
Minimizing Phylogenetic Number to find Good
Evolutionary Trees

Leslie Ann Goldberg', Paul W. Goldberg', Cynthia A. Phillips1, Elizabeth
Sweedyk2 and Tandy Warnow3

Sandia National Laboratories, MS 1110, P.O. Box 5800, Albuquerque, NM 87185,

593 Soda Hall, Dept. of Computer Science, UC Berkeley, Berkeley, CA 94720,

Dept. of Computer and Information Science, University of Pennsylvania.

U.S.A.

U.S.A.

Philadelphia, PA 19104, U.S.A.

Abstract. Inferring phylogenetic trees is a fundamental problem in
computational-biology. We present a new objective criterion, the phy-
logenetic number, for evaluating evolutionary trees for species defined
by biomolecular sequences or other qualitative characters. The phyloge-
netic number of a tree T is the maximum number of times that any given
character state arises in T . By contrast, the classical parsirnonycriterion
measures the total number of times that different character states arise
ir, T . We consider the following related problems: finding the tree with
minimum phylogenetic number, and computing the phylogenetic number
of a given topology in which only the leaves are labeled by species. When
the number of skates is bounded (as is the case for biomolecular sequence
characters), we can solve the second problem in polynomial time. We can
also compute a fixed-topology 2-phylogeny (when one exists) for an arbi-
trary number of states. This algorithm can be used to further distinguish
trees that are equal under parsimony. We also consider a number of other
related problems.

1 Introduction

The problem of evolutionary tree construction involves taking a given set of
species, and constructing a tree which describes the evolutionary history of that
set of species. We would expect a pair of species to be close together in the tree
if they are closely related. Numerous variants of this general problem have been
studied, the variants arising from the differing kinds of information that may be
assumed to be available concerning the species.

In character-based phylogeny, the scenario is the following. A character c is a
function from the species set S to some set R, of s ta t e s . For example, the charac-
ter vertebrate-invertebrate has two states, so we can choose R, = {0,1) and we

can define c SO that c(s) = 0 for every species s that is a vertebrate and e(.) =
1 for every species s that is an invertebrate. As another example, we could define
a character c based on average life-span. In this case R, might be a set of ranges
such as R, = (0-10 years, 10-20 years, 20-60 years, more than 60 years}. Then
the function c could be defined to map each species s to the range contain-
ing its average life-span. We can think of a sequence of k characters c1, . . . , C k

as mapping each species s in the species set to a vector (clfs), . . . ,ck(s)) in
R,, x - '. x R,, . The species sets that we will consider will have the prop-
erty that for any two distinct species, s and s', that are in a species set,
(c1(s), . . . , Ck(S)) # (cI(s')].. . , ck(s')). Thus, we will be able to identify each
species s with a vector (c1(s), . . . , ck(s)) in Rcl x . . . x R,, . Furthermore, we
will think of the set Re, x -.. x R,, as being the set containing all possible
species, including those in S.

The inputs to the phylogeny construction problem are the species set S (we
will use n to denote the size of S) and a sequence of characters] c1,. . . , Ck . We
will let r,, denote lRcJl, and r denote maxj re,. A phylogenetic tree for the
input is a node-labeled tree in which every node of the tree is labeled with a
vector in &, x 1 . . x Rck , and each species in S is the label of some node of
the tree$. Il'hus, each character cj can be extended to a function from the set of
vertices of T to R,, .

We can think of a species as a string of length k over the alphabet (1,. . . , r } .
A phylogeny is a way of expressing similarity amongst a set of strings rather
than expressing similarity between pairs of strings. Strings which have strong
similarities (as measured by matches in many locaticns) are located closer to
each other in the tree than those that are more disparate. The output tree is the
pattern of similarity amongst the entire set of input strings.

The measure of fitness of a phylogenetic kee is computed in one of several
ways. Classically, there have been essentially two measures of fitness. The first
is parsimony, in which a tree is sought such that the total weight of the tree
is rninimizt:d, where the weight of the tree is the Sam of the edge-weights, and
the weight of an edge is the number of characters on which the species at its
endpoints disagree. The other criterion is called compatibility, in which a tree
is sought to maximize the number of characters that are convex on the tree. A
character cj is convex on a tree T if for each state i E R,, , cj-l(i) defines a
connected component of T .

-
$ A phylogenetic tree for the input S, c1,. . . Ck is sometimes defined to be

a node-labeled tree in which every node of the tree is labeled with a vector
in R,, x . . . x R,, , and each species in S is the label of some leaf of the tree.
It is clear t8hat every tree satisfying this alternative definition also satisfies our
definition above. The alternative definition is equivalent to ours in the sense that
we can convert a tree T satisfying our definition into a tree T' satisfying the
alternative definition by adding extra leaves. Under all reasonable measures of
fitness for phylogenetic trees, T and T' will have the same measure of fitness.

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither the
United States Government nor any agency thereof, nor any
of their employees, make any warranty, express or implied,
or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or
any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

Both criteria, compatibility and parsimony, result in NP-hard optimization
problems [4,5]. An ideal tree is one in which all characters are compatible (Le., all
characters are convex an the tree). Such a tree is optimal under parsimony and
compatibility criteria and is called a perfect phylogeny. The question of whether
a perfect phylogeny exists for a given input is NP-Complete [3, 141.

In this paper, we consider an alternative measure of fitness which combines
some of the properties of compatibility and parsimony. We will say that a phy-
logenetic tree T for an input consisting of a species set S and a sequence of
characters c1,. . . , ck is an !-phylogeny if, €or every character cj and every state
i E RCj , the set of vertices cj'(i) form at most t connected components in T .
(A 1-phylogeny is the same as a perfect phylogeny). The t-phylogeny problem
is the problem of determining whether an input has an 1-phylogeny. The phy-
logenetic number of an input is the minimum t such that the input has an
!-phylogeny. The phylogenetic number problem is the problem of determining
the phylogenetic number of an input.

The t-phylogeny problem and the phylogenetic number problem both have
fixed-topology versions which are defined as follows. The input is a species set S,
a sequence of characters c1, . . . , Ck, and a tree T in which internal nodes are
un!abeled Snd each leaf is labeled with a species s E S. Each species s E S is
the label of exactly one leaf of T . A phylogenetic tree for the input is formed by
taking T and labeling the internal nodes of T with vectors in R,, x + . . x Rck .
The fixed-topology t-phylogeny problem is the problem of determining whether
the input has an [-phylogeny. The fixed-topology phylogenetic number problem
is defined analogously.

The !-phylogeny problem and the phylogenetic number problem also have
restricted versions in which new ancestral species may not be added. The re-
stricted versions are defined as follows. The input is a species set s' aEd a
sequence of characters c1, . . . , ck . A restricted phylogenetic tree for the input
is a node-labeled tree in which every node of the tree is labeled with a vector
in S , and each species in S is the labe! af some node of the tree. The restricted
1-phylogeny problem is the problem of determining whether the input has a
restricted t-phylogeny. The restricted phylogenetic number problem is defined
analogously.

The &phylogeny problem can be generalized as follows. Fix positive in-
tegers r, e l , . . , ,e,. Suppose that s, el,. . . , ch is a phylogeny input such that
maxj r,, 5 r . An (.el,. . .,!,)-phylogeny for an input is defined to be a phy-
logenetic tree for the input such that, for each character c, and each inte-
ger i 5 \Re,{, the set of vertices that are mapped to the i th state in RCj
by C j forms at most ti connected components in T . The (e,, . . . , t,.) -phylogeny
problem is the problem of determining whether an input has an (!I,. . ., 4)-
phylogeny. A generalized version of the restricted t-phylogeny problem is defined
analogously.

1.1 Summary of Results and Outline of Paper:

The l-phylogeny problem is also known as the perfect phylogeny problem. It
was shown to be NP-hard by Bodlaender, Fellows, Warnow, and (independently)
Steel 13, 141. The hardness of l-phylogeny implies that the phylogenetic number
problem is NP-hard. In Section 2 of this paper we show that for any fixed e > 1
the [-phylogeny problem is also NP-hard.

Having shown that the .&phylogeny problem is NP-hard, we consider in
Section 3 the fixed topology e-phylogeny problem. It is known that the fixed-
topology l-phylogeny problem can be solved in polynomial time [?]. We show
that the fixed-topology 2-phylogeny problem can also be solved in polynomial
time and that the fixed-topology [-phylogeny problem is NP-hard for fixed
t > 2 . (We show that the fixed-topology &phylogeny problem is NP-hard for
fixed > :! even when the input is guaranteed to have an e + l-phylogeny and
the degree of the topology is restricted to be at most 3.)

In Section 4 we consider the restricted E-pliylogery problen;. We show that
there is a polynomial-time algorithm €or the restricted l-phylogeny problem, but
the restricted e-phylogeny problem is NP-hard for fixed e 2 2.

Although the l-phylogeny problem is NP-hard, it can be solved in polynomial
time if the number, n, of species is fixed, or the number, k , of characters is
fixed [12,1], or the quantity T = maxj rc., is faed [2, 111. A full analysis of fixed
parameter e-phylogeny problems is outside the scope of this paper. However,
we observe that all of the phylogeny problems can be solved in polynomial time
(by brute force) if n is fixed. In Section 5 we use interesting combinatorial
techniques to show that for k = 2 the phylogenetic number problem can be
solved in polynomial time. The complexity of the !-phylogeny problem rzmains
open for fixed t > 1 and fixed k > 2 . The difficulty of fixed-topology phylogeny
problems does not change if k is fixed. In Section 6 we show that the fixed-
topology phylogenetic number problem can be solved in polynomial time for
fixed T . On a related note, we show that if T is fixed, there is a polynomial-delay
algorithm for listing fixed-topology [-phylogenies. We also show that for fixed
r 2 2 and fixed L 2 3 the restricted !-phylogeny problem is NP-hard. (This
result follows from a more general result. Namely, we show that the restricted
(e,, e,) -phylogeny problem is NP-hard for fixed e, 2 2 and 2 2 as long as
one of , 4'2 is greater than 2.)

Finally, in section 7 we offer some concluding remarks and present some open
problems.

1.2 Preliminary Facts

The following fact is used in some of the proofs and in the restricted 1-phylogeny
algorithm.

Fact I:
in which:

I f an inpu t s , c1, ..., ck hasanl?-phylogenythenithasanl-phylogeny

1 . Each leaf has a label from S .
2. Each species is the label of at most one node.

3. Every node whose label is not in S has degree at least 3.
4. There are a t most max(0, n - 2) nodes with labels that are not in S.

Proof: It is easy to see that conditions 1-3 can be satisfied. (One can convert an
t-phylogeny into one that satisfies conditions 1-3 by removing leaves with labels
that are not in S combining branches of the tree to accomplish condition 2, and
then "splicing out" the appropriate degree 2 nodes to accomplish condition 3.)
To prove that condition 4 can also be satisfied, suppose that T is an t-phylogeny
for the input that satisfies conditions 1-3 and contains at least one node, w , with
a label that is not in S . Let Ti be the tree obtained from T by splicing out any
nodes of degree 2. (Condition 3 guarantees that no node with a label outside
of S is spliced out in this process.) Consider Ti to be rooted at w . It is easy to
see that we can add one or more new internal nodes to T' to obtain a complete
binary tree TIf which is rooted at 20 and has the same leaves FIS T i t . Conditions 1
and 2 imply that T , and therefore Ti and TI', have at most n leaves. Since T"
has at most n leaves, it has at most n - 1 internal nodes. Therefore, T' has at
most n - 2 internal nodes, and T has at most n - 2 nodes with labels that are
not in S. o

Fact 1 implies that if an input has an t-phylogeny then it has a polynomial-
sized &-phylogeny.

t To see how to construct T", let the "level" of a vertex denote its distance
from the root. Start with level 0 of Ti and proceed through the levels of the
tree in increasing order. Consider each vertex v on each level. If v has children
21,. . . , xj with j > 2 remove the edges (u , x2), . , . (v, zj) and add a new node y
which is a child of u and the parent of nodes 22,. . . , xj . Note that at least one
new internal node is added in the process, as w has at least three children in T'.

2 The Hardness of L-Phylogeny

In this section we show that for any fixed C > 1, the t-phylogeny problem is
NP-hard. Our reduction is from the 1-phylogeny problem, which was shown to
be NP-hard by Bodlaender, Fellows, Warnow, and (independently) Steel [3, 141.

We define the weight of an edge (VI, v2) in a phylogeny to be the number
of characters C j such that cj(v1) # cj(v2). That is, the weight of (211,212) is
the number of characters on which the species labeling v1 and 02 disagree. We
define the weight of a phylogeny to be the sum of the weights of its edges. We
start with the following observation.

Observatjion 2: Let S, c1, . . . , ck be any input to the C-phylogeny problem
and let r denote maxj rei. Any L-phylogeny for this input has weight a t most
k(!r - 1).

We will. use the following lemma.

Lemma 3:
IS1 = Zt3 -- 2L+ 1 and RCj = (0,. . . , ! - 1) for 1 5 j 5 2C such that

1. For every state i in the range 0 5 i < e , the species i2' is in E.

2. it has an t-phylogeny

For every integer L there is an input It = S, c1,. . . , c2t in which

3. In any e-phylogeny for It the subgraph induced by ad of the nodes with
any given label is connected.

4. In any t-phylogeny for It all of the nodes are labeled by species in S . (That
is, no jlew species are introduced.)

5. In any C-phylogeny for It the path between the species i2t and j2' for
i # j passes through a t least 2 t - 1 distinct species.

Example: The Input 13

The species set S of input 13 consists of 49 species. The values of the six
characters on these species are defined as in figure 1:

000000 100000 110000 111000 211000 221000 222000
000100 000110 000111 000211 000221 000222

010000
010010
110010
111010
111110
111111 211111 212111 212121 012121 010121 010101

121111 121211 121212 101212 101012 101010
112111
122111
222111
222211
222221
222222 022222 002222 002202 102202 112202 112212

220222 220022 220020 221020 221120 221121

Fig. 1. The Input 13

The Input I3 has a 3-phylogeny in which species are connected along the rows
and along the first column. Each node i6 is also connected to the row beneath
it. By Observation 2 any 3-phylogeny for Is has weight at most 48. However,
48 edges with positive weight are needed just to hook up the 49 species in S
into a tree. We conclude that any 3-phylogeny for I3 consists of 48 edges with
weight 1 plus possibly some edges with weight 0. Thus, the subgraph induced
by all of the nodes with any given label forms a single connected component.
Furthermore, no cew species are introduced. Finally, since i6 and j6 differ in 6
characters, any path between them in any %phylogeny for 13 passes through at
least 5 distinct species.

Construction of 1, = S, el , . . . , c2e:

For 1 _< j 5 2L we set RCj = {0, . . . , e - 1). For each state i in the range
0 5 i < we put the species ize into S. The other species in S will be the
species in the following phylogeny:

For each state i in the range 0 5 i < l we will choose a unique parti-
tion Pi of the 2 l characters into two sets of size L . (In the construction of I3
above we used PO = (0,1,2},{3,4,5},P1 = {0,2,4},{1,3,5}, and P2 =

We will use each of the parts of the partition Pi to form a “row” of species
which will be connected to the species i2‘. To construct each row, consider the
ordered list til, . . . , ciC consisting of the characters in the appropriate part of
the partition. From the species ize form a new species by changing the state of
character cil to (i + 1) mod 1. Then form a new species by changing the state
of character ci, to (i + 1) mod L . Continue on until the state of character til is

{0,1,41, (2,3,5} .>

changed to (i + 1) mod 4. Then change the state of character c,, to (i + 2) mod
! and continue on in this manner until finally the state of character c , ~ is changed
to (i + (e - 1)) mod 4.

Finally, we will add species to connect the species iZL to the species (i + 1)2'
in the vertical spzne (for i in the range 0 5 i < e - 1). Let cx be the second
character in the first part of the partition corresponding to i and construcL a
new species from i2' by changing the state of character cx to i + 1. Next, let c i
be the first character such that ex and e: are in different parts of i's partition
and ex and e; are in different parts of (i + 1)'s partition. Construct a new
species by changing the state of character c i to i + 1. Now, construct 2! - 3
more species by considering each remaining character in turn and changing it
from state i to state i + 1.

Proof of :Lemma 3: By construction, S contains the species i2' for every
state i in the range 0 5 i < f!. To see that the phylogeny constructed above is
indeed an)'-phylogeny for I' note that for each state i and for each state j # i
a character ex only has state i in one of the two rows connected to j2' and the
species with ex in state i are connected in this row. Furthermore, there is a single
connected component with character cx in state i in the rows connected to i2'
and this connected component contains all species on the vertical spine with
character ex in state i . We now wish to show that all of the species introduced
in the construction are distinct. Suppose that instead two species s1 and s2
have identical labels. Note that, by construction, s1 and s2 could not be of the
form i2'. Fhrthermore, they could not be on the same horizontal row and they
could not both be on the vertical spine. There are three cases to consider:
1. s1 and sa are on different rows, both of which are attached to i2'.

In this case s1 has state i for all of the characters in one part of the par-
tition Pi and s2 hzs state i for all of the characters in the other part
of the partition Pi so it must be the case that s1 = s2 = i2' which is a
contradiction .

2. SI is on a horizonta! row connected to i2' and s2 is on a horizontal row
connected to jse for some j # i .
In this case s1 has state i for all of the characters in some part of the parti-
tion Pi so s2 must have character i for all of the characters in that part of
the partition Pi and character j on all other characters. But then the par-
tition P j is the same as the partition Pi, which is not true by construction.

3. s1 is on the vertical spine between i2' and (i + 1)2' and s2 is on a horizontal
row.
By construction sa must be on a row attached to i or on a row attached
to i + 1. However, the choice of cx and c i ensures that s2 cannot be on
either of these rows.

Now that we know that the species are distinct, we count them. There are
4 species ol the form i2'. Each of the 2t horizontal rows has e(! - 1) species.
Finally, there are (a - 1)(2t - 1) additional species on the vertical spine. We

conchide that S has 213 - 2&+ 1 distinct species. By Observation 2, any e-
phylogeny for it has weight at most 2C(f2 - l) = 2t3 - 26. However, 2C3 - 2C
edges with positive weight are needed just to hook up the 2C3 - 2&+ 1 species
in S into a tree. We conclude that any e-phylogeny €or l e consists of 2t3 - 2 l
edges with weight 1 plus possibly some edges with weight 0. Thus, the subgraph
induced by all of the nodes with any given label forms a single connected com-
ponent. Furthermore, no new species are introduced. Finally, since i21 and j2<
differ in 21 characters, any path between them in any 1-phylogeny for l e passes
through at least 2t - 1 distinct species. a

We will use Lemma 3 to prove the following theorem

Theorem 4: For any fixed C > 1 the 1-phylogeny problem is NP-hard.

Proof: The reduction is from the 1-phylogeny problem. Let S , c1, . . . , c k be an
input to the 1-phylogeny problem such that RCj = (0, . . . , T - 1) for 1 5 j 5 k .
Let SI, cl,, . . . , 4, be an input to the 1-phylogeny problem satisfying the condi-
tions in Lemma 3. Let S* = { srk I s E S' }. For each i in the range 0 5 i < 1
let Si = { i2ey I y E S} - Let S" = S* U &,i,, Si. Let I be the input to the
!-phylogeny problem with species set St' ana characters el,, . . .,tie, cl,. . , , ck.
(Note that in icput I the range of cj has been extended frorn R,, to Rcj U i r } .)

+ Suppose that. T is a 1-phylogeny for S, c1, . . . , ck . For each i in the range
0 5 i < C let T j be a copy of T in which each label y has been changed
to i2'y. (T j is a 1-phylogeny for Si, c:, . . .,c;,, c1,. . . , Ck .) Let T' be an 1-
phylogeny for 9, c;, . . . , tie, el, . . . , Ck . (Part 2 of Lemma 3 guarantees that T'
exists.) Now for each i in the range 0 5 a' < 1 connect an arbitrary node in
to the node izerk in T'. (The construction, together with Part 1 of Lemma 3
guarantees that there is a vertex of T* labeled iaerk .) It is easy to see that the
resulting tree is an 1-phylogeny for 1.
t Suppose that T is an 1-phylogeny for I . If we restrict our attention

to characters cl,, . . . , chef we still have an 1-phylogeny. Therefore, by Part 3 of
Lemma 3, the subgraph induced by all of the species which have some particular
set of states for characters ci, . . . , c/ze is connected. VJe will use the notation T j
to refer to the induced subtree of T containing those species that have state i
for characters c{ , . . . , .Le.

We claim that for any j in the range 1 _< j _< k any path in T between
a node ti E and a node t h E Th (for h # i) contains some species s with
cj (s) = r . Clearly, this claim implies that TO is a 1-phylogeny for SO, e;, . . . , cLe,
c1,. . . , C k . Hence, s, e l , . . . , Ck has a 1-phylogeny.

To prove the claim note that by Part 5 of Lemma 3 the path between
and T h passes through 21 - 1 nodes V I , . . . , v2e-1, no two of which agree on
all of characters c;, . . . , cLe. By construction and by Part 1 of Lemma 3, S"
contains the species i2'rk and by Part 3 of Lemma 3 it is part of E . Similarly,
S" contains the species h2Lrk and it is part of Th . Furthermore, (by construc-
tion and by Part 4 of Lemma 3), for each node v,, S" contains a species vh
that agrees with v, on characters 4,. . . , and has characters c1, . . . , ck in

state r . By Part 3 of Lemma 3 vk is in the connected subgraph of T induced by
species which agree with v, 01: characters ci , . . . , &. Now suppose that none of
V I , . . , vle-1 has character c j in state r Then the sub-graph of T induced by
those nodes that have character cj in state r has 2 t + 1 connected components,
which contradicts the fact that T is an e-phylogeny. n

3 The Fixed-Topology 1-Phylogeny Problem

It is known that the fixed-topology 1-phylogeny problem can be solved in poly-
nomial time [7]. In Subsection 3.1, we show that the fixed-topology 2-phylogeny
problem can also be solved in polynomial time. In Subsection 3.2 we show that
the fixed-topology C-phylogeny problem is NP-hard for fixed C > 2. (We show
that the fixed-topology t-phylogeny problem is NP-hard for fixed t > 2 even
when the input is guaranteed to have an L + 1-phylogeny and the degree of the
topology is restricted to be at most 3.)

3.1 The Fixed-Topology 2-Phylogeny Problem

In this subsection, we show that the fixed-topology 2-phylogeny problem can
be solved i n polynomial time. The algorithm runs in time O(nrk) where n is
the number of species, r is the maximum number of states in any character,
and k is the number of characters. If a 2-phylogeny exists, then our algorithm
computes a. labeling that achieves a 2-phylogeny.

Since the topology is fixed, the characters are independent and can be han-
dled one at a time. We will now show how to compute the labels for a single
character iin time O(nr) , where in this case r is the number of states for this
character. The overall bound then follows.

Although the input tree is unrooted, €or this algorithm, we root this tree
from an arbitrary internal node. The choice of root does not affect the existence
of a 2-phylogeny1 but it may affect the labeling.

Let T he the input tree with leaves labeled by states 1,2, . . . , r . Consider
a single stake i and let q be the subtree of tree T consisting of all the leaves
labeled i and the unique set of paths connecting this set of leaves. For state i to
have a single connected component in tree T , every node in z must be labeled
i. For state i to have at most two connected components, every node in tree Ti
with degree greater than 2 must be labeled i (otherwise state i would be split
into at least 3 components). We call such nodes branch points of tree Ti. The
branch points and the leaves already labeled i are the forced points of tree Ti.
At most one path of degree-2 nodes between two forced points can be labeled
something other than i.

for i = 1,. . . , r . Each branch point of II. is
labeled as such, each path between two forced points is given a unique label,

We begin by computing

and each degree-2 node in is labeled with its path label. Note that the root
of tree Ti need not be a branch point. if each node of tree T is given a length-r
vector, then information for all r trees Tj can be stored on tOF of each other.
For example, node v could be a branch point for tree T, (i th slot of the vector
indicates branch point), on the l th path for tree Tj (the j t h slot of the vector
has the number i), and not in tree T h (the hth slot is null). We can compute
all r trees in time O(nr) using depth-first search.

The first phase of the algorithm (the forced phase) computes all forced labels.
For each tree T i , each branch point of Ti is labeled i and a pointer to the node is
placed into a queue. If at any time we try to label a node that is already labeled
with something else, then we stop and report that there is no 2-phylogeny for
this topology.

Now all path conflicts have to be settled for the labeled nodes. We remove
the first node from the queue. Suppose it is node v and it is labeled i. If this
node is also in path 1 of tree 3 for some j # i, then tree Tj must give up path
1 . Once path I is broken, then in order to achieve 2 connected components for
state j , every other path in tree 3 must be labeled j. We traverse tree Tj ,
clearing path 1 (setting slot j to null for all nodes on path 1 of tree Ti) and
labeling all other qodes j . If we attempt to label a ilode that is aiready labeled,
then we stop. There can be no 2-phylogeny. Otherwise, the newly-labeled nodes
are added to the queue. We do this for all paths that go through node v , then
clear path conflicts on all the other nodes in the queue. Because each node can
be labeled, enqueued, dequeued, and processed at most once, and each tree can
be traversed at most once, this phase can be completed in time O(nr) .

The final phase completes the labeling of the tree. If we succeed in emp-
tying the queue without encountering a fatal conflict, it is still possible that
some nodes remain unlabeled. We show that there is always a 2-phylogeny. Let
trees and Tj be left nndetermined by the forced phase of the algorithm. If
the intersection of these two trees is empty, there is no conflict between them.
Otherwise, the intersection is connected* and contains exactly one path from
each tree+. Fcrthermore, the root of one of the trees (possibly both) is in the
intersection$. Suppose that the root of
gives up the path through its root (if both roots are contained in Ti n Tj , one
of the trees chosen arbitrarily will give up the path through its root). By the
structure of the intersection, this clears the conflict between tree Ti and Ti. We
can solve all conflicts between pairs of trees in a similar manner. Since each tree

* If two nodes V I and 212 are both in Ti and both in Tj, then every node on
the unique path in T between V I and 212 must also be in both trees.
t If the intersection contained pieces of two paths from tree T i , then it must

contain a branch point for tree Ti and therefore tree Tj would have been forced
to relinquish a path and left completely determined by the forced phase.

Consider a node in the intersection. If its parent in T is in the intersection,
move up to it. Continue until some parent is no longer in the intersection. That
node is the root of at least one of and T j

is contained in Ti n q. Then tree

was not forced to give up a path in the forced phase of the algorithm (otherwise
it would ha.ve been fully determined then), it is free to give up one path in this
phase. Each tree will give up at most one path, namely the one through its root.
Therefore, all conflicts are resolved and we have a 2-phylogeny. This phase of
the algorithm can be implemented in Oinr) time by processing each remaining
tree in order (determining whether it must relinquish the path through its root,
and claiming all other paths).

Thus we have shown how to compute the labelings of the internal nodes of
the input tree T in time O(nr) per character for an overall time of O(nrk) .
Thus, we have proved the following theorem.

Theorem 5:
nomial time.

The fixed-topology 2-phylogeny problem can be solved in poly-

3.2 The Fixed-Topology 1-Phylogeny Problem for 1 > 2

In this subsection we prove the following theorem.

Theorem 6:
e > 2.

The fixehtopoiogy- 1.-phylogeny piobiern is NP-hwd for fixed

Proof: The proof is by reduction from 3SAT. Let E > 2 be fixed. Suppose that
we are given an input to 3SAT. We will show how to construct a one-character
input S, c, T to the fixed-topology t-phylogeny problem such that the phylogeny
input has an e-phylogeny if and only if the input to 3SAT is satisfiable.

The species set S, the set R, of states, and the character c are constructed as
follows. For each of the n variables, 2, in the satisfiability inpct we have states s,
and SF and species S(~,I), . . . ,s(,,e+l) and s(F,1), . . .,s(z,e+l) where C (S (s , j)) =
s, and C (S (~ , ~)) = SF. For each of the m clauses, C , in the satisfiability input
we have state sc and species s(c,1), . . . , s(c,e+l) where c(s(c, j)) = sc. For the
i th occurrence of the literal z in the satisfiability inpnt, we have state sz,
and species s(,,,~), . . . , s(,.,e+l) where c(qZ,,j)) = s ~ , . Similarly, for the i th
occurance of the literal in the satisfiability input, we have state szs and
species S(Z$,~), . . . , ~ (~ , , , e + ~) where c(s(z,,jl) = sz*. Let N denote n(2t - 3) +
m(4.k - 11). For each h in the range 1 5 h < N we have a state s i and species
s ; ~ , ~) , . . ., s[h,e+l) where c(sth .) = sk.

We will show how to construct a tree T in which internal nodes are unlabeled
and each leaf is labeled with a species in S. Each species in S will be the label
of exactly one leaf of T . To construct T we will first construct trees TI, . . . , TN .
Finally, we will hook Ti to %+I for 1 5 i < N

We start by showing how to hook tree z to tree z+1. Let t i be an internal
node in 3 of degree at most 2 and let ti+l be an internal node in T,+1 of degree
at most 2 (,it will be clear from the construction that such small degree internal
nodes exist in and %+I). Connect ti and ti+l with a chain of 1 + 1 new
internal nodes. Finally, give each of the internal nodes in the chain a leaf and

> J)

label the new leaves with the species s : ~ , ~) , . . . , s { ~ , ~ + ~) . For example, if t = 3
then connect ti and ti+l as in figure 2:

Fig.2. Example for t = 3

Note that in any l-phylogeny for the input, at least one of the internal nodes
in the chain will be labeled with a species s such that c(s) = si. Since we have
now used all + 1 species s with e(.) = si, neither E nor E+1 contains a
leaf s such that c(s) = si. Therefore when I;: is hooked to ?;:+I as above, any
leaves l d E Ti and l i+ l E with c (l i) = c(&l) are in different connected
ccmponents in the subgraph induced by c-'(c(Bi)).

We next show how to construct the trees TI,.. . , T N . Trees TI, . . . , TN-n-m
will each consist of a single internal node connected to a single leaf. In par-
ticular, we will construct one such tree for each of the following species: for
each variable x, species s(,,l), . . . ,s(,,+2) and s($,1), . . . , s(z,t-2); for each
clause C, species s(c,I), . ..,s(c,e-3); for the i th occurance of the literal x,
species s(=,,I), . . . , s(,,,~-3); for the i th occurance of the literal f, species
S(?F,,l), . * . J s(Z*,e-3).

Trees T N - ~ - ~ + ~ , .. . , TN-m will be used for truth-setting. For each vari-
able z in the satisfiability input we will construct a tree as follows. Suppose
that the literal x appears i times in the satisfiability input and that the lit-
eral f appears j times in the satisfiability input. Construct a tree consist-
iag of a chain of 2i + 2j + 6 internal nodes. Each internal node will have
one leaf, and the species at the leaves will be (in order): first, S (~ , ~ - I) ; then,
S(z1,e-2)1 S(SI,&l), S(z2,&2), S(z2,&1)1 * . ., S (z * , L - 2) , S(z*,&l) ; then S(z,e), S(Z,e-l),
S(zJ+l), S(F, t) ;then S(Z1,t-2), S(Z*,l-l), . . ., S(F,,,e-Z), ~(Z,,t--I) ; finally, S(Z,t+l). For
example, if l = 3, i = 1, and j = 2 construct a tree as in figure 3:

Fig.3. Example for = 3 , i = 1, j = 2

Because we have already introduced single-leaf trees for the species S(~,I), . . . ,
s(,,e-2) and s(T,:), . . . , S (Z , ~ - ~) , we observe that in any f?-phylogeny, the truth-
setting tree for variable z must have at most 2 connected components for each
of the states sx and s,. We will say that an e-phylogeny sets the satisfiabilicy
variable 5 to “true” if and only if the leaves s(,,e) and s(,,e+l) are in the same
connected component for state s,. If the variable x is set to “true” then the
leaf $(,,e-:) can be in a different connected component for state s, . Therefore,
for 1 5 h 5 i, state s,, can form a single connected component in the truth-
setting tree for x. Otherwise, state s,, must have two connected components in
the truth-setting tree for x. Similarly, if z is set to “false” then leaves s(T,l-1)
and s(Z,e) can be in the same connected component for state s~ and leaf s(Z,L+l)
can be in a different connected component. Therefore, for 1 5 h 5 j , state s~~
can form a single connected component in the truth-setting tree for x . Otherwise,
state sz, must have two connected components in the truth-setting tree for x.

Trees T N - ~ + ~ , . . . , T’ will be used for clause-checking. For each clause C =
xi V jij V zg in the satisfiability input we will construct a tree consisting of a chain
of 10 internal nodes. Each internal node will have one leaf, and the species at the

qzh>t,, ~ (~ ~ , e + :) , s(c,t+l). For example, if t = 3 , construct a tree as in figure 4:
leaves will be (in order): s(C,l-2), s(z,,l), S(sl,&l)l s(C,e-1)1 S(qj,,E)t s(qj,l+l), s(C,l),

Fig.4. Example for L = 3

Because we have already introduced single-leaf trees for the species s(c,1), . . . ,
s(c,l-3) , we observe that in any 1-phylogeny, the clause-checking component for
clause C inust have at most 3 connected components for the state s c . This
is possible if one of the literals in the clause has been set to “true” by the
truth checking component and not otherwise. The correctness of the reduction
follows. n

The input to the fixed-topology &phylogeny problem that is constructed
in the proof of Theorem 6 had two notable features. First, (because there are
only 1 + 1 species with each state), the input is guaranteed to have an f? + 1-
phylogeny. Second, the degree of the tree T is at most 3. Therefore, the fixed-
topology 1-phylogeny problem is NP-hard for fixed e > 2 even when the input
is guaranteed to have an e + 1-phylogeny and the degree of the topology is
restricted ito be at most 3.

4 The Restricted t-Phylogeny Problem

In this section we show thac there is a polynomial time algorithm for the re-
stricted :-phylogeny problem. We then show that the restricted !-phylogeny
problem .s NP-hard for fixed 4 >_ 2.

We start by describing the algorithm for solving the restricted 1-phylogeny
problem. Suppose that S, c1,. . . , ck is an input to the restricted 1-phylogeny
problem. If the input has a restricted 1-phylogeny, it has one in which each
species in S is the label of exactly one node (if not, combine branches).

We define the weight of an edge (211,212) in a phylogeny to be the number
of characters cj such that cj(v1) # cj(v2) . That is, the weight of (211,112) is
the number of characters on which the species labeling V I and 212 disagree. We
define the weight of a phylogeny to be the sum of the weights of its edges.

Let G denote the complete graph with vertex set S . We seek a spanning
tree T of G in which, for every character cj and every state i E R,,, the
set of vertices c,T1(i) form a connected component in T. Let the weight of an
edge (s, s') in G be the number of characters cj such that c j (s) # cj(s ') . It is
easy to see that a spanning tree of G is a 1-phyiogeny far the input if and o d y
if its weight is C~=l(~,, - 1). Therefore, the restricted 1-phylogeny problem
reduces to the minimum weight spanning tree problem, which can be solved in
polynomial time [13]. We have proved the following theorem

Theorem 7:
time.

The restricted I-phylogeny problem can be solved in polynomial

In the remainder of this section, we prove the following theorem.

Theorem 8:

Proof:
as follows:
INSTANCE: A (0,l)-matrix M .
QUESTION: Can the rows of M be permuted in such a way that for each
column in the resulting matrix, there are at most !? sequences of consecutive
ones.

The 4-consecutive ones problem is known to be solvable in polynomial time
for 4 = 1 [SI. However, it is NP-complete for fixed l > 1 [9].

Let i? be a positive integer that is greater than or equal to 2. Suppose that
we are given an input M to the 4-consecutive ones problem with n rows and
m columns. (We will assume that n >_ 3l.) We will show how to construct an
input s, c1,. . . , c,+(l_"l) to the restricted &-phylogeny problem such that the
phylogeny input has a restricted !?-phylogeny if and only if the rows of M can
be permuted in such a way that for each column in the resulting matrix there
are at most !? sequences of consecutive ones.

The restricted 4-phylogeny problem is NP-hard for fixed 4 2 2 .

The reduction is from the !-consecutive ones problem, which is defined

The phylogeny input is constructed as follows. Let M’ be a matrix derived
from M by replacing the zeroes in each column of M with integers in the range
2, ..., n + 1 in such a way that each column of M’ has at most one occurance of
each integer in the range 2, ..., n + 1 . The species set S wilt have n species -
one for each row of M‘ . For j in the range 1 5 j 5 m character c j will map the
species corresponding to row T to the entry in column j of row T of M’. We will
define the remaining (t!l) characters as follows. For j in the range 1,. . . , (e?1)
we will have Rcl+,,, = {0,1). We will let Sj denote the j th size- (L - 1) subset
of S and we will set C ~ + ~ (S) = 1 for s E Sj and cjtm(s) = 0 for s Sj .

-+ Suppose that T is a restricted 1-phylogeny for SI c1 , . . . , cm+(,, . Using
Fact 1, we can assume that each species in S is the label of exactly one node in T .
Let V = (711, . . . , ve-1) be any set of t - 1 vertices of T and let j be the integer
such that the species labeling the vertices in V correspond to the set Sj . Observe
that the graph obtained by removing the vertices in V from T has at most L
connected components (otherwise, the set of vertices CT;~(O) form more than 1
connected components in T , so T is not an t-phylogeny). We will show that
every node in T has degree at most 2. Suppose instead that T has a vertex, V I , of
degree greater than or ec/nal to 3. VVe will show that there are C - 2 other vertices,
v g , . . . , ~ - 1 such that the graph obtained by removing the vertices in V =
{VI , . . . ,wt- .1) from T has at least L + 1 connected components. This will be a
contradiction, so we will conclude that every node in T has degree at most 2. To
show that u z , . . . , ve-1 exist, note that the subgraph of T formed by removing
vertex VI has at least 3 connected components. Furthermore, if any subgraph T’
of T that is formed by removing up to t - 1 vertices has fewer than t f 1
connected components, it is possible to remove a vertex so as to increase the
number of connected componentst. Let v2 be a vertex such thst removing v2
from T - V I increases the number of connected components. Similarly, let v3

be a vertex such that removing 213 from T - (VI, w2} increases the number
of connected components. Continuing this process we identify 712, . . ~, ve-1. We
have now shown that T is a path. It follows that we can arrange the rows of M
in the order that the corresponding species occur on path T and that, in such
an arrangement, each column has at most t sequences of consecutive ones.

L- 1

+- Suppose that p = {pl ,...,pn} is a permutation of (1 ,..., n} such that
when the rows of M are permuted according to p each column has at most

sequences of consecutive ones. Let T be a path consisting of the species in S ,
arranged according to permutation p . Then T is a restricted 1-phylogeny for
s, c1 I . . . I cnz+(t_nl).

To see this, note that (since n 2 31) T’ has some connected component with
more than 2 vertices.

5 Two-Character Phylogeny

IG this section we show that for k = 2 the phylogenetic number problem can be
solved in polynomial time. We start by proving the following fact.

Fact 9: If a phylogeny input S , c1, e2 has an !-phylogeny then it has a re-
stricted t-phylogeny T in which each species in S is the label of exactly one
node and for each character j E {1,2} and each state i E R,, , a t most one
of the connected components in the subgraph of T induced by the set of ver-
tices cj-'(i) has more than one vertex.

Proof: Suppose that T' is a an !-phylogeny for S, c1, c2. We start by showing
that S , C ~ , C ~ has a restricted Q-phlogeny in which each species in S is the
label of exactly one node. We can assume that each species is the label of at
most one node of T' (if not, combine branches). Now, suppose that a species
s # S is the label of some node of T'. We can assume that this node, v , is
an internal node of T' (otherwise delete it). Let U1 be the set of neighbors u
of v such that ~ (u) = c ~ (v) . Let iJ2 be the the set of neighbors u of v such
that c2(u) = c ~ (v) . Note that U1 f l U2 = 0 since s is the only species that
can label a node in Ul n iJ2 and u is the only- qode with label J . Let iJ3 be
the set of neighbors of v that are not in or i J 2 . We can form a new Q-
phylogeny for S, c1, c2 by deleting node v , connecting the vertices in UI in a
path, connecting the vertices in iJ2 in a path, connecting the vertices in U3 in
a path, and connecting some node from UI to some node in iJ2 and some node
from U2 to some node from Us.

We have now shown that SI c1, c2 has a restricted Q-phylogeny in which each
species in S is the label of exactly one node. Let T be such an !-phylogeny.
Suppose that for character j E {1,2) a,nd state i E R,, , C and C' are two
non-singleton connected components in the subgraph of T induced by the set of
vertices cJT1(i). Let c E C and c' E C' be vertices such that the path connect-
ing c to c' in T does not include any other vertices in C or C'. (Note that c
and c' are uniquely defined.) For every neighbor v of c in C note that the path
between v and c' passes through vertex c. Remove the edge (v, c) from T and
add the edge (v, e'). Note that the resulting tree is an !-phylogeny for S, c1, c2.
(To see this, note that since the species labeling zi is different from the species
labeling c , the character other than character j disagrees on v and e .) n

In this section, we will represent the phylogeny input S, c1, c2 as a bipartite
graph. One set of vertices in the graph will be the set R,, and the other set of
vertices in the graph will be the set R,,. For i E R,, and j E R,, the edge
(i, j) will be present in the graph if and only if S contains a species s such that
c~(s) = i and ~ (s) = j . We will use the notation d (u) to denote the degree
of a vertex u in this graph. We will define a special t-coloring of the graph to
be a coloring of the edges with the colors white, blue, red, and purple such that
each vertex i in R,, has max(0, d (i) - t -+ 1) of its neighboring edges colored
either red or purple and the rest of its neighboring edges colored either white
or blue and each vertex j in R,, has max(0, d(j) - C + 1) of its neighboring

edges colored either blue or purple and the rest of its neighboring edges colored
either white or red. (Intuitively, think of ea,ch edge as starting out white. Then
each vertex i in R,, adds red color to msx(O, d (i) - e + 1) of its neighboring
edges and each vertex j in R,, adds blue color to max(0, d (j) - t + 1) of its
neighboring edges. Edges that get colored both red and blue in this process
become purple.) We will prove the following lemma.

Lemma 101:
corresponding bipartite graph has a special l-coloring with no purple cycle.

A phylogeny input S, e1 , c2 has an !-phylogeny if and only if the

Proof: First, suppose that the input S, c1, c2 has an !-phylogeny. By Fact 9
it has a restricted l-phylogeny T in which each species in S is the label of
exactly one node and for each character h E (1, 2) and each state i E R,, , at
most one of the connected components in the subgraph of T induced by the
set of vertices c i 1 (i) has more than one vertex. Construct a special l-coloring
as follows. For each vertex i E Re, let Ci be the largest connected component
in the subgraph of T induced by the set of vertices e;'(i). Arbitrarily choose
max(0, d (i) - l + 1) of the vertices in Ci and add red color to the corresponding
edges in the graph. For each vertex j E R,, let Cj be the largest connected
component in the subgraph of T induced by the set of vertices e;' (j) . Arbitrar-
ily choose rnax(0, d(j) - l + 1) of the vertices in Cj and add blue color to the
correspondifig edges in the graph. We will now argue that the special l-colored
graph has no purple cycle. Suppose instead that the special l-colored graph has a
purple cycle consistingof the edges (il,jl),(i2,j~),(i2,j2),.. . , (im, jm) , (i l , jm) .
Then, by construction, there is a path in T between the species (il, jl) and the
species (i 2 , jl) which is contained in Cj, . Similarly, there is a path in T be-
tween the species (i2,jl) and the species (i2,jz) which is contained in Cz2.
These paths intersect exxtly at the species (i2, jl) . Continuing in this manner,
we construct a cycle in T , which contradicts the fact that T is a phylogeny.

Next, suppose that the graph has a special t-coloring with no purple cycle.
Construct an l-phylogeny T as follows. Thk nodes of T are the species in S.
For each vertex i E E,, let Ci be the set of species in c;'(i) such that the
corresponding edges in the graph have red color. Add a path to T which traverses
the nodes in C; . All of the species on this path have the same state in character 1.
Also, these species correspond to red edges in the special e-coloring. For the
purpose of the proof, we will think of the corresponding nodes in the path as
having red color. For each vertex j E Re2 let Cj be the set of species in cz1(j)
such that the corresponding edges in the graph have blue color. Add a path to T
which traverses the nodes in Cj . All of the species on this path have the same
state in character 2. Also, these species correspond to blue edges in the special
t-coloring. For the purpose of the proof, we will think of the corresponding nodes
in the path i is having blue color. We will now argue that T has no cycle. Suppose
instead that, T has a cycle. Note by construction that every edge in the cycle
either fixes character 1 or fixes character 2 (but not both). For example, the

(21, yl),. . . , (zm, ym) be the sequence of nodes that we get when we traverse the
cycle might look like (~ 1 , ~ 1) , (~ 1 , ~ 2 ~ 1 (~ 1 , ~ 3) , (~ 2 , ~ 3) 1 (~ 2 1 ~ 4) ! (~ 2 1 ~ 5) , (~ l l ~ 5) ~ Let

nodes in the cycle in order, skipping any node such that the edge into the node
fixes the same character as the edge out of the node. (For the above example, we
get the sequence (iltj1),(i1,j3), (iz,j33), (iz,jj),(i~,jj)-) Each species (za,ya> is
colored purple in T , so each edge fza, ya) is colored purple in the graph. (To
see that species (zo,yu) is colored purple in T , note that it is part of a path
fixing the state of character 1 (hence, red color is added). It is also part of a
path fixing the state of character 2 (hence, blue color is added).) Finally, we
observe that the edges (xu, yo) form a cycle in the graph, which contradicts the
fact that the graph has no purple cycle. We conclude that T has no cycle. If T
is disconnected, we arbitrarily add edges making it into a tree.

We now present a polynomial-time algorithm that takes as input an integer t
and a bipartite graph G and determines whether G has a special !-coloring with
no purple cycle. The algorithm proceeds by considering a sequence of special e-
colored graphs Go, GI , . + .. Graph GO is an arbitrary special t-coloring of the
graph G. For t 2 1 , Gt is constructed by modifying the coloring in Gt-1. We
will use the notation €(Gt) to denote the set of edges that are contained in some
purple cycle in Gt . When the algorithm considers the graph Gt-1 it will either
produce a graph Gt such that E(Gt) c €(Gt-l) cx it will terminate with the
answer “no”. If the dgorithm ever produces a graph Gt such that €(Gtj = (i, it
will terminate with the answer “yes”.

We now show how to construct the graph Gt from Gt-1 (or to terminate
with the answer “no”). Fix an edge e E f(Gt-1). The procedure will consider a
sequence of special t-colored graphs Gj = Gt-1, G;, G;, For each graph Gi
in the sequence, e will be a member of €(G(i), For each graph Gj , let P(Gi) be
the graph that is obtained by considering all of the purple edges in Gi (and no
other edges) and let (Ue(G$), K(GS)) be the vertices of the connected compo-
nent in P(G(i) that contains e. Let Me(Gi) be the set of edges in the connected
component in P(G[i) that contains e . To transform G> into Gi+l the algorithm
may make one e-move in which it either selects a vertex u E Ue(Gj) and trans-
fers the red color from one edge adjacent to u to another edge adjacent, to u that
does not already have red color or the procedure selects a vertex v E T/e(Gi)
and transfers the blue color from one edge adjacent to v to another edge adja-
cent to v that does not already have blue color. The move is legal if and only if
€(G$+l) E E(G$). Such a move is called a jinishing move if E(G$+l) C I(G(i).
It is called an e-continuing move if it is not finishing, but IV,(G:+~) C Me(G>).
When it considers the special !-colored graph Gi , the algorithm checks every
possible e-move. If it finds a legal e-move, it constructs G(i+l by making this
move. If the move is finishing, then the procedure returns the graph Gt = Gi+l.
If the move is not finishing, but it is e-continuing, the procedure now considers
the graph G[,+l. (Note that in this case €(G$+l) = €(Gj) so e E f (G i) .) If
there are no legal e-moves that are finishing or e-continuing, the algorithm ter-
minates with the answer “no”. Note that at most IMe(GL)I continuing moves
can be made, so the procedure terminates in polynomial time.

The correctness of the algorithm follows from the following lemma.

Lemma 11: I f a bipartite graph G has a special !-coloring with no purple
cycle and 11 is a special !-coloring of G with e E €(H) then there is a legal
e-move from H that is either finishing or e-continuing.

Proof: Let G, be the subgraph of G induced by U e (H) U Ve(H) and let S,
denote the set of edges in G, . We wish to compute an upper bound for IS,l. To
do so, let d'(w) denote the degree of vertex w in graph G, . Since G has a special
!-coloring with no purple cycle, G, has a special 1-coloring with no purple cycle.
Let Hk be such a special 1-coloring of G, . The number of edges with red color
added in Hl is at least CuEUe(H)(d'(~) - 1 + 1). The number of edges with blue
color added, is at least CwEve(H)(d'(v) - 1 + 1) . The number of purple edges
(which have both red color and blue color) is at most IUe(H)I + [Vf(H)I - 1.
Hence,

l S e l 2 r; (d'(u) - e + 1) + (d'(v) - e + 1) - (IUe(H>I + IVe(H>I - 1)
uEUe(H) V€V. (H)

and therefore Isel < !(IUe(H)I + IVe(H)I)-
Now consider H . Let SI be khe set of edges that are adjacent to vertices in Ue

and do not lhave red color. Let S2 be the set of edges that are adjacen.t to vertices
in V, and do not have blue color. Suppose that some edge e' is in 5'1 n S2. Let e''
be a purple edge that is adjacent to e'. Clearly, the e-move that transfers color
from e" to e' is legal. Suppose that it is not finishing and let H' be the graph
obtained from H by making this move. Then Me(H') C M . (H) - {e"}. Hence,
the move is e-continuing.

Suppose instead that SI n S2 = 8. Every vertex w E Ue(H) U & (H)
has d(w) 1: &. (If d(w) < & then w will not add color to its neighbor-
ing edges iia any special e-coloring of G so w will not be in the connected
component containing e in P(H) .) Therefore lSll 2 CuEU,(H)(l - 1) and
IS21 2 C,Fv,(H)(l - 1). Let S3 be the set of purple edges with endpoints
in Cre(H) uke(H). Note that IS31 2 {Uel + IF/,!. S, is disjoint frcm SI and S2
so IS1 U S2 U 2 l(lUe(H)I + IV,(H)I). We conclude that some edge in SI
or 5'2 must have an endpoint outside of G, .

Without loss of generality, assume that there is an edge e' E SI that has
endpoint u E U e (H) and its other endpoint, w , outside of V,(H]. There are
two cases. Suppose that u is contained in a purple cycle in H . Let (u, w) be
an edge in such a cycle. Consider the e-move that transfers color from (u,w)
to e'. This move is legal. (Since w is not in Ve(H) no purple cycles are created
by the move.) Let H' be the graph obtained from H by making this move.
€ (H ') C € (H) - {(u, w)}, so the move is finishing. Suppose instead that u is
not contained in a purple cycle in H . Let (u, w) be the first edge on the unique
path from u to e in P (H) . Consider the legal e-move that transfers color
from (u ,w) to e'. Suppose that it is not finishing and let H' be the graph
obtained from H by making this move. Then M,(H') C M,(H) - { (u , ~) } .
Hence, the move is e-continuing.

In Lemma 10 we showed that a phylogeny input S, c1, c2 has an C-phylogeny
if and only if the corresponding bipartite graph has a special C-coloring with
no purple cycle. We then described a polynomial time algorithm that takes as
input an integer C aad a bipartite graph G and determines whether G has a
special C-coloring with no purple cycle. Eience, we have shown that there is a
polynomial time algorithm that takes input C and a phylogeny input S, c I i c2
and determines whether the phylogeny input has an C-phylogeny. (In fact, our
algorithm constructs an E-phylogeny if one exists.) Using binary search (or even
linear search) on e we obtain a polynomial-time algorithm that takes as input a
phylogeny input S, c1, c2 and determines the phylogenetic number of the input.
Hence, we have proved the following theorem.

Theorem 12:
time for rE = 2.

The phyiogenetic number problem can be solved in polynomial

Unfortunately, Fact 9 no longer holds if we add a third character CQ . Hence,
our approach does not solve the phylogenetic number problem (or even the e-
phylogeny problem) for fixed k > 3. (To see that Fact 9 does not hold for k > 2 ,
consider the 3-species 3-character input (100,010,001). One can construct a
1-phylogeny for this input by attaching each species to the new species 030.
However, the input does not have a restricted 1-phylogeny.)

6 Phylogeny With a Fixed Number of States

In subsection 6.1 we show that the fixed-topology phylogenetic number problem
can be solved in polynomial time for fixed r . On a related note, we show that
if Y is fixed, there is a polynomial-delay algorithm for listing fixed-topology 1-
phylogenies. In subsection 6.2 we show that for fixed r 2 2 and fixed e 2 3
the restricted [-phylogeny problem is NP-hard. (This result follows from a more
general result. Namelyi we show that the restricted (el, t2)-phylogeny problem is
IW-hard for fixed Cl 2 2 and e2 2 2 as loag as one of [I, is greater than 2.)

6.1 Fixed-Topology Phylogeny with a Fixed Number of States

In this subsection we prove the following theorem.

Theorem 13:
in polynomial time for fixed r .

The fixed-topology phylogenetic number problem can be solved

It suffices to consider each character independently. We are given an input
tree T with each of its n leaves labeled by a state in the range (1,. .
We wish to label the internal nodes of T to construct a phylogeny with the
smallest possible phylogenetic number. We root the tree at an arbitrary node,
constructing the child and parent pointers. The choice of root will not affect the
phylogenetic number of the tree.

For a given character, this problem can be solved by a two-pass algorithm:
ofice up the tree and once down. In the upward phase, for each node v , and for
each vector in the set

we construct, if possible, a labeling of the nodes in the subtree rooted at v such
that v is labeled with state i and, in the subtree rooted at v , the subgraph
induced by nodes labeled j has exactly ! j connected components. We call such
a labeling a configuration of the subtree rooted at v , or a configuration of v for
short. If there are no leaves in this subtree labeled j for some j E { 1,. . . , r } ,
then we have tj = 0 for all configurations (there are no connected components
labeled j in the subtree rooted at v) .

There axe O(rnp) possible configurations for the subtree rooted at any node,
with one possible configuration for each leaf. Once the possible configurations
have been constructed for the children of a node, we can construct the possi-
ble configurations for the parent by combining configurations of the children
incrementally. Consider the first two children V I and 02 of parent node v . For
each pairing of a configuration for VI with a configuration for v2 , we construct
r configurations fcr the subtree consisting of parent node v and the snbtrees
rooted at children v1 and 212, one configuration for each possible labeling of
the parent v . If node v is labeled i, and the configurations of V I and v2 are
represented by the vectors (i l l 111, t 1 2 , . . . , t~,> and (i2, t21 , l 2 2 , . . . , 12,) respec-
tively, then the resulting configuration is (i, t,, t,, . . . , t,) where t j = t1j + t 2 j

for all j # i, and ti = t1i + t 2 i + 1 - m , where m E (0,1,2) is the number of
children (considering only v1 and v 2) which are labeled i. That is, the number
of components of state j is the sum of the number of components in each child
for most states. The only state that can differ is the state with which node v is
labeled (i). In this case, if neither VI nor v2 is labeled i, then we create a new
component of state i (the node v) in addition to the components present in the
children. If exactly one child is labeled i, then the label of node v becomes part
of that component. If both VI and v2 are labeled i, then one component of state
i from each child can merge through node v , and the number of components in
the combination is one fewer than the sum.

Whenever a new possible configuration is achieved through a combination of
configurations in the two children, it is recorded along with pointers to the con-
figurations of v1 and v2 that achieve this phylogenetic configuration. Although
there are rEn2r ways to pair up the configurations of two children, there can be
at most rnr configurations for the parent. If a configuration is achieved multiple
ways, we only remember one way.

After computing the O(rn') configurations for the subtree consisting of
node v with the subtrees rooted at v1 and v2 (call this tree T') , we now
add child v3. The compuation is almost the same as before. Let possible con-
figurations for T' and the subtree rooted at v3 be represented by vectors
(i, ti, ti, . . . , l i) and (j , 131 , 432, . . . , &,.) respectively. Then the combined con-
figuration is (i, e,, &, . . . , &) where & = t i + f?3k for all k , unless i = j . In

this case, we have 1, = ti + l ~ i - 1 because one component of state i from
the subtree rooted at 213 can connect to components of state i from the other
children through the parent v.

Each child of node v is added in this way untii we have computed the O(rnr)
possible configurations for the entire subtree rooted at node v . We continue up
the tree until we have computed all possible configurations for the root. This
computation takes O(r2n2"+') time. We then pick a possible configuration with
the minimum phylogenetic number and go down the tree generating labels by
following the pointers to the subconfigurations that achieve the optimal config-
uration.

The above algorithm makes it clear that if r is fixed, there is a polynornial-
delay algorithm for listing fixed-topology e-phylogenies.

6.2 Restricted Phylogeny wi th a Fixed Number of States

In this subsection we show that for fixed r 2 2 and fixed e 2 3 the restricted
e-phylogeny problem is NP-hard.

We start by proving the followhg mare general theorem.

Theorem 14:
!I 2 2 and t2 2 2 as long as one of e,, e2 is greater than 2.

The restricted (el, e,) -phylogeny probiem is NP-hard far fixed

Proof: Without loss of generality, assume that e1 2 (2. The reduction is from
the 2-consecutive ones problem.

Let M be the matrix in the input to the 2-consecutive ones problem. Let n'
denote the number of rows of M and rn denote the number of columns of M .
(We will assume that 71' 2 3&.) We will show how to construct an inpus to
the restricted (!I, C2j-phylogeny problem such that the phylogeny input has a
restricted (!,,&)-phylogeny if and only if the rows of M can be permuted in
such a way that for each column in the resulting matrix there are at most 2
sequences of consecutive ones.

.

The phylogeny input is constructed as follows. Let M' be a matrix derived
from M by adding 2(!2 - 2) rows to the bottom of M . The entries in the
(n' + i)th row are equal to 0 for odd i > 0 and are equal to one for even
i > 0 . Let n denote n' + 2(& - 2). Note that M' has n rows. The species set
S = {SI,. . . , sn} will have n species. Species s i will correspond to row i of M' .
Let 61 denote G,"-). Let k2 denote (,,.Il). Let k 3 denote max(0, n - n' - 1) .
Let k denote m + kl + k2 + k2k3. The input to the phylogeny problem will be
S, c1, . . . , c k . The characters c1, . . ., ck will be defined as follows:
1. (Characters that describe M ') For j in the range 1 5 j 5 m character c j

will map species si to the entry in column j of row i of M'.
2. (Characters that make every phylogeny a path) For j in the range 1 5 j 5

k1 let Si denote the j th size-(& - 1) subset of S. We set cm+j(s) = 0 for
s E Sj and cm+j(s) = 1 for s 6 Sj .

3. (Characters that place sn at one end of the path) For j in the range 1 5
j 5 k2 let 5’; denote the j t h size-(tz - 1) subset of (SI,. . . , sn f) . We set
c,+~,+~(s) = 0 for s E S: and c ~ + ~ ~ + ~ (s ~) = 0 and c ~ + ~ , + ~ (s) = 1 for
every other species s.

4. (Characters that place snl+l,. . . , sn consecutively at the end of the path)
For j in the range 1 5 j 5 k.2 and i in the range I 5 i 5 k3 let mr
denote m + k l + kz + (i - l)k2 + j . We set cmt(sr) = 0 for Sr E Si and
cml(sr) = 1 for sp E {SI,. . ., sn,} - Sj . Furthermore, we set cm~(snl+1) =

-+ Suppose that T is a restricted (el, fa)-phylogeny for s, c1, . . . , ck . Using
Fact 1, we can assume that each species in S is the label of exactly one node in T.
Following the proof of Theorem 8, we can show that every node in T has degree
at most 2. That is, T is a path. If n = nr (i.e., fa = 2) then it follows that we
can arrange the rows of M in the order that the species occur in path T and
that, in such an arrangement, each column has at most 2 sequences of consecutive
ones. Suppose instead that n > n! . We will now show that the node labeled s,
has degree L. Suppose instead that it has degree 2. We argue as in the proof of
Theorem 8 that there is a size-(Ea - 1) set 27’ C_ (SI,. . . , sn1) such that if sn
and the species in SI are removed from T , the resulting subgraph has at least
1 2 + 1 connected components. Let j be the integer such that Sr = 5’;. Then
the set of vertices czykl+j(l) form more than f z connected components in T,
which is a contradiction. We conclude that the node labeled s, is an endpoint
of the path. For i in the range 1 5 i 5 ks we will now argue that the node
labeled s,-; is adjacent to a node with a label in {s,+i+~, . . . , s,} . Suppose that
this is not the case. We argue as in the proof of Theorem 8 that there is a size-
(12 - 1) set s’ {SI,. . . ,sn)} such that if the species in s’ U {sn-i , . . .,s,}
are removed from T then the resulting subgraph has at least & + I connected
components. Let j be the integer such that SI = 5’’. Then the set of vertices

is a contradiction. We conclude that T is a path consisting of the species in
(SI,. . . , s,~) (in some order) followed by s,I+l,. . . , s,. It follows that we can
arrange the rows of M in the order that the species occur in path T and that, in
such an arrangement, each column has at most 2 sequences of consecutive ones,

t Suppose that p = {PI, ...,p’,) is a permutation of {l, ..., d } such that
when the rows of M are permuted according to p each column has at most
2 sequences of consecutive ones. If fz = 2 then let T be the path consist-
ing of the species in (SI,. . . , s,~}, arranged according to p . T is a restricted
(3,2)-phylogeny for s, c1, . . . , ck. Hence, T is a restricted ((1, &)-phylogeny
for S, c1, . . . , ck . Suppose instead that fa > 2. Let T be a path consisting of
the species i~n {SI, . . . , s,)}, arranged according to permutation p , followed by
snt+1,.. ., s,. Then T is a restricted (&,4)-phylogeny for S, c1,. . . , Ck. Hence,
T is a restricted (e~,&z)-phylogeny for S, c1,. . . , Ck. o

Note that Theorem 14 has the following corollary.

... = cm~(sn--i-l) = 1 and we set cm/(sn-i) = = C,l(S,) = 0 .

~ ~ + ~ ~ + ~ ~ + (~ - ~) ~ ~ + ~ (l) -1 form more than f, connected components in T , which

. t
) I -

Corollary 15:
problem is NP-hard.

For fixed r 2 2 and fixed t > 3 the restricted L'-phylogeny

7 Conclusions

In this section we present some open problems. There are several restrictions
of the parameters which yield problems for which the complexity is still open.
Recall that k is the number of characters, r is the maximum number of states
for any character, and 1 is the phylogenetic number. It is unknown whether
the following restricted versions of the 1-phylogeny problem can be solved by
polynomial-time algorithms:

1.

3.

3.

Finding an 1-phylogeny where the number k of characters is a constant
greater than 2 (for C > l),

Finding an 1-phylogeny where the number r of states per character is a
const ant.

For the case where r = 2, determining whether an input has a (1,2)-
phylogeny or a (2,2) phylogeny. Recall that for r = 2, the problem of
finding a (1, 1)-phylogeny is in P, but finding a (2,3)-phylogeny is N P -
complete.

This paper also leaves open the problems of randomly generating phylogenies
with constraints upon their phylogenetic number and approximation algorithms
for the NP-complete versions of the !-phylogeny problem. In particular, suppose
that there exists a perfect phylogeny. For what L can we find an 1-phylogeny in
polynomial time (with l possibly a function of k and r)?

8 Acknowledgements

The work of Leslie Ann Goldberg, Paul Goldberg and Cynthia Phillips was sup-
ported by the U.S. Department of Energy under contract DEAC0476AL85000.
Elizabeth Sweedyk was supported by the California Legislative Grant. The work
of Tandy Warnow was supported by a National Science Foundation Young In-
vestigator Award under contract CCR-9457800, and by the U.S. Department of
Energy under contract DEAC04-76AL85000.

References

1. R. Agarwala and D. Fzrnandez-Baca, “Fast and Simple Algorithms €or Per€ect
Phylogeny and Triangulating Coiored Graphs”, DIMACS TR#94-51, 1994.

2. R. Agarwala, D. Fernbndez-Baca, “A Polynomial-Time Algorithm for the Perfect
Phylogeny Problem when the Number of Character States is Fixed”, procs. of the
34th annual Symposium on Foundations of Computer Science, 1993.

3. H. Bodlaender, M. Fellows, T. Warnow, “Two Strikes Against Perfect Phylogeny”,
procs. of the 19th InternationaE Congress on Automata, Languages and Program-
ming (ICA LP), pp. 273-287, Springer-Verlag Lecture Notes in Computer Science,
1992.

4. W.H.E. Day, “Computationally difficult parsimony problems in phylogenetic sys-
tematics,” Journal of theoretical biology, 103: 429-438.

5 . W.H.E. Day and D. Sankoff, “Computational complexity of inferring phylogenies
by compatibility”, Systematic Zoology, 35(2): 224-229, 1986.

7. Wm. Fitch, “Toward defining the course of evolution: minimum change for a spec-
ified tree topology”, Syst. Zool., 20:406-416, 1971.

8. D.R. Fulkerson, D.A. Gross, “Incidence matrices and interval graphs”, Pacific
a. Math., 15 (3) , 1965.

9. P.W. Gddberg, M.C. Golumbic, H. Kaplan, R. Shamir, “Four Strikes Against
Physical Mapping of DNA”, Tech. Rept. 287/93, Tel Aviv University, 1993.

10. S. Kannan and T. Warnow, “Inferring Evolutionary History from DNA Se-
quences”, SIAM J . on Computing, Vol. 23, No. 4, August 1994.

11. S. Kannan and T. Warnow, “A fast algorithm for the computation and enumera-
tion of perfect phylogenies”, to appear, ACM/SIAM Symposium on Discrete Algo-
rithms, ‘1995.

12. F.R. McMorris, T. Warnow, T. Wimer, “Triangulating Colored Graphs”, SIAM J.
on Discrete Mathematics, Vol. 7, No. 2, pp. 296-306, 1994.

13. R.C. Prim, ‘Shortest Connection Networks and Some Generahations”, Bell Sys-
tem Tech. J., 36 1389-1401, 1957.

14. M.A. Steel, “The complexity of reconstructing trees from qualitative characters
and subtrees”, Journal of CIassification, 9 91-116, 1992.

15. T. Warnow, “Efficient Algorithms for The Character Compatibility Problem”, New
Zealand Journal of Botany, Vol. 31, (1993), pp. 239-248.

This article was processed by the author using the QX macro package from Springer-
Verlag.

