Forecasting of NOx Emissions of Diesel LHD Vehicles in Underground Mines—An ANN-Based Regression Approach
<p>LKP-1701: the LHD vehicle (KGHM ZANAM) [<a href="#B63-applsci-13-09965" class="html-bibr">63</a>].</p> "> Figure 2
<p>The DEUTZ TCD 12.0 V6 diesel engine with its SCR system [<a href="#B64-applsci-13-09965" class="html-bibr">64</a>].</p> "> Figure 3
<p>The power and torque functions of diesel engine DEUTZ TCD 12.0 V6 [<a href="#B64-applsci-13-09965" class="html-bibr">64</a>].</p> "> Figure 4
<p>The structure of a Multi-Layer Perceptron (MLP) network.</p> "> Figure 5
<p>The time series of recorded signals: NOx emission ENGNOX (ppm); engine rotations ENGRPM (rpm); and engine acceleration ENGTPS (%).</p> "> Figure 6
<p>The time series of recorded signals: NOx emission ENGNOX (ppm); intake air pressure INTAKEP (kPa); selected gear (−4…0…4); and hydraulic oil pressure HYDOILP (MPa).</p> "> Figure 7
<p>The correlation of LHD operational parameters.</p> "> Figure 8
<p>Training data.</p> "> Figure 9
<p>Validation data.</p> "> Figure 10
<p>Test data.</p> "> Figure 11
<p>All data with outliers.</p> "> Figure 12
<p>Training data.</p> "> Figure 13
<p>Validation data.</p> "> Figure 14
<p>Test data.</p> "> Figure 15
<p>All data.</p> "> Figure 16
<p>Cumulative NOx emissions: original measured data and predicted (<b>a</b>); error of MLP prediction (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. State of the Art
3. Measurements
4. Methodology of NOx Prediction
Multi-Layer Perceptron (MLP) Network
5. Data Analysis
5.1. Preliminary Analysis and Input Variable Selection
5.2. MLP Training, Validation, and Testing
5.2.1. Results with Outliers
5.2.2. Results without Outliers
6. Discussion
7. Conclusions
- The MLP models analysed in this article were developed based on the selected input parameters. The decision was made to include 11 parameters that were measured using the SYNAPSA system. The selection of parameters was based on their impact on the emission of NOx.
- ANN-based models can be an efficient tool for NOx emission prediction of heavy-duty diesel engines installed in the powerful underground LHD vehicles working in transient modes of loading and speeds. The environmental conditions in which mining machinery operates are hard. The solution presented in the article aims to improve the safety of underground crews. Since most industrial vehicles with diesel engines are not equipped with sensors that measure the concentrations of harmful gases, the proposed solution for modelling NOx concentrations will provide a better understanding of the atmosphere of the working environment. The coefficient of determination is 0.86293, which the authors consider a satisfactory result for such complex industrial data. The ability to predict average exhaust emissions will allow for controlling gas hazards in underground mine work.
- The created ANN-based model should be tested and adapted over bigger datasets for different geological conditions (blasted material, road inclination, surface watering, and transportation distances) and operator experience with different driving manners. In further research, the model proposed in the article should be expanded to include more parameters. It is also necessary to test the operation of machines under different geological and hydrogeological conditions. This activity will make it possible to create appropriate models for predicting NOx from mining machines operating under specific geological and mining conditions.
- Data prediction values of NOx emission concentrations in mine work can be the basis for manoeuvring the ventilation airflow. By incorporating this information into the ventilation system power demand and capacity planning, the ventilation system can be optimized to ensure safe working conditions for the miners. The statistical method proposed in the article provides a way to estimate NOx concentrations that will be present in the mine atmosphere based on various factors such as production plans, a fleet of vehicles, and transportation routes. Knowing this information, ventilation services can adjust the ventilation system accordingly, which can help reduce the risk of health problems caused by high concentrations of NOx in the workplace. Increasing the air volume flow is just one example of how the ventilation system can be adjusted to manage NOx concentrations, and there may be other strategies that can be used as well.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LHD | Load–haul–dumping Vehicle |
ANN | Artificial Neural Network |
MLP | Multi-Layer Perceptron |
NOx | Nitrogen Oxides |
SCR | Selective Catalytic Reduction |
DOC | Diesel Oxidation Catalyst |
ECU | Electronic Control Unit |
DNN | Deep Neural Network |
FTP | Federal Test Procedure |
RMC | Ramped Mode Cycle |
DPM | Diesel Particular Matter |
DEF | Diesel Exhaust Fluid |
MAF | Mass Airflow |
PCR | Particular Component Regression |
MSE | Mean Squared Error |
RMSE | Root Mean Squared Error |
References
- Kurnia, J.C.; Sasmito, A.P.; Wong, W.Y.; Mujumdar, A.S. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines. Sci. Total. Environ. 2014, 481, 317–334. [Google Scholar] [CrossRef]
- Banasiewicz, A.; Janicka, A.; Michalak, A.; Włostowski, R. Photocatalysis as a method for reduction of ambient NOx in deep underground mines. Measurement 2022, 200, 111453. [Google Scholar] [CrossRef]
- Dong, L.; Tong, X.; Li, X.; Zhou, J.; Wang, S.; Liu, B. Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. J. Clean. Prod. 2019, 210, 1562–1578. [Google Scholar] [CrossRef]
- Strumiński, A.; Madeja-Strumińska, B. Mine ventilation practice in Polish copper mines. In Mining in the New Millennium Challenges and Opportunities; CRC Press: London, UK, 2020; pp. 173–179. [Google Scholar]
- Hebda-Sobkowicz, J.; Gola, S.; Zimroz, R.; Wyłomańska, A. Identification and statistical analysis of impulse-like patterns of carbon monoxide variation in deep underground mines associated with the blasting procedure. Sensors 2019, 19, 2757. [Google Scholar] [CrossRef] [PubMed]
- Tutak, M.; Brodny, J.; Szurgacz, D.; Sobik, L.; Zhironkin, S. The Impact of the Ventilation System on the Methane Release Hazard and Spontaneous Combustion of Coal in the Area of Exploitation—A Case Study. Energies 2020, 13, 4891. [Google Scholar] [CrossRef]
- Szlęzak, N.; Obracaj, D.; Borowski, M. Methods for controlling temperature hazard in Polish coal mines. Arch. Min. Sci. 2008, 53, 497–510. [Google Scholar]
- Shote, A.S.; Betiku, E.; Asere, A.A. Characteristics of CO and NOx emissions from combustion of transmethylated palm kernel oil-based biodiesel blends in a compression ignition engine. J. King Saud Univ.-Eng. Sci. 2019, 31, 178–183. [Google Scholar] [CrossRef]
- Borowski, M.; Życzkowski, P.; Cheng, J.; uczak, R.; Zwolińska, K. The Combustion of Methane from Hard Coal Seams in Gas Engines as a Technology Leading to Reducing Greenhouse Gas Emissions—Electricity Prediction Using ANN. Energies 2020, 13, 4429. [Google Scholar] [CrossRef]
- Ghalandari, M.; Fard, H.F.; Birjandi, A.K.; Mahariq, I. Energy-related carbon dioxide emission forecasting of four European countries by employing data-driven methods. J. Therm. Anal. Calorim. 2020, 144, 1999–2008. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, Q.; Yu, K.; Wang, L.; Wang, H. Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines. Int. J. Environ. Res. Public Health 2018, 15, 868. [Google Scholar] [CrossRef]
- Hebda-Sobkowicz, J.; Gola, S.; Zimroz, R.; Wyłomańska, A. Pattern of H2S concentration in a deep copper mine and its correlation with ventilation schedule. Measurement 2019, 140, 373–381. [Google Scholar] [CrossRef]
- Zhao, W.; Cheng, Y.; Pan, Z.; Wang, K.; Liu, S. Gas diffusion in coal particles: A review of mathematical models and their applications. Fuel 2019, 252, 77–100. [Google Scholar] [CrossRef]
- Trzop, K.; Palka, D.; Szurgacz, D.; Sobik, L. Preventive measures to minimize natural hazards in the Polish underground mining industry. IOP Conf. Ser. Earth Environ. Sci. 2021, 684, 012009. [Google Scholar] [CrossRef]
- Bugarski, A.D.; Cauda, E.G.; Janisko, S.J.; Mischler, S.E.; Noll, J.D. Diesel Aerosols and Gases in Underground Mines; Guide to Exposure Assessment and Control; Report of Investigations 9687, Department of Health and Human Services Centers (DHHS) for Disease Control and Prevention, National Institute for Occupational Safety and Health, Office of Mine Safety and Health Research; DHHS Publications: Pittsburgh, PA, USA, 2011. [Google Scholar]
- COMMISSION DIRECTIVE (EU) 2017/164 of 31 January 2017 Establishing a Fourth List of Indicative Occupational Exposure Limit Values Pursuant to Council Directive 98/24/EC, and Amending Commission Directives 91/322/EEC, 2000/39/EC and 2009/161/EU, Official Journal of the European Union, 1.2.2017. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017L0164&from=MT (accessed on 30 July 2023).
- Szlązak, N.; Obracaj, D.; Swolkień, J. Enhancing safety in the Polish high-methane coal mines: An overview. Mining Metall. Explor. 2020, 37, 567–579. [Google Scholar] [CrossRef]
- Wróblewski, A.; Wodecki, J.; Trybała, P.; Zimroz, R. A Method for Large Underground Structures Geometry Evaluation Based on Multivariate Parameterization and Multidimensional Analysis of Point Cloud Data. Energies 2022, 15, 6302. [Google Scholar] [CrossRef]
- Peng, S.; Huang, Z.; Dong, D. Numerical Simulation Study on Fire Hazard of a Coal Mine Transport Roadway. Min. Scince 2022, 29. [Google Scholar] [CrossRef]
- Lasek, J.A.; Lajnert, R. On the Issues of NOx as Greenhouse Gases: An Ongoing Discussion…. Appl. Sci. 2022, 12, 10429. [Google Scholar] [CrossRef]
- Rößler, M.; Velji, A.; Janzer, C.; Koch, T.; Olzmann, M. Formation of Engine Internal NO2: Measures to Control the NO2/NOX Ratio for Enhanced Exhaust after Treatment. SAE Int. J. Engines 2017, 10, 1880–1893. [Google Scholar] [CrossRef]
- Banasiewicz, A. Analysis of historical changes in the limit value of nitrogen oxides concentrations for underground mining. IOP Conf. Ser. Earth Environ. Sci. 2021, 684, 012018. [Google Scholar] [CrossRef]
- Debia, M.; Couture, C.; Njanga, P.E.; Neesham-Grenon, E.; Lachapelle, G.; Coulombe, H.; Hallé, S.; Aubin, S. Diesel engine exhaust exposures in two underground mines. Int. J. Min. Sci. Technol. 2017, 27, 641–645. [Google Scholar] [CrossRef]
- Chang, P.; Xu, G. A review of the health effects and exposure-responsible relationship of diesel particulate matter for underground mines. Int. J. Min. Sci. Technol. 2017, 27, 831–838. [Google Scholar] [CrossRef]
- Chang, P.; Xu, G. Review of Diesel Particulate Matter Control Methods in Underground Mines. In Proceedings of the 11th International Mine Ventilation Congress; Springer: Singapore, 2019; pp. 461–470. [Google Scholar] [CrossRef]
- Noll, J.; Mischler, S.; Schnakenberg, G.; Bugarski, A.; Mutmansky, J.; Ramani, R. Measuring diesel particulate matter in underground mines using sub micron elemental carbon as a surrogate. In Proceedings of the 11th US north American Mine Ventilation Symposium, University Park, PA, USA, 5–7 June 2006; Taylor & Francis: State College, PA, USA, 2006; Volume 2006, pp. 105–110. [Google Scholar]
- Liu, X.; Nie, W.; Hua, Y.; Liu, C.; Guo, L.; Ma, W. Behavior of diesel particulate matter transport from subsidiary transportation vehicle in mine. Environ. Pollut. 2021, 270, 116264. [Google Scholar] [CrossRef] [PubMed]
- Kęska, A.; Janicka, A. Evaluation of toxicity of hydrocarbons emitted by Euro 3 and Euro 6 vehicles at idle conditions by means of equivalent toxicity coefficients. Int. J. Engine Res. 2022. [Google Scholar] [CrossRef]
- Kolanek, C.; Reksa, M.; Walkowiak, W.; Janicka, A. The future of alternative fuels for internal combustion engines applications. J. Pol. CIMAC 2010, 5, 77–83. [Google Scholar]
- Stavert, D.; Lehnert, B. Nitric oxide and nitrogen dioxide as inducers of acute pulmonary injury when inhaled at relatively high concentrations for brief periods. Inhal. Toxicol. 1990, 2, 53–67. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Abdelsalam, E.M.; Mohamed, Y.; Abdelkhalik, S.; El Nazer, H.A.; Attia, Y.A. Photocatalytic oxidation of nitrogen oxides (NOx) using Ag-and Pt-doped TiO2 nanoparticles under visible light irradiation. Environ. Sci. Pollut. Res. 2020, 27, 35828–35836. [Google Scholar] [CrossRef]
- Chuvashev, A.N.; Chuprakov, A.I. Investigation of environmental indicators of diesel engine when working on methanol. J. Phys. Conf. Ser. 2019, 1399, 055085. [Google Scholar] [CrossRef]
- Galbreath, K.C.; Zygarlicke, C.J.; Tibbetts, J.E.; Schulz, R.L.; Dunham, G.E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system. Fuel Process. Technol. 2005, 86, 429–448. [Google Scholar] [CrossRef]
- Pfeffer, P.E.; Donaldson, G.C.; Mackay, A.J.; Wedzicha, J.A. Increased Chronic Obstructive Pulmonary Disease Exacerbations of Likely Viral Etiology Follow Elevated Ambient Nitrogen Oxides. Am. J. Respir. Crit. Care Med. 2019, 199, 581–591. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Gaston, B.; Drazen, J.M.; Loscalzo, J.; Stamler, J.S. The biology of nitrogen oxides in the airways. Am. J. Respir. Crit. Care Med. 1994, 149, 538–551. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Hori, M.; Matsunaga, N.; Malte, P.C.; Marinov, N.M. The effect of low-concentration fuels on the conversion of nitric oxide to nitrogen dioxide. Symp. (Int.) Combust. 1992, 24, 909–916. [Google Scholar] [CrossRef]
- Özmen, İ.; Aksoy, E. Respiratory emergencies and management of mining accidents. Turk. Thorac. J. 2015, 16, S18. [Google Scholar] [CrossRef]
- Shriwas, M.; Pritchard, C. Ventilation Monitoring and Control in Mines. Mining Metall. Explor. 2020, 37, 1015–1021. [Google Scholar] [CrossRef]
- Banasiewicz, A.; Sliwinski, P.; Krot, P.; Wodecki, J.; Zimroz, R. Prediction of NOx Emission Based on Data of LHD On-Board Monitoring System in a Deep Underground Mine. Energies 2023, 16, 2149. [Google Scholar] [CrossRef]
- Ziętek, B.; Banasiewicz, A.; Zimroz, R.; Szrek, J.; Gola, S. A Portable Environmental Data-Monitoring System for Air Hazard Evaluation in Deep Underground Mines. Energies 2020, 13, 6331. [Google Scholar] [CrossRef]
- Jo, B.; Khan, R. An Internet of Things System for Underground Mine Air Quality Pollutant Prediction Based on Azure Machine Learning. Sensors 2018, 18, 930. [Google Scholar] [CrossRef]
- Nie, W.; Liu, X.; Liu, C.; Guo, L.; Hua, Y. Prediction of dispersion behavior of typical exhaust pollutants from hydraulic support transporters based on numerical simulation. Environ. Sci. Pollut. Res. 2022, 29, 38110–38125. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Krot, P.; Sliwinski, P.; Zimroz, R.; Gomolla, N. The identification of operational cycles in the monitoring systems of underground vehicles. Measurement 2020, 151, 107111. [Google Scholar] [CrossRef]
- Krot, P.; Zimroz, R.; Sliwinski, P.; Gomolla, N. Safe Operation of Underground Mining Vehicles Based on Cyclic Fatigue Monitoring of Powertrains. In Structural Integrity and Fatigue Failure Analysis; Lesiuk, G., Szata, M., Blazejewski, W., Jesus, A.M.d., Correia, J.A., Eds.; Springer: Cham, Switzerland, 2022; pp. 283–292. [Google Scholar] [CrossRef]
- Westlund, A. Measuring and Predicting Transient Diesel Engine Emissions. Licentiate Thesis, KTH, School of Industrial Engineering and Management (ITM), Stockholm, Sweden, 2009. [Google Scholar]
- Asprion, J.; Chinellato, O.; Guzzella, L. A fast and accurate physics-based model for the NOx emissions of Diesel engines. Appl. Energy 2013, 103, 221–233. [Google Scholar] [CrossRef]
- Perez, E.; Blasco, X.; Garcia-Nieto, S.; Sanchis, J. Diesel engine identification and predictive control using Wiener and Hammerstein models. In Proceedings of the 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, Munich, Germany, 4–6 October 2006. [Google Scholar] [CrossRef]
- Alcan, G.; Unel, M.; Aran, V.; Yilmaz, M.; Gurel, C.; Koprubasi, K. Diesel Engine NOx Emission Modeling Using a New Experiment Design and Reduced Set of Regressors. IFAC-PapersOnLine 2018, 51, 168–173. [Google Scholar] [CrossRef]
- Hirsch, M.; Alberer, D.; del Re, L. Grey-Box Control Oriented Emissions Models. IFAC Proc. Vol. 2008, 41, 8514–8519. [Google Scholar] [CrossRef]
- Sakushima, N.; Wolf, B.; Karsten, R.; Mirko, K. Transient Modeling of Diesel Engine Emissions. Int. J. Automot. Eng. 2013, 4, 63–68. [Google Scholar] [CrossRef]
- Grahn, M.; Johansson, K.; McKelvey, T. Data-driven emission model structures for diesel engine management system development. Int. J. Engine Res. 2014, 15, 906–917. [Google Scholar] [CrossRef]
- Formentin, S.; Corno, M.; Waschl, H.; Alberer, D.; Savaresi, S.M. Estimation in Diesel Engines via In-Cylinder Pressure Measurement. IEEE Trans. Control Syst. Technol. 2014, 22, 396–403. [Google Scholar] [CrossRef]
- Roy, S.; Banerjee, R.; Bose, P.K. Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network. Appl. Energy 2014, 119, 330–340. [Google Scholar] [CrossRef]
- Kakaee, A.H.; Rahnama, P.; Paykani, A.; Mashadi, B. Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption. J. Cent. South Univ. 2015, 22, 4235–4245. [Google Scholar] [CrossRef]
- Pillai, R.; Triantopoulos, V.; Berahas, A.S.; Brusstar, M.; Sun, R.; Nevius, T.; Boehman, A.L. Modeling and predicting heavy-duty vehicle engine-out and tailpipe nitrogen oxide (NOx) emissions using deep learning. Front. Mech. Eng. 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Rubeli, B.; Gangal, M.; Counter, D. The Effects of Depth on Diesel Engine Emissions in an Underground Mine. In Proceedings of the Powertrain & Fluid Systems Conference and Exhibition, Chicago, IL, USA, 29–31 October 2007; SAE International: Warrendale, PA, USA, 2007; pp. 1071–1081. [Google Scholar] [CrossRef]
- Asad, U.; Kelly, C.; Wang, M.; Tjong, J. Effects of Intake Air Humidity on the NOX Emissions and Performance of a Light-Duty Diesel Engine. In Proceedings of the ASME 2012 Internal Combustion Engine Division Fall Technical Conference, Vancouver, BC, Canada, 23–26 September 2012; American Society of Mechanical Engineers: New York, NY, USA, 2012; pp. 235–242. [Google Scholar] [CrossRef]
- Yuan, Z.; Shi, X.; Jiang, D.; Liang, Y.; Mi, J.; Fan, H. Data-Based Engine Torque and NOx Raw Emission Prediction. Energies 2022, 15, 4346. [Google Scholar] [CrossRef]
- KGHM ZANAM LHD LD1701. 2023. Available online: https://www.kghmzanam.com/wp-content/uploads/2021/05/LKP_1701_EN.pdf (accessed on 16 March 2023).
- DEUTZ TCD 12.0 and TCD 16.0 Diesel Engine. 2023. Available online: https://www.deutzsupport.com/product-details/tcd-12-0-and-tcd-16-0/ (accessed on 16 March 2023).
- Funk, S. Real World NOx Sensor Accuracy Assessment and Implications for REAL NOx Tracking; SAE Technical Paper Series; SAE International: Warrendale, PA, USA, 2021; p. 9. [Google Scholar] [CrossRef]
- Kawamoto, Y.; Todo, Y.; Shimokawa, H.; Aoki, K.; Kawai, M.; Ide, K. Development of High Accuracy NOx Sensor. In Proceedings of the WCX SAE World Congress Experience, Detroit, MI, USA, 9–11 April 2019; SAE International: Warrendale, PA, USA, 2019; p. 7. [Google Scholar] [CrossRef]
- Iqbal, M.Y.; Wang, T.; Li, G.; Li, S.; Hu, G.; Yang, T.; Gu, F.; Al-Nehari, M. Development and Validation of a Vibration-Based Virtual Sensor for Real-Time Monitoring NOx Emissions of a Diesel Engine. Machines 2022, 10, 594. [Google Scholar] [CrossRef]
- Desai, M.; Shah, M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN). Clin. eHealth 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Gaudart, J.; Giusiano, B.; Huiart, L. Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data. Comput. Stat. Data Anal. 2004, 44, 547–570. [Google Scholar] [CrossRef]
- Taud, H.; Mas, J. Multilayer perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Lecture Notes in Geoinformation and Cartography; Camacho Olmedo, M., Paegelow, M., Mas, J.F., Escobar, F., Eds.; Springer: Cham, Switzerland, 2018; pp. 451–455. [Google Scholar]
- Mahmoud, A.A.; Elkatatny, S.; Al Shehri, D. Application of machine learning in evaluation of the static Young’s modulus for sandstone formations. Sustainability 2020, 12, 1880. [Google Scholar] [CrossRef]
- Goli, A.; Khademi-Zare, H.; Tavakkoli-Moghaddam, R.; Sadeghieh, A.; Sasanian, M.; Kordestanizadeh, R.M. An integrated approach based on artificial intelligence and novel meta-heuristic algorithms to predict demand for dairy products: A case study. Netw. Comput. Neural Syst. 2021, 32, 1–35. [Google Scholar] [CrossRef]
- Regulation of the Minister of Energy related to operations of underground mining (available in Polish: Rozporzadzenie Ministra Energii z dnia 23 listopada 2016r., w sprawie szczegółowych wymagań dotyczacych prowadzenia ruchu podziemnych zakładów górniczych, Dziennik Ustaw, 1118, 2017. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001118 (accessed on 16 March 2023).
Parameter | Value | Units |
---|---|---|
Length | 11,500 | mm |
Width | 3380 | mm |
Height | 2350 | mm |
Gross weight | 48,600 | kg |
Bucket capacity | 8.6 | m |
Lifting capacity | 172 | kN |
Engine power | 390 | kW |
Driving speed: | ||
1st gear | 5.0 | km/h |
2nd gear | 9.0 | km/h |
3rd gear | 15.0 | km/h |
4th gear | 20.0 | km/h |
Parameter | Value | Units |
---|---|---|
Power output as per ISO 14396 | 390 | kW |
at speed | 2100 | rpm |
Max. torque | 2130 | Nm |
at speed | 1400 | rpm |
Min. idling speed | 600 | rpm |
Specific fuel consumption | 194 | g/kWh |
Parameter | Value | Units |
---|---|---|
Measuring range (NOx) | 0–1500 | ppm |
Accuracy | % | |
Operating temperature | −40...105 | °C |
Exhaust temperature | <800 | °C |
No. | Parameter | Description | Units |
---|---|---|---|
ENGNOX | NOx Emissions | ppm | |
1 | ENGCOOLT | Coolant temperature | °C |
2 | ENGOILT | Oil Temperature | kPa |
3 | ENGRPM | Engine rotations | rpm |
4 | ENGTPS | Engine acceleration | % |
5 | FUELUS | Fuel consumption | L/h |
6 | GROILP | Gear oil pressure | kPa |
7 | GROILT | Gear oil temperature | C |
8 | HYDOILP | Hydraulic oil pressure | MPa |
9 | INTAKEP | Intake air pressure | kPa |
10 | INTAKET | Intake air temperature | °C |
11 | SPEED | Vehicle speed | km/h |
12 | SELGEAR | Selected gear | −4...0...4 |
Errors | Training | Validation | Testing | All Data | Units |
---|---|---|---|---|---|
Mean Average Error (MAE) | 12.8827 | 13.6737 | 13.6737 | 13.1139 | ppm |
Mean Squared Error (MSE) | 290.6143 | 317.3026 | 330.2508 | 300.558 | — |
Root Mean Squared Error (RMSE) | 17.0474 | 17.813 | 18.1728 | 17.3366 | ppm |
Coefficient of determination () | 0.86757 | 0.85498 | 0.84919 | 0.86293 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banasiewicz, A.; Moosavi, F.; Kotyla, M.; Śliwiński, P.; Krot, P.; Wodecki, J.; Zimroz, R. Forecasting of NOx Emissions of Diesel LHD Vehicles in Underground Mines—An ANN-Based Regression Approach. Appl. Sci. 2023, 13, 9965. https://doi.org/10.3390/app13179965
Banasiewicz A, Moosavi F, Kotyla M, Śliwiński P, Krot P, Wodecki J, Zimroz R. Forecasting of NOx Emissions of Diesel LHD Vehicles in Underground Mines—An ANN-Based Regression Approach. Applied Sciences. 2023; 13(17):9965. https://doi.org/10.3390/app13179965
Chicago/Turabian StyleBanasiewicz, Aleksandra, Forougholsadat Moosavi, Michalina Kotyla, Paweł Śliwiński, Pavlo Krot, Jacek Wodecki, and Radosław Zimroz. 2023. "Forecasting of NOx Emissions of Diesel LHD Vehicles in Underground Mines—An ANN-Based Regression Approach" Applied Sciences 13, no. 17: 9965. https://doi.org/10.3390/app13179965
APA StyleBanasiewicz, A., Moosavi, F., Kotyla, M., Śliwiński, P., Krot, P., Wodecki, J., & Zimroz, R. (2023). Forecasting of NOx Emissions of Diesel LHD Vehicles in Underground Mines—An ANN-Based Regression Approach. Applied Sciences, 13(17), 9965. https://doi.org/10.3390/app13179965