Three Metaheuristic Approaches for Tumor Phylogeny Inference: An Experimental Comparison
<p>Experiment 1: Perfect Phylogeny, Subclonal population size 5, Total number of mutations 15, Total number of cells 50, and (<b>Top</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> (<b>Bottom</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>. SASC and PSO score very similar in all measures. While there is a large gap between VNS and the other, GP is able to compare with the others. Running times vary between the methods, with PSO being at one to two orders of magnitude faster than the others.</p> "> Figure 2
<p>Experiment 2: Dollo-3 Phylogeny, Subclonal population size 5, Total number of mutations 15, Total number of cells 50 and (<b>Top</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> (<b>Bottom</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>. SASC and PSO score very similar in all measures. While there is a large gap between VNS and the other, GP is able to compare with the others. Running times vary between the methods, with PSO being at one to two orders of magnitude faster than the others.</p> "> Figure 3
<p>Experiment 3: Perfect Phylogeny, Subclonal population size 7, Total number of mutations 30, Total number of cells 100 and (<b>Top</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> (<b>Bottom</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>. SASC and PSO score very similar in all measures. On the other hand, GP and VNS start to show a clear drop in performance. Running times vary between the methods, with PSO being at one to two orders of magnitude faster than the others.</p> "> Figure 4
<p>Experiment 4: Dollo-3 Phylogeny, Subclonal population size 7, Total number of mutations 30, Total number of cells 100 and (<b>Top</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> (<b>Bottom</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>. SASC and PSO score very similarly in all measures, except for MP3, in which we start to see a decrease in performance for the PSO. On the other hand, GP and VNS start to show a clear drop in performance. Running times vary between the methods, with PSO being at one to two orders of magnitude faster than the others.</p> "> Figure 5
<p>Experiment 5: Perfect Phylogeny, Subclonal population size 9, Total number of mutations 50, Total number of cells 200 and (<b>Top</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> (<b>Bottom</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>. SASC and PSO score very similarly in all measures, except for MP3, in which we see a decrease in performance for the PSO. On the other hand, GP and VNS do not perform comparably to the other two algorithms. Running times vary between the methods, with PSO being at one to two orders of magnitude faster than the others.</p> "> Figure 6
<p>Experiment 6: (Top) Dollo-3 Phylogeny, Subclonal population size 9, Total number of mutations 50, Total number of cells 200 and (<b>Top</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> (<b>Bottom</b>) <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.20</mn> </mrow> </semantics></math>. SASC and PSO score very similarly in all measures, except for MP3, in which we see a decrease in performance for the PSO. On the other hand, GP and VNS do not perform comparably to the other two algorithms. Running times vary between the methods, with PSO being at one to two orders of magnitude faster than the others.</p> "> Figure 7
<p>Experiment 7: (<b>Top</b>) Dollo-3 Phylogeny, Subclonal population size 9, Total number of mutations 100, Total number of cells 200 and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>. (<b>Bottom</b>) Dollo-3 Phylogeny, Subclonal population size 9, Total number of mutations 200, Total number of cells 200 and <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math>. While PSO is significantly faster than SASC (one order of magnitude) it lacks in performance according to all measures when compared to SASC. On the other hand, GP and VNS were excluded from the experiments due to low accuracy in previous experiments.</p> "> Figure 8
<p>Tree inferred by PSO for the oligodendroglioma MGH36 from [<a href="#B68-algorithms-16-00333" class="html-bibr">68</a>]. The tree was computed employing a Dollo-3 phylogeny model. In this picture, a red node indicates a loss of mutation.</p> ">
Abstract
:1. Introduction
2. Preliminaries
. |
The Dollo-k Model
3. Methods
3.1. Particle Swarm Optimization
Algorithm 1: Particle Swarm Optimization |
- Subtree Prune and Reattach: Given two internal nodes, , that are not ancestors of each other, we prune the subtree of T rooted in u by removing the edge . We then reattach this pruned subtree as a new child of v by adding the edge ;
- Add a deletion: Given two nodes such that v is an ancestor of u, we insert a node in T to represent the loss of mutation v. The new node becomes the parent of u. Note that this operation is only performed if the resulting tree satisfies the desired phylogeny model. For the Dollo-k model, we must check that the mutation v has been lost in the tree at most times.
- Remove a deletion: Given a node labeled as a loss, we simply remove it from the tree. All children of u are added as children of , then the node u is deleted.
- Swap node labels: Given two internal nodes , the labels of u and v are swapped. If this operation renders a previously added loss invalid—because a mutation c is lost in a node , but the node where the mutation c is acquired is no longer an ancestor of —we remove the deletion .
- Subtree transplant: This operation requires an additional tree Q which does not necessarily contain the acquisition of all characters of T. The transplant involves: (1) deleting the subtree of T rooted at i (i.e., removing i and all its descendants), (2) making the root of Q a new child of (i.e., attaching Q to T), and (3) adjusting the resulting tree to ensure it is a Dollo-k phylogeny for the input mutations. The adjustment consists of two parts: (a) contracting a node corresponding to the loss of mutation c for each mutation c that has been lost more than k times, until c is lost k times in the tree, and (b) randomly adding a node for each input mutation that is not acquired in the tree. The resulting tree is guaranteed to be a Dollo-k phylogeny and a feasible solution to our problem.
3.2. Genetic Programming
Algorithm 2: Genetic Programming |
3.2.1. Representation and Initialization
3.2.2. Fitness Calculation
3.2.3. Selection
Algorithm 3: Fine-grained tournament selection (FGTS) |
3.2.4. Crossover
Algorithm 4: Crossover |
3.2.5. Mutation
3.2.6. Additional Info about GP Algorithm and Implementation
3.3. Variable Neighbourhood Programming
Algorithm 5: Variable Neighbourhood Programming |
3.3.1. Shaking
Algorithm 6: Shaking |
Data: s: current neighbourhood class. T: current solution. Result: : a feasible solution
|
3.3.2. Local Search
Algorithm 7: Local search, first improvement strategy |
3.3.3. Additional Info about VNP Algorithm and Implementation
4. Experimental Comparison
4.1. Generation of the Datasets
4.2. Evaluation of the Results
4.2.1. Ancestor-Descendant Accuracy
4.2.2. Different-Lineage Accuracy
4.2.3. MP3 Tree Similarity
4.3. Results
4.4. Real Data
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSO | Particle Swarm Optimization. |
GP | Genetic Programming. |
GA | Genetic Algorithms. |
FGTS | Fine-Grained Tournament Selection. |
SA | Simulating Annealing. |
VNP | Variable Neighbourhood Programming. |
VNS | Variable Neighbourhood Search. |
References
- Morrissy, A.S.; Garzia, L.E.A. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 2016, 529, 351–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Cazzato, E.; Ladewig, E.; Frattini, V.; Rosenbloom, D.I.S.; Zairis, S.; Abate, F.; Liu, Z.; Elliott, O.; Shin, Y.J.; et al. Clonal evolution of glioblastoma under therapy. Nat. Genet. 2016, 48, 768–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerenwinkel, N.; Greenman, C.D.; Lagergren, J. Computational Cancer Biology: An Evolutionary Perspective. PLoS Comput. Biol. 2016, 12, e1004717. [Google Scholar] [CrossRef] [Green Version]
- Ciccolella, S.; Soto Gomez, M.; Patterson, M.D.; Della Vedova, G.; Hajirasouliha, I.; Bonizzoni, P. gpps: An ILP-based approach for inferring cancer progression with mutation losses from single cell data. BMC Bioinform. 2020, 21, 413. [Google Scholar] [CrossRef]
- Bonizzoni, P.; Ciccolella, S.; Della Vedova, G.; Soto Gomez, M. Does relaxing the infinite sites assumption give better tumor phylogenies? An ILP-based comparative approach. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 16, 1410–1423. [Google Scholar] [CrossRef]
- Ciccolella, S.; Ricketts, C.; Soto Gomez, M.; Patterson, M.; Silverbush, D.; Bonizzoni, P.; Hajirasouliha, I.; Della Vedova, G. Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses. Bioinformatics 2020, 37, 326–333. [Google Scholar] [CrossRef]
- Zaccaria, S.; Raphael, B.J. Accurate quantification of copy-number aberrations and whole-genome duplications in multi-sample tumor sequencing data. Nat. Commun. 2020, 11, 4301. [Google Scholar] [CrossRef]
- Satas, G.; Zaccaria, S.; Mon, G.; Raphael, B.J. SCARLET: Single-Cell Tumor Phylogeny Inference with Copy-Number Constrained Mutation Losses. Cell Syst. 2020, 10, 323–332.e8. [Google Scholar] [CrossRef]
- Malikic, S.; McPherson, A.W.; Donmez, N.; Sahinalp, C.S. Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 2015, 31, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Donmez, N.; Malikic, S.; Wyatt, A.W.; Gleave, M.E.; Collins, C.C.; Sahinalp, S.C. Clonality Inference from Single Tumor Samples Using Low Coverage Sequence Data. In Research in Computational Molecular Biology, Proceedings of the 20th Annual Conference, RECOMB 2016, Santa Monica, CA, USA, 17–21 April 2016; Singh, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 83–94. [Google Scholar]
- Ross, E.M.; Markowetz, F. OncoNEM: Inferring tumor evolution from single-cell sequencing data. Genome Biol. 2016, 17, 69. [Google Scholar] [CrossRef] [Green Version]
- Zafar, H.; Wang, Y.; Nakhleh, L.; Navin, N.; Chen, K. Monovar: Single-nucleotide variant detection in single cells. Nat. Methods 2016, 13, 505. [Google Scholar] [CrossRef] [Green Version]
- Zafar, H.; Navin, N.; Chen, K.; Nakhleh, L. SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data. Genome Res. 2019, 29, 1847–1859. [Google Scholar] [CrossRef] [PubMed]
- El-Kebir, M.; Satas, G.; Oesper, L.; Raphael, B.J. Inferring the Mutational History of a Tumor Using Multi-state Perfect Phylogeny Mixtures. Cell Syst. 2016, 3, 43–53. [Google Scholar] [CrossRef] [Green Version]
- El-Kebir, M. SPhyR: Tumor phylogeny estimation from single-cell sequencing data under loss and error. Bioinformatics 2018, 34, i671–i679. [Google Scholar]
- Strino, F.; Parisi, F.; Micsinai, M.; Kluger, Y. TrAp: A tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res. 2013, 41, e165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadeqi Azer, E.; Rashidi Mehrabadi, F.; Malikić, S.; Li, X.C.; Bartok, O.; Litchfield, K.; Levy, R.; Samuels, Y.; Schäffer, A.A.; Gertz, E.M.; et al. PhISCS-BnB: A fast branch and bound algorithm for the perfect tumor phylogeny reconstruction problem. Bioinformatics 2020, 36, i169–i176. [Google Scholar] [CrossRef]
- Satas, G.; Raphael, B.J. Tumor phylogeny inference using tree-constrained importance sampling. Bioinformatics 2017, 33, i152–i160. [Google Scholar] [CrossRef] [Green Version]
- Hajirasouliha, I.; Mahmoody, A.; Raphael, B. A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics 2014, 30, i78–i86. [Google Scholar] [CrossRef] [Green Version]
- Popic, V.; Salari, R.; Hajirasouliha, I.; Kashef-Haghighi, D.; West, R.; Batzoglou, S. Fast and scalable inference of multi-sample cancer lineages. Genome Biol. 2015, 16, 91. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Ciccolella, S.; Lucarella, L.; Della Vedova, G.; Patterson, M. Simpler and Faster Development of Tumor Phylogeny Pipelines. J. Comput. Biol. 2021, 28, 1142–1155. [Google Scholar] [CrossRef] [PubMed]
- Storchova, Z.; Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nat. Rev. Mol. Cell Biol. 2004, 5, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Zaccaria, S.; Raphael, B. Characterizing allele- and haplotype-specific copy numbers in single cells with CHISEL. Nat. Biotechnol. 2021, 39, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, J.; Jahn, K.; Raphael, B.J.; Beerenwinkel, N. Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors. Genome Res. 2017, 27, 1885–1894. [Google Scholar] [CrossRef] [Green Version]
- Gawad, C.; Koh, W.; Quake, S. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl. Acad. Sci. USA 2014, 111, 17947–17952. [Google Scholar] [CrossRef] [PubMed]
- Gusfield, D. Efficient algorithms for inferring evolutionary trees. Networks 1991, 21, 19–28. [Google Scholar] [CrossRef]
- Gusfield, D. Haplotyping as perfect phylogeny: Conceptual framework and efficient solutions. In Proceedings of the 6th Annual Conference on Research in Computational Molecular Biology (RECOMB 2002), Washington, DC, USA, 18–21 April 2002; pp. 166–175. [Google Scholar]
- Bonizzoni, P. A Linear-Time Algorithm for the Perfect Phylogeny Haplotype Problem. Algorithmica 2007, 48, 267–285. [Google Scholar] [CrossRef]
- Satya, R.V.; Mukherjee, A. An Optimal Algorithm for Perfect Phylogeny Haplotyping. J. Comput. Biol. 2006, 13, 897–928. [Google Scholar]
- Ding, Z.; Filkov, V.; Gusfield, D. A Linear Time algorithm for Perfect Phylogeny Haplotyping (PPH) problem. J. Comput. Biol. 2006, 13, 522–553. [Google Scholar] [CrossRef] [Green Version]
- Gysel, R.; Gusfield, D. Extensions and Improvements to the Chordal Graph Approach to the Multistate Perfect Phylogeny Problem. IEEE/Acm Trans. Comput. Biol. Bioinform. 2011, 8, 912–917. [Google Scholar] [CrossRef] [PubMed]
- Farris, J.S. Phylogenetic Analysis Under Dollo’s Law. Syst. Biol. 1977, 26, 77–88. [Google Scholar] [CrossRef]
- Rogozin, I.; Wolf, Y.; Babenko, V.; Koonin, E. Dollo parsimony and the reconstruction of genome evolution. In Parsimony, Phylogeny, and Genomics; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Bonizzoni, P.; Braghin, C.; Dondi, R.; Trucco, G. The binary perfect phylogeny with persistent characters. Theor. Comput. Sci. 2012, 454, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.; Smeets, D.; Székely, B.; Larsimont, D.; Szász, A.M.; Adnet, P.Y.; Rothé, F.; Rouas, G.; Nagy, Z.I.; Faragó, Z.; et al. Phylogenetic analysis of metastatic progression in breast cancer using somatic mutations and copy number aberrations. Nat. Commun. 2017, 8, 14944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramazzotti, D.; Graudenzi, A.; De Sano, L.; Antoniotti, M.; Caravagna, G. Learning mutational graphs of individual tumor evolution from multi-sample sequencing data. BMC Bioinform. 2019, 20, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafar, H.; Tzen, A.; Navin, N.; Chen, K.; Nakhleh, L. SiFit: Inferring tumor trees from single-cell sequencing data under finite-sites models. Genome Biol. 2017, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y. Accurate and efficient cell lineage tree inference from noisy single cell data: The maximum likelihood perfect phylogeny approach. Bioinformatics 2019, 36, 742–750. [Google Scholar] [CrossRef]
- Goldberg, L.A.; Goldberg, P.W.; Phillips, C.A.; Sweedyk, E.; Warnow, T. Minimizing phylogenetic number to find good evolutionary trees. Discret. Appl. Math. 1996, 71, 111–136. [Google Scholar] [CrossRef] [Green Version]
- Benham, C.; Kannan, S.; Paterson, M.; Warnow, T. Hen’s teeth and whale’s feet: Generalized characters and their compatibility. J. Comput. Biol. 1995, 2, 515–525. [Google Scholar] [CrossRef]
- Steel, M. The complexity of reconstructing trees from qualitative characters and subtrees. J. Classif. 1992, 9, 91–116. [Google Scholar] [CrossRef]
- Černý, V. Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Optim. Theory Appl. 1985, 45, 41–51. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated annealing. Science 1983, 4598, 671–680. [Google Scholar] [CrossRef]
- Moscato, P. An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the role of tabu search. Ann. Oper. Res. 1993, 41, 85–121. [Google Scholar] [CrossRef]
- Forsyth, R. BEAGLE A Darwinian Approach to Pattern Recognition. Kybernetes 1981, 10, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]
- Ciccolella, S.; Bernardini, G.; Denti, L.; Bonizzoni, P.; Previtali, M.; Della Vedova, G. Triplet-based similarity score for fully multilabeled trees with poly-occurring labels. Bioinformatics 2020, 37, 178–184. [Google Scholar] [CrossRef]
- Jahn, K.; Kuipers, J.; Beerenwinkel, N. Tree inference for single-cell data. Genome Biol. 2016, 17, 86. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Koza, J.R. Genetic programming as a means for programming computers by natural selection. Stat. Comput. 1994, 4, 87–112. [Google Scholar] [CrossRef]
- Taylor, J.; Rowland, J.J.; Gilbert, R.J.; Jones, A.; Winson, M.K.; Kell, D.B. Genetic Algorithm Decoding for the Interpretation of Infra-red Spectra in Analytical Biotechnology. In Proceedings of the Late Breaking Papers at EuroGP’98: The First European Workshop on Genetic Programming, Paris, France, 14–15 April 1998; Poli, R., Langdon, W.B., Schoenauer, M., Fogarty, T., Banzhaf, W., Eds.; CSRP-98-10. The University of Birmingham: Birmingham, UK, 1998; pp. 21–25. [Google Scholar]
- Langdon, W.B.; Buxton, B.F. Genetic Programming for Mining DNA Chip data from Cancer Patients. Genet. Program. Evolvable Mach. 2004, 5, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Filipović, V. Fine-grained tournament selection operator in genetic algorithms. Comput. Inform. 2003, 22, 143–161. [Google Scholar]
- Kratica, J.; Kostić, T.; Tošić, D.; Dugošija, D.; Filipović, V. A genetic algorithm for the routing and carrier selection problem. Comput. Sci. Inf. Syst. 2012, 21, 49–62. [Google Scholar] [CrossRef]
- Rozenberg, G.; Bäck, T.; Kok, J.N. Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Langdon, W.B.; Soule, T.; Poli, R.; Foster, J.A. The evolution of size and shape. Adv. Genet. Program. 1999, 3, 163–190. [Google Scholar]
- Fortin, F.A.; De Rainville, F.M.; Gardner, M.A.; Parizeau, M.; Gagné, C. DEAP: Evolutionary Algorithms Made Easy. J. Mach. Learn. Res. 2012, 13, 2171–2175. [Google Scholar]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar]
- Elleuch, S.; Mladenovic, N.; Jarboui, B. Variable Neighborhood Programming: A New Automatic Programming Method in Artificial Intelligence; GERAD HEC Montréal: Montreal, QC, Canada, 2016. [Google Scholar]
- Hansen, P.; Mladenović, N. Variable neighborhood search: Principles and applications. Eur. J. Oper. Res. 2001, 130, 449–467. [Google Scholar] [CrossRef]
- Malikic, S.; Jahn, K.; Kuipers, J.; Sahinalp, S.C.; Beerenwinkel, N. Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data. Nat. Commun. 2019, 10, 2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpov, N.; Malikic, S.; Rahman, M.; Sahinalp, S.C. A Multi-labeled Tree Edit Distance for Comparing “Clonal Trees” of Tumor Progression. In Proceedings of the 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Helsinki, Finland, 20–22 August 2018. [Google Scholar]
- Karpov, N.; Malikic, S.; Rahman, M.K.; Sahinalp, S.C. A multi-labeled tree dissimilarity measure for comparing “clonal trees” of tumor progression. Algorithms Mol. Biol. 2019, 14, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNardo, Z.; Tomlinson, K.; Ritz, A.; Oesper, L. Distance measures for tumor evolutionary trees. Bioinformatics 2019, 36, 2090–2097. [Google Scholar] [CrossRef] [Green Version]
- Jahn, K.; Beerenwinkel, N.; Zhang, L. The Bourque distances for mutation trees of cancers. Algorithms Mol. Biol. 2021, 16, 9. [Google Scholar] [CrossRef]
- Sollier, E.; Kuipers, J.; Takahashi, K.; Beerenwinkel, N.; Jahn, K. Joint copy number and mutation phylogeny reconstruction from single-cell amplicon sequencing data. bioRxiv 2022. [Google Scholar] [CrossRef]
- Tirosh, I.; Venteicher, A.S.; Hebert, C.; Escalante, L.E.; Patel, A.P.; Yizhak, K.; Fisher, J.M.; Rodman, C.; Mount, C.; Filbin, M.G.; et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature 2016, 539, 309. [Google Scholar] [CrossRef] [Green Version]
Experiment # | S | N | M | k | |
---|---|---|---|---|---|
1 | 5 | 15 | 50 | 0 | 0.15, 0.20 |
2 | 5 | 15 | 50 | 3 | 0.15, 0.20 |
3 | 7 | 30 | 100 | 0 | 0.15, 0.20 |
4 | 7 | 30 | 100 | 3 | 0.15, 0.20 |
5 | 9 | 50 | 200 | 0 | 0.15, 0.20 |
6 | 9 | 50 | 200 | 3 | 0.15, 0.20 |
7 | 9 | 100, 200 | 200 | 3 | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciccolella, S.; Della Vedova, G.; Filipović, V.; Soto Gomez, M. Three Metaheuristic Approaches for Tumor Phylogeny Inference: An Experimental Comparison. Algorithms 2023, 16, 333. https://doi.org/10.3390/a16070333
Ciccolella S, Della Vedova G, Filipović V, Soto Gomez M. Three Metaheuristic Approaches for Tumor Phylogeny Inference: An Experimental Comparison. Algorithms. 2023; 16(7):333. https://doi.org/10.3390/a16070333
Chicago/Turabian StyleCiccolella, Simone, Gianluca Della Vedova, Vladimir Filipović, and Mauricio Soto Gomez. 2023. "Three Metaheuristic Approaches for Tumor Phylogeny Inference: An Experimental Comparison" Algorithms 16, no. 7: 333. https://doi.org/10.3390/a16070333