Pitfalls in Metaheuristics Solving Stoichiometric-Based Optimization Models for Metabolic Networks
<p>Flux distribution of pigment byosinthesis pathways [<a href="#B17-algorithms-17-00336" class="html-bibr">17</a>].</p> "> Figure 2
<p>Flux distribution associated with glutamate metabolism in the chloroplast and cytoplasm [<a href="#B17-algorithms-17-00336" class="html-bibr">17</a>].</p> "> Figure 3
<p>Comparison between the NSGAII algorithm and the variants (<b>a</b>) MOFBA<sub>1</sub>, (<b>b</b>) MOFBA<sub>2</sub>, (<b>c</b>) MOFBA<sub>3</sub>, and (<b>d</b>) MOFBA<sub>4</sub> in the distribution of pigment fluxes.</p> "> Figure 4
<p>Comparison between (<b>a</b>) NSGAII-MOFBA<sub>4</sub> and (<b>b</b>) FBA in the distribution of fluxes associated with the glutamate metabolism of the microalgae <span class="html-italic">Chlorella vulgaris</span>.</p> "> Figure 5
<p>Comparison between the (<b>a</b>,<b>c</b>) NSGAII and (<b>b</b>,<b>d</b>) MOEA/D algorithms in the pigment distribution network and in the distribution of fluxes associated with glutamate metabolism of the microalgae <span class="html-italic">Chlorella vulgaris</span>.</p> "> Figure 6
<p>Comparison between the variants (<b>a</b>) FBA, (<b>b</b>) random, and (<b>c</b>) NSGAII in the microalgae <span class="html-italic">C. vulgaris</span>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. NSGAII Algorithm
- Initialization of population of size N using a uniform distribution.
- Create an offspring population using binary tournament selection based on crowding-comparison operator, cross-over, and mutation performed on the parent population , where subscript “t” denotes the number of generations. The offspring population and its parent population are combined to produce the entire population , = + . The population will be of size 2N.
- Perform a fast nondominated sorting approach on the entire population to identify different fronts of objective functions. , where will have in the non-dominated set of solutions of that best approximates the Pareto frontier.
- Construct a new parent population of size N from the obtained fronts . This population of size N is now used for selection, cross-over, and mutation to create a new population ) of size N.
- The process must be repeated until the maximum number of iterations is reached.
2.2. MOEA/D
3. Proposed Approaches
3.1. MOFBA2
3.2. MOFBA3
3.3. MOFBA4
3.4. Analysis
4. Metaheuristic Designs
4.1. Coding Schemes
4.2. Fitness Evaluation Function
4.3. Genetic Operators
4.4. Constraint Management Strategy
5. Design of Experiments
5.1. Cases of Study
5.1.1. Case of Study 1: Metabolic Network Chlorella vulgaris
5.1.2. Case of Study 2: Optimization Multiobjective of the Metabolic Network of Metabolism Glutamate of Microalgae Chlorella vulgaris
5.2. Experiments Definition
6. Results
6.1. Experiment 1
6.2. Experiment 2
6.3. Experiment 3
6.4. Experiment 4
6.5. Statistic Analysis
6.6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
Name | Formula |
---|---|
FRDPth | frdp[h] ⇄ frdp[c] |
GRDPth | grdp[h] ⇄ grdp[c] |
ACAROtu | acaro[h] → acaro[u] |
GCAROtu | gcaro[h] → gcaro[u] |
GGDPtu | ggdp[h] → ggdp[u] |
FPPS | grdp[c] + ipdp[c]→ frdp[c] + ppi[c] |
FPPSh | grdp[h] + ipdp[h]→ frdp[h] + h[h] + ppi[h] |
GGPS | frdp[h] + ipdp[h]→ ggdp[h] + h[h] + ppi[h] |
GPPSh | dmpp[h] + ipdp[h]→ grdp[h] + h[h] + ppi[h] |
IDS2 | h[h] + h2mb4p[h] + nadph[h]→ dmpp[h] + h2o[h] + nadp[h] |
ANXANASCOR | anxan[u] + ascb-L[u] → dhdascb[u] + h2o[u] + zaxan[u] |
BCAROH | caro[u] + h[u] + nadph[u] + o2[u] → bcrptxan[u] + h2o[u] + nadp[u] |
BCRPTXANH | bcrptxan[u] + h[u] + nadph[u] + o2[u] → h2o[u] + nadp[u] + zaxan[u] |
CHYA1 | acaro[u] + h[u] + nadph[u] + o2[u]→ h2o[u] + nadp[u] + zxan[u] |
CHYA2 | acaro[u] + h[u] + nadph[u] + o2[u]→ crpxan[u] + h2o[u] + nadp[u] |
CXHY | crpxan[u] + h[u] + nadph[u] + o2[u]→ h2o[u] + lut[u] + nadp[u] |
LCYB | gcaro[u] → caro[u] |
LCYA | lyc[h] → dcaro[h] |
LCYG | lyc[h] → gcaro[h] |
NEOXANS | vioxan[u] → neoxan[u] |
NOR | norsp[h] + o2[h] + pqh2[h] → 2 h2o[h] + lyc[h] + pq[h] |
PDS1 | phyto[h] + pq[h] → phytfl[h] + pqh2[h] |
PDS2 | phytfl[h] + pq[h] → pqh2[h] + zcaro[h] |
PSY | 2 ggdp[h]→ 2 h[h] + phyto[h] + 2 ppi[h] |
VIOXANOR | ascb-L[u] + vioxan[u] → anxan[u] + dhdascb[u] + h2o[u] |
ZDS | o2[h] + pqh2[h] + zcaro[h] → 2 h2o[h] + norsp[h] + pq[h] |
ZHY | h[u] + nadph[u] + o2[u] + zxan[u]→ h2o[u] + lut[u] + nadp[u] |
CHLASG | chlda[u] + ggdp[u]→ ggchlda[u] + h[u] + ppi[u] |
GGCHLDAR | ggchlda[u] + 3 h[u] + 3 nadph[u]→ chla[u] + 3 nadp[u] |
GGDR | ggdp[h] + 3 h[h] + 3 nadph[h] → 3 nadp[h] + pdp[h] |
CHLBSG | chldb[u] + ggdp[u]→ ggchldb[u] + h[u] + ppi[u] |
Name | Formula |
---|---|
GLNth | gln-L[c] + h[c] ⇄ gln-L[h] + h[h] |
GALh | atp[h] + glu-L[h] + nh4[h] → adp[h] + gln-L[h] + h[h] + pi[h] |
GLUS | glu-L[h] + h2o[h] + nad[h] → akg[h] + h[h] + nadh[h] + nh4[h] |
GLUTRS | atp[h] + glu-L[h] + trnaglu[h] → amp[h] + glutrna[h] + h[h] + ppi[h] |
GLUS(nadph) | akg[h] + gln-L[h] + h[h] + nadph[h] → 2 glu-L[h] + nadp[h] |
ASPATh | akg[h] + asp-L[h] ⇄ glu-L[h] + oaa[h] |
ASPNA1th | asp-L[c] + na1[c] ⇄ asp-L[h] + na1[h] |
VALth | h[c] + val-L[c] ⇄ h[h] + val-L[h] |
BCTA(val)h | akg[h] + val-L[h] → 3mob[h] + glu-L[h] |
TYRTAh | 34hpp[h] + glu-L[h] ⇄ akg[h] + tyr-L[h] |
TYRth | h[c] + tyr-L[c] ⇄ h[h] + tyr-L[h] |
BCTAh | 3mop[h] + glu-L[h] ⇄ akg[h] + ile-L[h] |
ILEth | h[c] + ile-L[c] ⇄ h[h] + ile-L[h] |
References
- Esteves, A.F.; Soares, O.S.; Vilar, V.J.; Pires, J.C.; Gonçalves, A.L. The effect of light wavelength on CO2 capture, biomass production and nutrient uptake by green microalgae: A step forward on process integration and optimisation. Energies 2020, 13, 333. [Google Scholar] [CrossRef]
- Wang, Y.; Tibbetts, S.M.; McGinn, P.J. Microalgae as sources of high-quality protein for human food and protein supplements. Foods 2021, 10, 3002. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.R.; Jeffrey, S. Biochemical composition of microalgae from the green algal classes Chlorophyceae and Prasinophyceae. 1. Amino acids, sugars and pigments. J. Exp. Mar. Biol. Ecol. 1992, 161, 91–113. [Google Scholar] [CrossRef]
- Kholssi, R.; Ramos, P.V.; Marks, E.A.; Montero, O.; Rad, C. 2Biotechnological uses of microalgae: A review on the state of the art and challenges for the circular economy. Biocatal. Agric. Biotechnol. 2021, 36, 102114. [Google Scholar] [CrossRef]
- Romero, D.C.V.; Cardozo, A.P.; Montes, V.D. Utilización de microalgas como alternativa para la remoción de metales pesados. RIAA 2022, 13, 10. [Google Scholar]
- Woolston, B.M.; Edgar, S.; Stephanopoulos, G. Metabolic engineering: Past and future. Annu. Rev. Chem. Biomol. Eng. 2013, 4, 259–288. [Google Scholar] [CrossRef] [PubMed]
- Kaste, J.A.; Shachar-Hill, Y. Model validation and selection in metabolic flux analysis and flux balance analysis. Biotechnol. Prog. 2024, 40, e3413. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Mukherjee, K.; Padmanabhan, P. An insight to flux-balance analysis for biochemical networks. Biotechnol. Genet. Eng. Rev. 2020, 36, 32–55. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [Google Scholar] [CrossRef]
- Liu, Y.; Westerhoff, H.V. Competitive, multi-objective, and compartmented Flux Balance Analysis for addressing tissue-specific inborn errors of metabolism. J. Inherit. Metab. Dis. 2023, 46, 573–585. [Google Scholar] [CrossRef]
- Raman, K.; Chandra, N. Flux balance analysis of biological systems: Applications and challenges. Brief. Bioinform. 2009, 10, 435–449. [Google Scholar] [CrossRef]
- Lewis, N.; Nagarajan, H.; Palsson, B. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 2012, 10, 291–305. [Google Scholar] [CrossRef]
- Toyoshima, M.; Toya, Y.; Shimizu, H. Flux balance analysis of cyanobacteria reveals selective use of photosynthetic electron transport components under different spectral light conditions. Photosynth. Res. 2020, 143, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hou, J.; Li, L.; Wang, Y. Flux balance analysis of glucose degradation by anaerobic digestion in negative pressure. Int. J. Hydrogen Energy 2020, 45, 26822–26830. [Google Scholar] [CrossRef]
- Trilla-Fuertes, L.; Gámez-Pozo, A.; Díaz-Almirón, M.; Prado-Vázquez, G.; Zapater-Moros, A.; López-Vacas, R.; Nanni, P.; Zamora, P.; Espinosa, E.; Fresno Vara, J.A. Computational metabolism modeling predicts risk of distant relapse-free survival in breast cancer patients. Future Oncol. 2019, 15, 3483–3490. [Google Scholar] [CrossRef]
- Boyle, N.R.; Morgan, J.A. Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol. 2009, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Zuñiga, C.; Li, C.T.; Huelsman, T.; Levering, J.; Zielinski, D.C.; McConnell, B.O.; Long, C.P.; Knoshaug, E.P.; Guarnieri, M.T.; Antoniewicz, M.R.; et al. Genome-scale metabolic model for the green alga Chlorella vulgaris UTEX 395 accurately predicts phenotypes under autotrophic, heterotrophic, and mixotrophic growth conditions. Plant Physiol. 2016, 172, 589–602. [Google Scholar] [CrossRef] [PubMed]
- Briones-Baez, M.F.; Aguilera-Vazquez, L.; Rangel-Valdez, N.; Martinez-Salazar, A.L.; Zuñiga, C. Multi-Objective Optimization of Microalgae Metabolism: An Evolutive Algorithm Based on FBA. Metabolites 2022, 12, 603. [Google Scholar] [CrossRef] [PubMed]
- Rangaiah, G.P.; Petriciolet, A. Multi-Objective Optimization in Chemical Engineering: Developments and Applications; Rangaiah, G.P., Bonilla-Petriciolet, A., Eds.; Wiley: New York, NY, USA, 2013. [Google Scholar]
- Liu, X.; Tian, J.; Duan, P.; Yu, Q.; Wang, G.; Wang, Y. GrMoNAS: A granularity-based multi-objective NAS framework for efficient medical diagnosis. Comput. Biol. Med. 2024, 171, 108118. [Google Scholar] [CrossRef]
- PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Republic of Korea, 27–30 May 2001; Volume 2, pp. 971–978.
- Andrade, R.; Doostmohammadi, M.; Santos, J.; Sagot, M.F.; Mira, N.P.; Vinga, S. MOMO—multi-objective metabolic mixed integer optimization: Application to yeast strain engineering. BMC Inform. 2020, 21, 69. [Google Scholar] [CrossRef]
- Wang, G.G.; Zhao, X.; Li, K. Metaheuristic Algorithms: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Cruz, L.; Fernandez, E.; Gomez, C.; Rivera, G.; Perez, F. Many-Objective Portfolio Optimization of Interdependent Projects with ‘a priori’ Incorporation of Decision-Maker Preferences. Appl. Math. Inf. Sci. 2014, 8, 1517–1531. [Google Scholar] [CrossRef]
- Rivera, G.; Florencia, R.; Guerrero, M.; Porras, R.; Sanchez-Solis, J. Online multi-criteria portfolio analysis through compromise programming models built on the underlying principles of fuzzy outranking. Inf. Sci. 2021, 580, 734–755. [Google Scholar] [CrossRef]
- Chang, K.H. Multiobjective optimization and advanced topics. In Design Theory and Methods Using CAD/CAE; Elsevier: Amsterdam, The Netherlands, 2015; pp. 325–406. [Google Scholar]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Cruz-Reyes, L.; Fernandez, E.; Rangel-Valdez, N. A metaheuristic optimization-based indirect elicitation of preference parameters for solving many-objective problems. Int. J. Comput. Intell. Syst. 2017, 10, 56–77. [Google Scholar] [CrossRef]
- Deb, K.; Goyal, M. A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 1996, 26, 30–45. [Google Scholar]
- Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng. 2000, 186, 311–338. [Google Scholar] [CrossRef]
- Benítez-Hidalgo, A.; Nebro, A.J.; García-Nieto, J.; Oregi, I.; Del Ser, J. jMetalPy: A Python framework for multi-objective optimization with metaheuristics. Swarm Evol. Comput. 2017, 12, e0171744. [Google Scholar] [CrossRef]
- Ebrahim, A.; Lerman, J.A.; Palsson, B.O.; Hyduke, D.R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC Syst. Biol. 2013, 7, 74. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Q.; Yang, Y.; Liu, D.; Wei, X. Bi-objective algorithm based on NSGA-II framework to optimize reservoirs operation. J. Hydrol. 2020, 585, 124830. [Google Scholar] [CrossRef]
Model | No. Decision Variables | No. Objectives | Surrogate |
---|---|---|---|
MOFBA1 | n | m | No |
MOFBA2 | m | No | |
MOFBA3 | 2 | Yes | |
MOFBA4 | Yes |
Parameter | Value |
---|---|
Polynomial Mutation | Probability = 1.0/d, where d is the number of decision variables. |
Distribution Index = 20 | |
SBXCrossover | Probability = 100% |
Distribution Index = 20 | |
Stoppage Criterion | until reaching 100,000 evaluations |
Population Size | 100 |
Parameter | Values |
---|---|
Polynomial Mutation | Probability = 1.0/d, where d is the number of decision variables. |
Distribution Index = 20 | |
Differential Evolution | CR = 1 |
F = 0.5 | |
K = 0.5 | |
Stoppage Criterion | Upon completion of 100,000 evaluations |
Population Size | 100 |
Experiment | Objective | Variables Involved |
---|---|---|
Experiment1 | Using different optimization models produces different results. | C. vulgaris, NSGAII, MOFA1, MOFBA2, MOFBA3, MOFBA4. |
Experiment2 | Demonstrate that the use of metaheuristics supports the understanding of microalgae metabolism. | C. vulgaris, FBA, NSGAII, MOFBA4 |
Experiment3 | There are optimization algorithms more suitable for solving specific problems | C. vulgaris, NSGAII, MOEA/D, MOFBA4. |
Experiment4 | Validate that a random selection is not enough. | C. vulgaris, NSGAII, FBA, random. |
Reaction | LB | UB | S1 | S2 | S3 | S4 |
---|---|---|---|---|---|---|
NADPH | 0.000487 | 0.000487 | 0.000487 | 0.000487 | 0.000487 | 0.000487 |
IDS2 | 0 | 0.000487 | 7.42 × 10³ | 4.72 8 | 2.58 × 10−5 | 4.33 × 10−7 |
FPPSh | 0 | 0.000487 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
GPPSh | 0 | 0.000487 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
FRDPth | 0 | 0 | 0 | 0 | 0 | 0 |
FPPS | 0 | 0 | 0 | 0 | 0 | 0 |
GRDPth | 0 | 0 | 0 | 0 | 0 | 0 |
GRDPH | 0 | 0 | 0 | 0 | 0 | 0 |
GGPPS | 0 | 0.000487 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
v1 | 0 | 0.000402078 | 0 | 0 | 0 | 0 |
GGDPtu | −0.0000849 | 0.0000849 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
CHLASG | 0 | 0.0000742 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
GGCHLDAR | 0 | 0.0000742 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
CHLAU | 0 | 0.0000742 | 7.42 × 10−5 | 4.72 × 10−5 | 2.58 × 10−5 | 4.33 × 10−7 |
PSY | 0 | 2.24 × 10−8 | 0 | 0 | 0 | 0 |
PDS1 | −2.24 × 10−8 | 2.24 × 10−8 | 0 | 0 | 0 | 0 |
PDS2 | −2.24 × 10−8 | 2.24 × 10−8 | 0 | 0 | 0 | 0 |
ZDS | −2.24 × 10−8 | 2.24 × 10−8 | 1.59 × 10−8 | 1.54 × 10−8 | 1.06 × 10−8 | 3.58 × 10−9 |
NOR | −2.24 × 10−8 | 2.24 × 10−8 | 1.59 × 10−8 | 1.54 × 10−8 | 1.06 × 10−8 | 3.58 × 10−9 |
v2 | 0.00 | 8.00 × 10−11 | 0 | 0 | 0 | 0 |
LCYG | −1.59 × 10−8 | 1.59 × 10−8 | 1.59 × 10−8 | 1.54 × 10−8 | 1.06 × 10−8 | 3.58 × 10−9 |
GCAROtu | −1.59 × 10−8 | 1.59 × 10−8 | 1.59 × 10−8 | 1.54 × 10−8 | 1.06 × 10−8 | 3.58 × 10−9 |
LCYB | −1.59 × 10−8 | 1.59 × 10−8 | 1.59 × 10−8 | 1.54 × 10−8 | 1.06 × 10−8 | 3.58 × 10−9 |
v3 | 0.00 | 1.24 × 10−8 | 1.24 × 10−8 | 1.20 × 10−8 | 7.10 × 10−9 | 1.00 × 10−10 |
BCAROH | −3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 |
BCRPTXANH | −3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 |
v4 | 0.00 | 6.16 × 10−9 | 6.16 × 10−9 | 6.16 × 10−9 | 6.16 × 10−9 | 6.16 × 10−9 |
ANXANAS | −2.68 × 10−9 | 2.68 × 10−9 | −2.68 × 10−9 | −2.68 × 10−9 | −2.68 × 10−9 | −2.68 × 10−9 |
v5 | 0.00 | 3.88 × 10−9 | 3.88 × 10−9 | 3.88 × 10−9 | 3.88 × 10−9 | 3.88 × 10−9 |
VIOXANOR | −2.41 × 10−9 | 2.41 × 10−9 | −2.41 × 10−9 | −2.41 × 10−9 | −2.41 × 10−9 | −2.41 × 10−9 |
v6 | 0.00 | 2.70 × 10−10 | 2.70 × 10−10 | 2.70 × 10−10 | 2.70 × 10−10 | 2.70 × 10−10 |
NEOXANS | −1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 |
NEOXANU | 0 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 |
LCYD | −6.42 × 10−9 | 6.42 × 10−9 | 0 | 0 | 0 | 0 |
LCYA | −6.42 × 10−9 | 6.42 × 10−9 | 0 | 0 | 0 | 0 |
v7 | 0.00 | 1.33 × 10−9 | 0 | 0 | 0 | 0 |
ACAROtu | −5.09 × 10−9 | 5.09 × 10−9 | 0 | 0 | 0 | 0 |
CHYA1 | 0 | 0 | 0 | 0 | 0 | 0 |
ZHY | 0 | 0 | 0 | 0 | 0 | 0 |
CHYA2 | 0 | 5.09 × 10−9 | 0 | 0 | 0 | 0 |
CXHY | 0 | 5.09 × 10−9 | 0 | 0 | 0 | 0 |
v8 | 0 | 3.35 × 10−9 | −1.74 × 10−9 | −1.74 × 10−9 | −1.74 × 10−9 | −1.74 × 10−9 |
LUTH | −1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 |
LOROXANU | 0 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 |
FRDPth | 0 | 1 | 0 | 0 | 0 | 0 |
Euclidean Distance between FBA and NSGAII-MOFBA4 | ||||
---|---|---|---|---|
Reaction. | FBA | MOFBA4 | MOFBA4 | MOFBA4 |
ACAROtu’ | 5.09 × 10−9 | 0 | 0 | 0 |
ANXANASCOR’ | −2.68 × 10−9 | −2.68 × 10−9 | −2.68 × 10−9 | −2.68 × 10−9 |
BCAROH’ | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 |
BCRPTXANH’ | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 | 3.48 × 10−9 |
CHLASG’ | 0 | 1.36106 × 10−9 | 2.35109 × 10−5 | 0.0000742 |
CHYA1’ | 0 | 0 | 0 | 0 |
CHYA2’ | 5.09 × 10−9 | 0 | 0 | 0 |
CXHY’ | 5.09 × 10−9 | 0 | 0 | 0 |
FPPS’ | 0 | 0 | 0 | 0 |
FRDPth’ | 0 | 0 | 0 | 0 |
GCAROtu’ | 1.59 × 10−8 | 7.94367 × 10−9 | 1.35944 × 10−8 | 1.59 × 10−8 |
GGCHLDAR’ | 0 | 1.36106 × 10−9 | 2.35109 × 10−5 | 0.0000742 |
GGDPtu’ | 0.000148102 | 1.36106 × 10−9 | 2.35109 × 10−5 | 0.0000742 |
GGPS’ | 0.000486596 | 1.36106 × 10−9 | 2.35109 × 10−5 | 0.0000742 |
GRDPth’ | 0 | 0 | 0 | 0 |
IDS1’ | 0.001459788 | 1.36106 × 10−9 | 2.35109 × 10−5 | 0.0000742 |
LCYA’ | 6.42 × 10−9 | 0 | 0 | 0 |
LCYB’ | 1.59 × 10−8 | 7.94367 × 10−9 | 1.35944 × 10−8 | 1.59 × 10−8 |
LCYD’ | 6.42 × 10−9 | 0 | 0 | 0 |
LCYG’ | 1.59 × 10−8 | 7.94367 × 10−9 | 1.35944 × 10−8 | 1.59 × 10−8 |
LUTH’ | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 | 1.74 × 10−9 |
NEOXANS’ | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 | 1.47 × 10−9 |
NOR’ | 2.24 × 10−8 | 7.94367 × 10−9 | 1.35944 × 10−8 | 1.59 × 10−8 |
PDS1’ | 2.24 × 10−8 | 0 | 0 | 0 |
PDS2’ | 2.24 × 10−8 | 0 | 0 | 0 |
PSY’ | 2.24 × 10−8 | 0 | 0 | 0 |
VIOXANOR’ | −2.41 × 10−9 | −2.41 × 10−9 | −2.41 × 10−9 | −2.41 × 10−9 |
ZDS’ | 2.24 × 10−8 | 7.94367 × 10−9 | 1.35944 × 10−8 | 1.59 × 10−8 |
ZHY’ | 0 | 0 | 0 | 0 |
Euclidean distance | 0.001545861 | 0.001514586 | 0.001451344 |
Glutamate Metabolism in C. vulgaris | Pigment Network in C. vulgaris | ||
---|---|---|---|
MOFBA4 | MOFBA3 | MOFBA4 | MOFBA3 |
34.539 | 20.723 | 20.65 | 20.647 |
34.539 | 20.723 | 20.65 | 20.648 |
34.539 | 20.723 | 20.65 | 20.649 |
34.539 | 20.723 | 20.65 | 20.649 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.652 |
34.539 | 20.723 | 20.65 | 20.648 |
34.539 | 20.723 | 20.65 | 20.650 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.648 |
34.539 | 20.723 | 20.65 | 20.653 |
34.539 | 20.723 | 20.65 | 20.654 |
34.539 | 20.723 | 20.65 | 20.652 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.649 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.650 |
34.539 | 20.723 | 20.65 | 20.650 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.650 |
34.539 | 20.723 | 20.65 | 20.650 |
34.539 | 20.723 | 20.65 | 20.647 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.651 |
34.539 | 20.723 | 20.65 | 20.652 |
34.539 | 20.723 | 20.66 | 20.655 |
ACCEPTED | REJECTED |
Glutamate Metabolism in C. vulgaris | Pigment Network in C. vulgaris | ||
---|---|---|---|
NSGAII | MOEA/D | NSGAII | MOEA/D |
20.723 | 20.723 | 20.647 | 20.723 |
20.723 | 20.723 | 20.648 | 20.723 |
20.723 | 20.723 | 20.649 | 20.723 |
20.723 | 20.723 | 20.649 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.652 | 20.723 |
20.723 | 20.723 | 20.648 | 20.723 |
20.723 | 20.723 | 20.650 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.648 | 20.723 |
20.723 | 20.723 | 20.653 | 20.723 |
20.723 | 20.723 | 20.654 | 20.723 |
20.723 | 20.723 | 20.652 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.649 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.650 | 20.723 |
20.723 | 20.723 | 20.650 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.650 | 20.723 |
20.723 | 20.723 | 20.650 | 20.723 |
20.723 | 20.723 | 20.647 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.651 | 20.723 |
20.723 | 20.723 | 20.652 | 20.723 |
20.723 | 20.723 | 20.655 | 20.723 |
REJECTED | REJECTED |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briones-Báez, M.F.; Aguilera-Vázquez, L.; Rangel-Valdez, N.; Zuñiga, C.; Martínez-Salazar, A.L.; Gomez-Santillan, C. Pitfalls in Metaheuristics Solving Stoichiometric-Based Optimization Models for Metabolic Networks. Algorithms 2024, 17, 336. https://doi.org/10.3390/a17080336
Briones-Báez MF, Aguilera-Vázquez L, Rangel-Valdez N, Zuñiga C, Martínez-Salazar AL, Gomez-Santillan C. Pitfalls in Metaheuristics Solving Stoichiometric-Based Optimization Models for Metabolic Networks. Algorithms. 2024; 17(8):336. https://doi.org/10.3390/a17080336
Chicago/Turabian StyleBriones-Báez, Mónica Fabiola, Luciano Aguilera-Vázquez, Nelson Rangel-Valdez, Cristal Zuñiga, Ana Lidia Martínez-Salazar, and Claudia Gomez-Santillan. 2024. "Pitfalls in Metaheuristics Solving Stoichiometric-Based Optimization Models for Metabolic Networks" Algorithms 17, no. 8: 336. https://doi.org/10.3390/a17080336