A Low-Cost Laser-Prototyped Microfluidic Device for Separating Cells and Bacteria
<p>The microfluidic device is shown with: (<b>a</b>) schematic depiction; (<b>b</b>) top-view of actual picture of the device; (<b>c</b>) top-view dimensions of the device. (<b>d</b>) side-view schematic of the device is shown to illustrate the layers and tube insertion. The radius of each loop of the serpentine is 0.75 mm, radii of the spirals 1, 2, and 3 are 8.7-, 12.7-, and 16.7-mm, respectively. The actual picture of the device is injected with food dye for better visualization. (<b>e</b>) A schematic showing the working principle of the particle separation in spiral channel, F<sub>L</sub> and F<sub>D</sub> are inertial lift force and Dean drag forces, respectively.</p> "> Figure 2
<p>Particle focusing behavior is demonstrated using the combined device. (<b>a</b>) Device schematic outline and image collection regions are shown. Streak images of particle flows are formed from; (<b>b</b>) entrance; (<b>c</b>) exit of the serpentine section and; (<b>d</b>) exit of the spiral section.</p> "> Figure 3
<p>(<b>a</b>) The mixture of 1 and 5 µm polystyrene particles before entering the device. Particles collected from; (<b>b</b>) the outlet A and; (<b>c</b>) the outlet B are shown.</p> "> Figure 4
<p>The purity of the particles collected from the outlets A and B at different flow rates. Lower and higher box bounds are in the 25th and 75th percentiles, respectively; the line within the box is the median; and the lower and upper error lines are in the 5th and 95th percentiles, respectively.</p> "> Figure 5
<p>Separation efficiency for 1 and 5 µm polystyrene particles collected at different flow rates. Lower and higher box bounds are in the 25th and 75th percentiles, respectively; the line within the box is the median; and the lower and upper error lines are in the 5th and 95th percentiles, respectively.</p> "> Figure 6
<p>Separation of yeast cells and 1 µm particles. (<b>a</b>) Cell and particle mixture before separation; (<b>b</b>) Sample collected from the outlet A; (<b>c</b>) sample collected from the outlet B; (<b>d</b>) purity of samples collected from the outlets A and B. Lower and higher box bounds are in the 25th and 75th percentiles, respectively; the line within the box is the median; and the lower and upper error lines are in the 5th and 95th percentiles, respectively.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Device Fabrication and Operation
2.2. Working Mechanism of the Device
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Destgeer, G.; Lee, K.H.; Jung, J.H.; Alazzam, A.; Sung, H.J. Continuous Separation of Particles in a PDMS Microfluidic Channel via Travelling Surface Acoustic Waves (TSAW). Lab Chip 2013, 13, 4210–4216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, H.; Becker, R.; Rufo, J.; Yang, S.; Mace, B.E.; Wu, M.; Zou, J.; Laskowitz, D.T.; Huang, T.J. Acoustofluidic Separation Enables Early Diagnosis of Traumatic Brain Injury Based on Circulating Exosomes. Microsyst. Nanoeng. 2021, 7, 20. [Google Scholar] [CrossRef]
- Ao, Z.; Cai, H.; Wu, Z.; Krzesniak, J.; Tian, C.; Lai, Y.Y.; Mackie, K.; Guo, F. Human Spinal Organoid-on-a-Chip to Model Nociceptive Circuitry for Pain Therapeutics Discovery. Anal. Chem. 2022, 94, 1365–1372. [Google Scholar] [CrossRef]
- Kaynak, M.; Dirix, P.; Sakar, M.S. Addressable Acoustic Actuation of 3D Printed Soft Robotic Microsystems. Adv. Sci. 2020, 7, 2001120. [Google Scholar] [CrossRef]
- Dolev, A.; Kaynak, M.; Sakar, M.S. On-Board Mechanical Control Systems for Untethered Microrobots. Adv. Intell. Syst. 2021, 3, 2000233. [Google Scholar] [CrossRef]
- Akkoyun, F.; Özçelik, A. A Battery-Powered Fluid Manipulation System Actuated by Mechanical Vibrations. Actuators 2022, 11, 116. [Google Scholar] [CrossRef]
- Ao, Z.; Cai, H.; Wu, Z.; Hu, L.; Nunez, A.; Zhou, Z.; Liu, H.; Bondesson, M.; Lu, X.; Lu, X.; et al. Microfluidics Guided by Deep Learning for Cancer Immunotherapy Screening. Proc. Natl. Acad. Sci. USA 2022, 119, e2214569119. [Google Scholar] [CrossRef]
- Ozcelik, A.; Huang, T.J. Acoustic Tweezers for Single-Cell Manipulation. In Handbook of Single Cell Technologies; Springer: Singapore, 2020; pp. 1–27. [Google Scholar]
- Ozcelik, A.; Rich, J.; Huang, T.J. Fundamentals and Applications of Acoustics in Microfluidics. In Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-Chip; Elsevier: Amsterdam, The Netherlands, 2022; pp. 297–321. [Google Scholar]
- Guo, F.; Mao, Z.; Chen, Y.; Xie, Z.; Lata, J.P.; Li, P.; Ren, L.; Liu, J.; Yang, J.; Dao, M.; et al. Three-Dimensional Manipulation of Single Cells Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 2016, 113, 1522–1527. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Ao, Z.; Hu, L.; Moon, Y.; Wu, Z.; Lu, H.-C.; Kim, J.; Guo, F. Acoustofluidic Assembly of 3D Neurospheroids to Model Alzheimer’s Disease. Analyst 2020, 145, 6243–6253. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, A.; Cevik, O. Microfluidic Methods Used in Exosome Isolation. Biocell 2023, 47, 959–964. [Google Scholar] [CrossRef]
- Gossett, D.R.; Weaver, W.M.; Mach, A.J.; Hur, S.C.; Tse, H.T.K.; Lee, W.; Amini, H.; Di Carlo, D. Label-Free Cell Separation and Sorting in Microfluidic Systems. Anal. Bioanal. Chem. 2010, 397, 3249–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gossett, D.R.; Di Carlo, D. Particle Focusing Mechanisms in Curving Confined Flows. Anal. Chem. 2009, 81, 8459–8465. [Google Scholar] [CrossRef]
- Ding, X.; Li, P.; Lin, S.-C.C.S.; Stratton, Z.S.; Nama, N.; Guo, F.; Slotcavage, D.; Mao, X.; Shi, J.; Costanzo, F.; et al. Surface Acoustic Wave Microfluidics. Lab Chip 2013, 13, 3626–3649. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, J.; Yuan, D.; Li, W. Hybrid Microfluidics Combined with Active and Passive Approaches for Continuous Cell Separation. Electrophoresis 2017, 38, 238–249. [Google Scholar] [CrossRef]
- Liang, W.; Liu, J.; Yang, X.; Zhang, Q.; Yang, W.; Zhang, H.; Liu, L. Microfluidic-Based Cancer Cell Separation Using Active and Passive Mechanisms. Microfluid. Nanofluid. 2020, 24, 26. [Google Scholar] [CrossRef]
- Trabzon, L.; Karimian, G.; Khosroshahi, A.R.; Gül, B.; Bakhshayesh, A.G.; Kocak, A.F.; Akyıldız, D.; Aldi, Y.E. High-Throughput Nanoscale Liposome Formation via Electrohydrodynamic-Based Micromixer. Phys. Fluids 2022, 34, 102011. [Google Scholar] [CrossRef]
- Hawkins, B.G.; Lai, N.; Clague, D.S. High-Sensitivity in Dielectrophoresis Separations. Micromachines 2020, 11, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Punjiya, M.; Nejad, H.R.; Mathews, J.; Levin, M.; Sonkusale, S. A Flow through Device for Simultaneous Dielectrophoretic Cell Trapping and AC Electroporation. Sci. Rep. 2019, 9, 1198. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Mao, Z.; Peng, Z.; Zhou, L.; Chen, Y.; Huang, P.; Truica, C.I. Acoustic Separation of Circulating Tumor Cells. Proc. Natl. Acad. Sci. USA 2015, 112, 4970–4975. [Google Scholar] [CrossRef]
- Wu, M.; Ozcelik, A.; Rufo, J.; Wang, Z.; Fang, R.; Jun Huang, T. Acoustofluidic Separation of Cells and Particles. Microsyst. Nanoeng. 2019, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Ao, Z.; Cai, H.; Li, X.; Chen, B.; Tu, H.; Wang, Y.; Lu, R.O.; Gu, M.; Cheng, L.; et al. Acoustofluidic Assembly of Primary Tumor-Derived Organotypic Cell Clusters for Rapid Evaluation of Cancer Immunotherapy. J. Nanobiotechnol. 2023, 21, 40. [Google Scholar] [CrossRef]
- Pappas, D.; Wang, K. Cellular Separations: A Review of New Challenges in Analytical Chemistry. Anal. Chim. Acta 2007, 601, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Modak, N.; Datta, A.; Ganguly, R. Cell Separation in a Microfluidic Channel Using Magnetic Microspheres. Microfluid. Nanofluid. 2009, 6, 647–660. [Google Scholar] [CrossRef]
- Jonás, A.; Zemánek, P. Light at Work: The Use of Optical Forces for Particle Manipulation, Sorting, and Analysis. Electrophoresis 2008, 29, 4813–4851. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xuan, X. Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation. Anal. Chem. 2015, 87, 11523–11530. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, A.A.S.; Bow, H.; Hou, H.W.; Tan, S.J.; Han, J.; Lim, C.T. Microfluidics for Cell Separation. Med. Biol. Eng. Comput. 2010, 48, 999–1014. [Google Scholar] [CrossRef] [PubMed]
- Shiri, F.; Feng, H.; Gale, B.K. Passive and Active Microfluidic Separation Methods. In Particle Separation Techniques; Elsevier: Amsterdam, The Netherlands, 2022; pp. 449–484. [Google Scholar]
- Sönmez, U.; Bekin, M.; Trabzon, L. Design and Fabrication of Integrated Microchannel and Peristaltic Micropump System for Inertial Particle Separation. MATEC Web Conf. 2018, 153, 08002. [Google Scholar] [CrossRef] [Green Version]
- Zeming, K.K.; Salafi, T.; Chen, C.-H.; Zhang, Y. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells. Sci. Rep. 2016, 6, 22934. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yuan, D.; Zhang, J.; Li, W. A Review of Secondary Flow in Inertial Microfluidics. Micromachines 2020, 11, 461. [Google Scholar] [CrossRef]
- Javi, F.; Zaferani, M.; Lopez-Barbosa, N.; DeLisa, M.P.; Abbaspourrad, A. Sheathless Inertial Microfluidic Cell Separation via a Serpentine–Contraction–Expansion Device Coupled with a Combinatorial Extraction Regulator. Microfluid. Nanofluid. 2022, 26, 54. [Google Scholar] [CrossRef]
- Volpe, A.; Gaudiuso, C.; Ancona, A. Sorting of Particles Using Inertial Focusing and Laminar Vortex Technology: A Review. Micromachines 2019, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Ince, D.; Turhan, H.; Cadirci, S.; Trabzon, L. Experimental and Numerical Study of the Effect of the Channel Curvature Angle on Inertial Focusing in Curvilinear Microchannels. J. Appl. Phys. 2022, 132, 224703. [Google Scholar] [CrossRef]
- Ning, S.; Liu, S.; Xiao, Y.; Zhang, G.; Cui, W.; Reed, M. A Microfluidic Chip with a Serpentine Channel Enabling High-Throughput Cell Separation Using Surface Acoustic Waves. Lab Chip 2021, 21, 4608–4617. [Google Scholar] [CrossRef] [PubMed]
- Amani, A.; Shamloo, A.; Vatani, P.; Ebrahimi, S. Particles Focusing and Separation by a Novel Inertial Microfluidic Device: Divergent Serpentine Microchannel. Ind. Eng. Chem. Res. 2022, 61, 14324–14333. [Google Scholar] [CrossRef]
- Guan, G.; Wu, L.; Bhagat, A.A.; Li, Z.; Chen, P.C.Y.; Chao, S.; Ong, C.J.; Han, J. Spiral Microchannel with Rectangular and Trapezoidal Cross-Sections for Size Based Particle Separation. Sci. Rep. 2013, 3, 1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, N.; Groby, J.P.; Romero-García, V. Spiral Sound-Diffusing Metasurfaces Based on Holographic Vortices. Sci. Rep. 2021, 11, 10217. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft Lithography for Micro- and Nanoscale Patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Unger, M.A. Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science 2000, 288, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Zhao, L.; Chen, Z.; Jiao, Z.; Shi, H.; Hu, B.; Yuan, S.; Tian, J. Simulation and Practice of Particle Inertial Focusing in 3D-Printed Serpentine Microfluidic Chips via Commercial 3D-Printers. Soft Matter 2020, 16, 3096–3105. [Google Scholar] [CrossRef]
- Ozcelik, A. 3D Printed Device for Separation of Cells and Particles by Tilted Bulk Acoustic Wave Actuation. Actuators 2022, 11, 249. [Google Scholar] [CrossRef]
- Bhagat, A.A.S.; Kuntaegowdanahalli, S.S.; Papautsky, I. Continuous Particle Separation in Spiral Microchannels Using Dean Flows and Differential Migration. Lab Chip 2008, 8, 1906. [Google Scholar] [CrossRef]
- Shi, X.; Liu, L.; Cao, W.; Zhu, G.; Tan, W. A Dean-Flow-Coupled Interfacial Viscoelastic Fluid for Microparticle Separation Applied in a Cell Smear Method. Analyst 2019, 144, 5934–5946. [Google Scholar] [CrossRef]
- Ai, Y.; Sanders, C.K.; Marrone, B.L. Separation of Escherichia Coli Bacteria from Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves. Anal. Chem. 2013, 85, 9126–9134. [Google Scholar] [CrossRef]
- Panwala, F.C.; Kumar, R.; Shakeel, P.M. An Analysis of Bacteria Separation and Filtration from Blood Sample Using Passive Methods. Measurement 2019, 140, 29–46. [Google Scholar] [CrossRef]
- Akkoyun, F.; Ozcelik, A. Rapid Characterization of Cell and Bacteria Counts Using Computer Vision. Türk Doğa Fen Derg. 2021, 10, 269–274. [Google Scholar] [CrossRef]
- Grishagin, I.V. Automatic Cell Counting with ImageJ. Anal. Biochem. 2015, 473, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Akkoyun, F.; Ozcelik, A. A Simple Approach for Controlling an Open-Source Syringe Pump. Eur. Mech. Sci. 2020, 4, 166–170. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.-T.; Ebrahimi Warkiani, M.; Li, W. Fundamentals and Applications of Inertial Microfluidics: A Review. Lab Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yan, S.; Sluyter, R.; Li, W.; Alici, G.; Nguyen, N.-T. Inertial Particle Separation by Differential Equilibrium Positions in a Symmetrical Serpentine Micro-Channel. Sci. Rep. 2014, 4, 4527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.K.; Khoo, B.L. A Density-Based Threshold Model for Evaluating the Separation of Particles in Heterogeneous Mixtures with Curvilinear Microfluidic Channels. Sci. Rep. 2020, 10, 18984. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, W.; Li, M.; Alici, G.; Nguyen, N.-T. Particle Inertial Focusing and Its Mechanism in a Serpentine Microchannel. Microfluid. Nanofluid. 2014, 17, 305–316. [Google Scholar] [CrossRef]
- Herrmann, N.; Neubauer, P.; Birkholz, M. Spiral Microfluidic Devices for Cell Separation and Sorting in Bioprocesses. Biomicrofluidics 2019, 13, 061501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.G.; Shin, J.H.; Bae, C.Y.; Choi, S.; Park, J.-K. Label-Free Cancer Cell Separation from Human Whole Blood Using Inertial Microfluidics at Low Shear Stress. Anal. Chem. 2013, 85, 6213–6218. [Google Scholar] [CrossRef] [PubMed]
- Zuvin, M.; Mansur, N.; Birol, S.Z.; Trabzon, L.; Sayı Yazgan, A. Human Breast Cancer Cell Enrichment by Dean Flow Driven Microfluidic Channels. Microsyst. Technol. 2016, 22, 645–652. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gucluer, S.; Guler, O. A Low-Cost Laser-Prototyped Microfluidic Device for Separating Cells and Bacteria. Appl. Sci. 2023, 13, 7938. https://doi.org/10.3390/app13137938
Gucluer S, Guler O. A Low-Cost Laser-Prototyped Microfluidic Device for Separating Cells and Bacteria. Applied Sciences. 2023; 13(13):7938. https://doi.org/10.3390/app13137938
Chicago/Turabian StyleGucluer, Sinan, and Osman Guler. 2023. "A Low-Cost Laser-Prototyped Microfluidic Device for Separating Cells and Bacteria" Applied Sciences 13, no. 13: 7938. https://doi.org/10.3390/app13137938
APA StyleGucluer, S., & Guler, O. (2023). A Low-Cost Laser-Prototyped Microfluidic Device for Separating Cells and Bacteria. Applied Sciences, 13(13), 7938. https://doi.org/10.3390/app13137938