Passive TDOA Emitter Localization Using Fast Hyperbolic Hough Transform
<p>(<b>a</b>) Measurement scenario with emitter <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math> and sensors <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math>; (<b>b</b>) estimation process.</p> "> Figure 2
<p>HHT of a scenario with emitter <math display="inline"><semantics> <mrow> <mi>E</mi> </mrow> </semantics></math> (blue cross) and sensors <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> (reference),<math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>3</mn> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>4</mn> </mrow> </msub> </mrow> </semantics></math> (red crosses), placed on the same plane. Hyperbolas generated by <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>i</mi> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> are denoted by <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>H</mi> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math>. (<b>a</b>) Source at a position with good GDOP and (<b>b</b>) bad GDOP.</p> "> Figure 3
<p>Hierarchical calculation of the HHT. Red and grey circles indicate centers of promising and unpromising tiles, respectively. Grey squares are the tiles. (<b>a</b>) Start of iteration step <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math>, (<b>b</b>) after the pruning in iteration step <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math>, (<b>c</b>) start of iteration step <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math> + 1.</p> "> Figure 4
<p>The derivation of the upper bound in a tile of center <math display="inline"><semantics> <mrow> <mi>P</mi> </mrow> </semantics></math> and size <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>.</p> "> Figure 5
<p>Sensor placement in the simulation setup with 7 sensors.</p> "> Figure 6
<p>The HHT. (<b>a</b>) Near-range example, (<b>b</b>) long-range example.</p> "> Figure 7
<p>Operation of the F-HHT. Sensor positions are shown by blue circles. The source position and the estimated position are shown by a blue cross and a green x, respectively. The centers of promising tiles are shown by red dots. <math display="inline"><semantics> <mrow> <mi>n</mi> </mrow> </semantics></math>: iteration, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>D</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </mrow> </semantics></math>: grid size, <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>N</mi> </mrow> <mrow> <mi>t</mi> <mi>i</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> </mrow> </semantics></math>: number of promising tiles.</p> "> Figure 8
<p>The near-range and the long-range experiments, conducted with a distance noise standard deviation of <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>σ</mi> </mrow> <mrow> <mi>i</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo> </mo> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 9
<p>Sensor setup with 57 sensors.</p> "> Figure 10
<p>RMSE of LS and F-HHT as a function of number of outliers.</p> "> Figure 11
<p>HHT and positioning error, as a function of reference sensor index.</p> ">
Abstract
:1. Introduction
- The speed of the search is higher than those of the earlier HHT solutions [31];
- The search algorithm is guaranteed to find the global maximum on the predefined grid.
2. Related Work
3. Fast Hyperbolic Hough Transform
3.1. Problem Formulation
3.2. Hyperbolic Hough Transform
- In practice, the exact values of the measurement variances are usually not known. In such cases, can serve as an estimate of the true value. If the estimated value is smaller than the true variance then the source position may be outside of the skirt of the generated “wide hyperbola” . On the other side, if the estimated variance is higher than the true value then the source position is safely included inside . Therefore, in practice, the estimate should be an upper estimate of the true variance.
- In the 2.5D case, the shape of is not necessarily a hyperbola, but rather a general intersection of a 3-dimensional hyperboloid surface and the plane of the source.
- (a)
- If the grid size is large, the maximum may be missed;
- (b)
- The grid size determines possible accuracy: a smaller grid size can provide higher accuracy;
- (c)
- Smaller grid size implies a higher computational cost. Note that if the grid contains points, then the number of likelihood function evaluations will be , and the search for the maximum will also require (albeit simpler) operations.
3.3. Fast HHT
Algorithm 1 Operation of the F-HHT |
Input:
|
3.4. Global Convergence
4. Performance Evaluation
4.1. Test Simulation Setup
- The LS algorithm was Matlab’s built-in quasi-Newton solver in function fminunc. The gradient search was started from a random point within a 50m radius of the true source position.
- The F-HHT algorithm used final grid size parameter . In the H-HHT, the same grid size was used in the second stage of the algorithm, where the search area was around the result provided by the R-HHT in the first stage.
- The search area for the HHT methods was set to [0, 0, 500, 500] in the near-range cases and [0, 0, 1500, 1500] in the long-range cases.
- The R-HHT and H-HHT algorithms were implemented using the HHT as defined in section III-B.
- The likelihood function (7) includes the measurement noise estimate . In practical cases, the exact value of the noise is often unknown. Therefore, it is recommended to overestimate the noise level and use the overestimated value in the HHT. To replicate this procedure in the simulations, we used to generate the measurements, and for the HHT algorithms, we provided as the noise level estimate.
4.2. Illustration of the Operation
4.3. Error Analysis
4.4. Evaluation Time
4.5. Fault Tolerance
4.6. Real Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Feng, W.; Li, P.; Liu, Z.; Xu, X.; Yao, Y. A fusion method of pedestrian dead reckoning and pseudo indoor plan based on conditional random field. Measurement 2023, 207, 112417. [Google Scholar] [CrossRef]
- Placed, J.A.; Strader, J.; Carrillo, H.; Atanasov, N.; Indelman, V.; Carlone, L.; Castellanos, J.A. A survey on active simultaneous localization and mapping: State of the art and new frontiers. IEEE Trans. Robot. 2023, 39, 1686–1705. [Google Scholar] [CrossRef]
- Lin, H.; Zhan, J. GNSS-denied UAV indoor navigation with UWB incorporated visual inertial odometry. Measurement 2023, 206, 112256. [Google Scholar] [CrossRef]
- Mercuri, M.; Sacco, G.; Hornung, R.; Zhang, P.; Visser, H.J.; Hijdra, M.; Liu, Y.H.; Pisa, S.; van Liempd, B.; Torfs, T. 2-D localization, angular separation and vital signs monitoring using a SISO FMCW radar for smart long-term health monitoring environments. IEEE Internet Things J. 2021, 8, 11065–11077. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, N. Study of rail damage diagnosis and localization method based on intelligent wireless acoustic sensor network. Measurement 2023, 217, 113032. [Google Scholar] [CrossRef]
- Shafer, M.W.; Flikkema, P.G. Tracking small wildlife with minimal-complexity radio frequency transmitters: Near-optimal detection. IEEE Access 2023, 11, 40029–40037. [Google Scholar] [CrossRef]
- Gao, S.; Liu, J.; Zong, Y.; Wang, M.; Jin, X.; Tian, G.; Dai, X. Blast source TDOA localization with time synchronization estimation based on spatial overpressure-monitoring network. Measurement 2022, 204, 112080. [Google Scholar] [CrossRef]
- Li, J.; Lv, S.; Jin, Y.; Wang, C.; Liu, Y.; Liao, S. Geolocation and Tracking by TDOA Measurements Based on Space–Air–Ground Integrated Network. Remote Sens. 2023, 15, 44. [Google Scholar] [CrossRef]
- Huang, S.; Pun, Y.-M.; So, A.M.-C.; Yang, K. A Provably Convergent Projected Gradient-Type Algorithm for TDOA-Based Geolocation Under the Quasi-Parabolic Ionosphere Model. IEEE Signal Process. Lett. 2020, 27, 1335–1339. [Google Scholar] [CrossRef]
- Ho, K.C.; Chan, Y.T. Solution and performance analysis of geolocation by TDOA. IEEE Trans. Aerosp. Electron. Syst. 1993, 29, 1311–1322. [Google Scholar] [CrossRef]
- Li, C.; Zhuang, W. Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems. IEEE Trans. Wirel. Commun. 2002, 1, 439–447. [Google Scholar] [CrossRef]
- Ma, W.K.; Vo, B.N.; Singh, S.S.; Baddeley, A. Tracking an unknown time-varying number of speakers using TDOA measurements: A random finite set approach. IEEE Trans. Signal Process. 2006, 54, 3291–3304. [Google Scholar] [CrossRef]
- Sun, J.; Wen, J. Target location method for pipeline pre-warning system based on HHT and time difference of arrival. Measurement 2013, 46, 2716–2725. [Google Scholar] [CrossRef]
- Maroti, M.; Simon, G.; Ledeczi, A.; Sztipanovits, J. Shooter localization in urban terrain. Computer 2004, 37, 60–61. [Google Scholar] [CrossRef]
- Still, L.; Oispuu, M.; Koch, W. Accuracy Study on Shooter Localization Using Incomplete Acoustic Measurements. In Proceedings of the 2020 IEEE 23rd International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 6–9 July 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Damarla, T.; Kaplan, L.M.; Whipps, G.T. Sniper Localization Using Acoustic Asynchronous Sensors. IEEE Sens. J. 2010, 10, 1469–1478. [Google Scholar] [CrossRef]
- Mahapatra, C.; Mohanty, A.R. Explosive sound source localization in indoor and outdoor environments using modified Levenberg Marquardt algorithm. Measurement 2022, 187, 110362. [Google Scholar] [CrossRef]
- Weiss, A.J. Direct position determination of narrowband radio frequency transmitters. IEEE Signal Process. Lett. 2004, 11, 513–516. [Google Scholar] [CrossRef]
- Weiss, A.J. Direct Geolocation of Wideband Emitters Based on Delay and Doppler. IEEE Trans. Signal Process. 2011, 59, 2513–2521. [Google Scholar] [CrossRef]
- Hahn, W.; Tretter, S. Optimum processing for delay-vector estimation in passive signal arrays. IEEE Trans. Inf. Theory 1973, 19, 608–614. [Google Scholar] [CrossRef]
- Knapp, C.; Carter, G. The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 1976, 24, 320–327. [Google Scholar] [CrossRef]
- Schmidt, R. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Swindlehurst, A.L.; Stoica, P. Maximum likelihood methods in radar array signal processing. Proc. IEEE 1998, 86, 421–441. [Google Scholar] [CrossRef]
- Foy, W.H. Position-Location Solutions by Taylor-Series Estimation. IEEE Trans. Aerosp. Electron. Syst. 1976, AES-12, 187–194. [Google Scholar] [CrossRef]
- Zhou, Z.; Rui, Y.; Cai, X.; Lu, J. Constrained total least squares method using TDOA measurements for jointly estimating acoustic emission source and wave velocity. Measurement 2021, 182, 109758. [Google Scholar] [CrossRef]
- Smith, J.; Abel, J. Closed-form least-squares source location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. 1987, 35, 1661–1669. [Google Scholar] [CrossRef]
- Chan, Y.T.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef]
- Mahajan, A.; Walworth, M. 3D position sensing using the differences in the time-of-flights from a wave source to various receivers. IEEE Trans. Robot. Autom. 2001, 17, 91–94. [Google Scholar] [CrossRef]
- Gillette, M.D.; Silverman, H.F. A Linear Closed-Form Algorithm for Source Localization From Time-Differences of Arrival. IEEE Signal Process. Lett. 2008, 15, 1–4. [Google Scholar] [CrossRef]
- Liu, N.; Xu, Z.; Sadler, B.M. Low-Complexity Hyperbolic Source Localization With A Linear Sensor Array. IEEE Signal Process. Lett. 2008, 15, 865–868. [Google Scholar] [CrossRef]
- Mikhalev, A.; Ormondroyd, R.F. Comparison of Hough Transform and Particle Filter Methods of Emitter Geolocation using Fusion of TDOA Data. In Proceedings of the 2007 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany, 22 March 2007; pp. 121–127. [Google Scholar] [CrossRef]
- Khalaf-Allah, M. Particle Filtering for Three-Dimensional TDoA-Based Positioning Using Four Anchor Nodes. Sensors 2020, 20, 4516. [Google Scholar] [CrossRef]
- Lédeczi, Á.; Nádas, A.; Völgyesi, P.; Balogh, G.; Kusy, B.; Sallai, J.; Pap, G.; Dóra, S.; Molnár, K.; Maróti, M.; et al. Countersniper system for urban warfare. ACM Trans. Sens. Netw. 2005, 1, 153–177. [Google Scholar] [CrossRef]
- Mikhalev, A.; Hughes, E.J.; Ormondroyd, R.F. Comparison of Hough Transform and particle filter methods of passive emitter geolocation using fusion of TDOA and AOA data. In Proceedings of the 2010 13th International Conference on Information Fusion, Edinburgh, UK, 26–29 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Compagnoni, M.; Pini, A.; Canclini, A.; Bestagini, P.; Antonacci, F.; Tubaro, S.; Sarti, A. A Geometrical–Statistical Approach to Outlier Removal for TDOA Measurements. IEEE Trans. Signal Process. 2017, 65, 3960–3975. [Google Scholar] [CrossRef]
- Apolinário, J.A.; Yazdanpanah, H.; Nascimento, A.S.; de Campos, M.L.R. A Data-selective LS Solution to TDOA-based Source Localization. In Proceedings of the ICASSP 2019—2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4400–4404. [Google Scholar] [CrossRef]
- Hough, P.V.C. A Method and Means for Recognizing Complex Patterns. U.S. Patent 3,069,654, 18 December 1962. [Google Scholar]
- Rosenfeld, A. Picture processing by computer. ACM Comput. Surv. 1969, 1, 147–176. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Chaudhuri, B.B. A survey of Hough Transform. Pattern Recognit. 2015, 48, 993–1010. [Google Scholar] [CrossRef]
- Shyu, H.-J. Application of the Bearing Trace Hough Transform (BTHT) to Passive Shipping Lane Monitoring. In Naval Research Laboratory Report NRL/FR/5580--98-9877; Naval Research Laboratory: Washington, DC, USA, 1998. [Google Scholar]
- Luo, Y.; Sallai, J.; Ledeczi, A. A Hough Transform based approach to acoustic shot localization. In Proceedings of the 2016 19th International Conference on Information Fusion (FUSION), Heidelberg, Germany, 5–8 July 2016; pp. 1420–1426. [Google Scholar]
- Filos, J.; Canclini, A.; Thomas, M.R.P.; Antonacci, F.; Sarti, A.; Naylor, P.A. Robust inference of room geometry from acoustic measurements using the hough transform. In Proceedings of the 2011 19th European Signal Processing Conference, Barcelona, Spain, 9 August–2 September 2011; pp. 161–165. [Google Scholar]
- Kiryati, N.; Eldar, Y.; Bruckstein, A.M. A probabilistic Hough Transform. Pattern Recognit. 1991, 24, 303–316. [Google Scholar] [CrossRef]
- Xu, L.; Oja, E.; Kultanen, P. A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit. Lett. 1990, 11, 331–338. [Google Scholar] [CrossRef]
- Li, H.; Lavin, M.A.; Le Master, R.J. Fast Hough transform: A hierarchical approach. Comput. Vis. Graph. Image Process. 1986, 36, 139–161. [Google Scholar] [CrossRef]
- Levanon, N. Lowest GDOP in 2-D scenarios. IEE Proc.-Radar Sonar Navig. 2000, 147, 149–155. [Google Scholar] [CrossRef]
- Isaacs, J.T.; Klein, D.J.; Hespanha, J.P. Optimal sensor placement for time difference of arrival localization. In Proceedings of the 48th IEEE Conference on Decision and Control (CDC), Shanghai, China, 15–18 December 2009; pp. 7878–7884. [Google Scholar] [CrossRef]
Sensor ID | Position (m) |
---|---|
1 | (10, 10, 100) |
2 | (430, 190, 50) |
3 | (450, 350, 200) |
4 | (70, 300, 150) |
5 | (400, 10, 150) |
6 | (200, 50, 50) |
7 | (250, 470, 20) |
Scenario | Source Position | ||
---|---|---|---|
#1 | (157, 114) | 0.1 m | 0.1 m |
#2 | (157, 114) | 1 m | 0.1 m |
#3 | (157, 114) | 1 m | 1 m |
#4 | 0.1 m | 0.1 m | |
#5 | 1 m | 1 m | |
#6 | 1 m | 5 m |
Scenario | √CRLB | RMSE | |||
---|---|---|---|---|---|
LS | R-HHT | H-HHT | F-HHT | ||
#1 | 0.064 m | 0.071 m | 0.080 m | 0.079 m | 0.075 m |
#2 | 0.64 m | 0.69 m | 0.72 m | 0.71 m | 0.70 m |
#3 | 0.64 m | 0.68 m | 0.80 m | 0.82 m | 0.81 m |
#4 | 1.98 m | 2.03 m | 2.06 m | 2.32 m | 2.04 m |
#5 | 19.8 m | 21.0 m | 21.3 m | 21.6 m | 21.1 m |
#6 | 19.8 m | 21.0 m | 21.3 m | 21.8 m | 21.2 m |
Scenario | Run Time (ms) | |||
---|---|---|---|---|
LS | R-HHT | H-HHT | F-HHT | |
#1 | 5.4 | 2.6 | ||
#2 | 4.5 | 2.6 | 66 | 3.4 |
#3 | 4.4 | 48 | 2.3 | |
#4 | 4.4 | 41 | ||
#5 | 3.7 | 513 | 30 | 16 |
#6 | 3.8 | 513 | 6.3 | 7.7 |
Scenario | Trials | |||
---|---|---|---|---|
R-HHT | H-HHT | F-HHT | ||
#1 | ||||
#2 | ||||
#3 | ||||
#4 | ||||
#5 | ||||
#6 |
Scenario | RMSE (m) | ||
---|---|---|---|
LS | F-HHT | ||
#1 | 0 | 0.07 | 0.07 |
1 | 2.0 | 0.08 | |
2 | 2.9 | 0.10 | |
3 | 3.5 | 1.4 | |
4 | 4.1 | 11.8 | |
#4 | 0 | 2.1 | 2.1 |
1 | 80 | 2.8 | |
2 | 120 | 7.5 | |
3 | 143 | 41 | |
4 | 181 | 193 |
True Position | Estimated Position | Estimation Error (m) | ||
---|---|---|---|---|
LS | F-HHT | LS | F-HHT | |
(33.37, 48.24) | (35.93, 41.94) | (33.44, 47.81) | 6.80 | 0.43 |
(31.94, 57.34) | (39.92, 45.81) | (32.19, 57.81) | 14.03 | 0.53 |
(34.61, 73.91) | (44.83, 52.51) | (34.69, 73.44) | 23.71 | 0.48 |
(28.61, 75.62) | (34.18, 38.85) | (29.06, 75.31) | 37.19 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simon, G.; Leitold, F. Passive TDOA Emitter Localization Using Fast Hyperbolic Hough Transform. Appl. Sci. 2023, 13, 13301. https://doi.org/10.3390/app132413301
Simon G, Leitold F. Passive TDOA Emitter Localization Using Fast Hyperbolic Hough Transform. Applied Sciences. 2023; 13(24):13301. https://doi.org/10.3390/app132413301
Chicago/Turabian StyleSimon, Gyula, and Ferenc Leitold. 2023. "Passive TDOA Emitter Localization Using Fast Hyperbolic Hough Transform" Applied Sciences 13, no. 24: 13301. https://doi.org/10.3390/app132413301
APA StyleSimon, G., & Leitold, F. (2023). Passive TDOA Emitter Localization Using Fast Hyperbolic Hough Transform. Applied Sciences, 13(24), 13301. https://doi.org/10.3390/app132413301