
---|---|---|---|---|---|---|---|---|
1 | LGBM | 0.868 | 0.88 | 0.668 | 0.891 | 0.813 | 0.868 | 5.757 |
2 | RFC | 0.844 | 0.859 | 0.57 | 0.869 | 0.766 | 0.844 | 94.193 |
3 | XGB | 0.859 | 0.87 | 0.657 | 0.882 | 0.803 | 0.859 | 161.549 |
4 | kNN | 0.666 | 0.71 | 0.396 | 0.658 | 0.588 | 0.666 | 134.631 |
5 | DT | 0.721 | 0.762 | 0.419 | 0.753 | 0.645 | 0.721 | 18.003 |
6 | MLP | 0.809 | 0.825 | 0.628 | 0.825 | 0.759 | 0.809 | 54.788 |
7 | NB | 0.479 | 0.404 | 0.279 | 0.678 | 0.454 | 0.479 | 0.98 |
8 | Linear SVM | 0.750 | 0.775 | 0.461 | 0.757 | 0.664 | 0.750 | 3322.33 |
9 | RBF SVM | 0.799 | 0.812 | 0.560 | 0.818 | 0.730 | 0.799 | 1156.59 |
Dw_N | Acc | f1_Score_Class1 | f1_Score_Class2 | f1_Score_Class8 | f1_Score_Macro | f1_Score_Micro | Duration |
---|---|---|---|---|---|---|---|
0 | 0.79 | 0.828 | 0.505 | 0.685 | 0.672 | 0.79 | 1.651 |
5 | 0.825 | 0.843 | 0.636 | 0.698 | 0.726 | 0.825 | 6.386 |
25 | 0.82 | 0.839 | 0.656 | 0.69 | 0.729 | 0.82 | 15.56 |
50 | 0.827 | 0.842 | 0.664 | 0.696 | 0.734 | 0.827 | 26.56 |
100 | 0.836 | 0.847 | 0.67 | 0.723 | 0.747 | 0.836 | 48.94 |
200 | 0.837 | 0.815 | 0.68 | 0.73 | 0.741 | 0.837 | 73.61 |
Dw_N | Acc | f1_Score_Class1 | f1_Score_Class2 | f1_Score_Class8 | f1_Score_Macro | f1_Score_Micro | Duration |
---|---|---|---|---|---|---|---|
0 | 0.779 | 0.803 | 0.498 | 0.647 | 0.649 | 0.779 | 0.902 |
5 | 0.807 | 0.805 | 0.633 | 0.659 | 0.699 | 0.807 | 2.503 |
25 | 0.808 | 0.805 | 0.661 | 0.673 | 0.713 | 0.808 | 5.833 |
50 | 0.814 | 0.815 | 0.668 | 0.681 | 0.721 | 0.814 | 10.47 |
100 | 0.818 | 0.815 | 0.668 | 0.697 | 0.727 | 0.818 | 18.99 |
200 | 0.826 | 0.815 | 0.679 | 0.739 | 0.744 | 0.826 | 31.5 |
F1_Score | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dw_n | Acc | 1 | 3 | 4 | 5 | 6 | 7 | 9 | F1_Macro | F1_Micro | Duration |
5 | 0.565 | 0.705 | 0.292 | 0.159 | 0.433 | 0 | 0.623 | 0 | 0.344 | 0.565 | 120.973 |
10 | 0.577 | 0.715 | 0.348 | 0.19 | 0.337 | 0.089 | 0.628 | 0 | 0.359 | 0.577 | 114.243 |
25 | 0.609 | 0.744 | 0.392 | 0.21 | 0.263 | 0.028 | 0.671 | 0 | 0.364 | 0.609 | 260.255 |
50 | 0.636 | 0.768 | 0.415 | 0.243 | 0.301 | 0.005 | 0.683 | 0 | 0.381 | 0.636 | 435.202 |
100 | 0.659 | 0.791 | 0.441 | 0.247 | 0.308 | 0 | 0.692 | 0 | 0.391 | 0.659 | 732.618 |
200 | 0.694 | 0.819 | 0.492 | 0.295 | 0.28 | 0.008 | 0.705 | 0 | 0.41 | 0.694 | 1319.534 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhamediev, R.; Kuchin, Y.; Yunicheva, N.; Kalpeyeva, Z.; Muhamedijeva, E.; Gopejenko, V.; Rystygulov, P. Classification of Logging Data Using Machine Learning Algorithms. Appl. Sci. 2024, 14, 7779. https://doi.org/10.3390/app14177779
Mukhamediev R, Kuchin Y, Yunicheva N, Kalpeyeva Z, Muhamedijeva E, Gopejenko V, Rystygulov P. Classification of Logging Data Using Machine Learning Algorithms. Applied Sciences. 2024; 14(17):7779. https://doi.org/10.3390/app14177779
Chicago/Turabian StyleMukhamediev, Ravil, Yan Kuchin, Nadiya Yunicheva, Zhuldyz Kalpeyeva, Elena Muhamedijeva, Viktors Gopejenko, and Panabek Rystygulov. 2024. "Classification of Logging Data Using Machine Learning Algorithms" Applied Sciences 14, no. 17: 7779. https://doi.org/10.3390/app14177779
APA StyleMukhamediev, R., Kuchin, Y., Yunicheva, N., Kalpeyeva, Z., Muhamedijeva, E., Gopejenko, V., & Rystygulov, P. (2024). Classification of Logging Data Using Machine Learning Algorithms. Applied Sciences, 14(17), 7779. https://doi.org/10.3390/app14177779