Dietary Polyphenols Remodel DNA Methylation Patterns of NRF2 in Chronic Disease
<p>Genetic and epigenetic regulation of NRF2. Genetic regulation of NRF2 is achieved by the interaction of various transcriptional, post-transcriptional, and translation regulations, including inhibiting Keap1-mediated ubiquitination, NRF2 promoter binding by counteract molecules such as NF-kB, AhR receptor binding, and by sMafs, wherein epigenetic regulation of NRF2 involves the action of DNMTs, HDACs, and HATS, potent epigenetic markers.</p> "> Figure 2
<p>Linear graphical map of NRF2 promoter region. The human NRF2 gene is located in chromosome 2 at cytogenic band 2q31.2 spanning 178,095,031 bp to 178,129,859 bp. NRF2 has 2 promoter regions where promoter 1 has a length of 1461 bp and promoter 2 a length of 620 bp. The only region to study DNA methylation CpG island encompassing the transcriptions’ start site serves as the potential target in epigenetics. CpG island 1 of the NRF2 promoter spans around 314 bp, and CpG island 2 spans around 167 bp, which are potent targets in unraveling DNA methylation, an epigenetic target.</p> "> Figure 3
<p>Schematic overview of the role of DNA methylation in NRF2 transcription. DNA methyltransferase (DNMT) enzymes add methyl groups of the CpG islands in the promoter region of NRF2. The hypermethylation of the CpG islands inhibits the binding of the transcription factor(s) to the DNA, which transcriptionally represses the NRF2 gene. By demethylating the promoter, transcription factors bind to the NRF2 sequence and initiate transcription, thereby increasing the NRF2 expression levels.</p> "> Figure 4
<p>The activity of dietary polyphenols on NRF2 and its downstream targets. The expression of DNA methyltransferase variants DNMT1 and DNMT3a is inhibited by SFN, Del, FX, TAX, DIM, CRA, Res, γ-TmT, UA, TIIA, LUT, PGN, and RPN, whereas the variant DNMT3b is inhibited by SFN, TAX, DIM, API, CRA, Res, γ-TmT, TIIA, and LUT. Inhibition of DNMTs prevents the methylation of NRF2, thereby increasing its expression, and under conditions of excessive ROSs, NRF2 translocates into the nucleus to initiate the transcription of its downstream targets such as HO-1, NQO-1, and SOD, which combat oxidative stress. White circle indicates the non-methylated cytosine. Black circles indicates methylated cytosine.</p> ">
Abstract
:1. Introduction
2. Structure and Regulation of NRF2
2.1. Genetic Regulation of NRF2
2.1.1. Transcriptional Level Regulation of NRF2
2.1.2. Post-Transcriptional Regulation of NRF2
2.1.3. Translational Level of the Regulation of NRF2
2.2. Epigenetic Regulation of NRF2
DNA Methylation and NRF2
3. Role of NRF2 in Diseases
4. Role of Dietary Polyphenols in Epigenetic Modulation
5. DNA Hypomethylation of NRF2 by Phytochemicals
5.1. Sulforaphane
5.2. Reserpine
5.3. Fucoxanthin
5.4. Luteolin
5.5. Pelargonidin
5.6. Tanshinone IIA
5.7. Delphinidin
5.8. Ursolic Acid
5.9. γ-TmT
5.10. Resveratrol
5.11. Curcumin
5.12. Z-Ligustilide
5.13. Corosolic Acid
5.14. Apigenin
5.15. 3,3′-Diindolylmethane
5.16. Taxifolin
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Rushmore, T.H.; Kong, A.N. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr. Drug Metab. 2002, 3, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Durackova, Z. Some current insights into oxidative stress. Physiol. Res. 2010, 59, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Poyton, R.O.; Ball, K.A.; Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. TEM 2009, 20, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Schuller Levis, G.B.; Lee, E.B.; Levis, W.R.; Lee, D.W.; Kim, B.S.; Park, S.Y.; Park, E. Platycodin D and D3 isolated from the root of Platycodon grandiflorum modulate the production of nitric oxide and secretion of TNF-alpha in activated RAW 264.7 cells. Int. Immunopharmacol. 2004, 4, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Kehrer, J.P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef]
- David, J.A.; Rifkin, W.J.; Rabbani, P.S.; Ceradini, D.J. The NRF2/Keap1/ARE Pathway and Oxidative Stress as a Therapeutic Target in Type II Diabetes Mellitus. J. Diabetes Res. 2017, 2017, 4826724. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Shen, L.J.; Zhao, T.X.; Sun, M.; Wang, J.K.; Long, C.L.; He, D.W.; Lin, T.; Wu, S.D.; Wei, G.H. Automobile exhaust-derived PM2.5 induces blood-testis barrier damage through ROS-MAPK-NRF2 pathway in sertoli cells of rats. Ecotoxicol. Environ. Saf. 2020, 189, 110053. [Google Scholar] [CrossRef]
- Slocum, S.L.; Kensler, T.W. NRF2, control of sensitivity to carcinogens. Arch. Toxicol. 2011, 85, 273–284. [Google Scholar] [CrossRef]
- Wasik, U.; Milkiewicz, M.; Kempinska-Podhorodecka, A.; Milkiewicz, P. Protection against oxidative stress mediated by the NRF2/Keap1 axis is impaired in Primary Biliary Cholangitis. Sci. Rep. 2017, 7, 44769. [Google Scholar] [CrossRef] [Green Version]
- Takaya, K.; Suzuki, T.; Motohashi, H.; Onodera, K.; Satomi, S.; Kensler, T.W.; Yamamoto, M. Validation of the multiple sensor mechanism of the Keap1-NRF2 system. Free Radic. Biol. Med. 2012, 53, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-NRF2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Miao, W.; Hu, L.; Scrivens, P.J.; Batist, G. Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: Direct cross-talk between phase I and II drug-metabolizing enzymes. J. Biol. Chem. 2005, 280, 20340–20348. [Google Scholar] [CrossRef] [Green Version]
- Rushworth, S.A.; Zaitseva, L.; Murray, M.Y.; Shah, N.M.; Bowles, K.M.; MacEwan, D.J. The high NRF2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood 2012, 120, 5188–5198. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.H.; Qu, J.; Shen, X. NF-kappaB/p65 antagonizes NRF2-ARE pathway by depriving CBP from NRF2 and facilitating recruitment of HDAC3 to MafK. Biochim. Biophys. Acta 2008, 1783, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Park, J.S.; Lee, Y.S.; Sung, S.H.; Lee, Y.H.; Bae, S.H. The hypertension drug, verapamil, activates NRF2 by promoting p62-dependent autophagic Keap1 degradation and prevents acetaminophen-induced cytotoxicity. BMB Rep. 2017, 50, 91–96. [Google Scholar] [CrossRef]
- Gorrini, C.; Baniasadi, P.S.; Harris, I.S.; Silvester, J.; Inoue, S.; Snow, B.; Joshi, P.A.; Wakeham, A.; Molyneux, S.D.; Martin, B.; et al. BRCA1 interacts with NRF2 to regulate antioxidant signaling and cell survival. J. Exp. Med. 2013, 210, 1529–1544. [Google Scholar] [CrossRef]
- Huang, H.C.; Nguyen, T.; Pickett, C.B. Phosphorylation of NRF2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J. Biol. Chem. 2002, 277, 42769–42774. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, S.F. Mechanisms for redox-regulation of protein kinase C. Front. Pharmacol. 2015, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, K.; Kataoka, K.; Itoh, K.; Hayashi, N.; Nishizawa, M.; Yamamoto, M. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 1994, 367, 568–572. [Google Scholar] [CrossRef]
- Katsuoka, F.; Yamamoto, M. Small Maf proteins (MafF, MafG, MafK): History, structure and function. Gene 2016, 586, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by NRF2. Antioxid. Redox Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, L.; Xie, J.; Song, C.; Liu, J.; Zheng, J.; Liu, C.; Zhang, X.; Li, P.; Wang, F. The Activation of NRF2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells. Evid. -Based Complement. Altern. Med. Ecam 2015, 2015, 187265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hur, W.; Gray, N.S. Small molecule modulators of antioxidant response pathway. Curr. Opin. Chem. Biol. 2011, 15, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Poganik, J.R.; Long, M.J.C.; Disare, M.T.; Liu, X.; Chang, S.-H.; Hla, T.; Aye, Y. Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J. 2019, 33, 14636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangokoya, C.; Telen, M.J.; Chi, J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010, 116, 4338–4348. [Google Scholar] [CrossRef] [Green Version]
- Narasimhan, M.; Patel, D.; Vedpathak, D.; Rathinam, M.; Henderson, G.; Mahimainathan, L. Identification of novel microRNAs in post-transcriptional control of NRF2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS ONE 2012, 7, e51111. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yao, Y.; Eades, G.; Zhang, Y.; Zhou, Q. MiR-28 regulates NRF2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 2011, 129, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Devling, T.W.; Lindsay, C.D.; McLellan, L.I.; McMahon, M.; Hayes, J.D. Utility of siRNA against Keap1 as a strategy to stimulate a cancer chemopreventive phenotype. Proc. Natl. Acad. Sci. USA 2005, 102, 7280–7285A. [Google Scholar] [CrossRef]
- Kim, P.K.; Hailey, D.W.; Mullen, R.T.; Lippincott-Schwartz, J. Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 2008, 105, 20567–20574. [Google Scholar] [CrossRef]
- Copple, I.M.; Lister, A.; Obeng, A.D.; Kitteringham, N.R.; Jenkins, R.E.; Layfield, R.; Foster, B.J.; Goldring, C.E.; Park, B.K. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-NRF2 cell defense pathway. J. Biol. Chem. 2010, 285, 16782–16788. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, M.; Kurokawa, H.; Waguri, S.; Taguchi, K.; Kobayashi, A.; Ichimura, Y.; Sou, Y.S.; Ueno, I.; Sakamoto, A.; Tong, K.I.; et al. The selective autophagy substrate p62 activates the stress responsive transcription factor NRF2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12, 213–223. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Dashwood, R.H. Epigenetic Regulation of NRF2/KEAP1 by Phytochemicals. Antioxidants 2020, 9, 865. [Google Scholar] [CrossRef]
- Banerjee, S.; Wei, X.; Xie, H. Recursive Motif Analyses Identify Brain Epigenetic Transcription Regulatory Modules. Comput. Struct. Biotechnol. J. 2019, 17, 507–515. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, S.; Zhang, C.; Kong, A.N. Epigenetic regulation of Keap1-NRF2 signaling. Free Radic. Biol. Med. 2015, 88 (Pt B), 337–349. [Google Scholar] [CrossRef] [Green Version]
- Khor, T.O.; Fuentes, F.; Shu, L.; Paredes-Gonzalez, X.; Yang, A.Y.; Liu, Y.; Smiraglia, D.J.; Yegnasubramanian, S.; Nelson, W.G.; Kong, A.N. Epigenetic DNA methylation of antioxidative stress regulator NRF2 in human prostate cancer. Cancer Prev. Res. 2014, 7, 1186–1197. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Zhang, J.; Chang, N. Epigenetic modification of NRF2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer’s disease. Eur. J. Pharmacol. 2018, 824, 1–10. [Google Scholar] [CrossRef]
- Kuang, H.; Tang, Z.; Zhang, C.; Wang, Z.; Li, W.; Yang, C.; Wang, Q.; Yang, B.; Kong, A.N. Taxifolin Activates the NRF2 Antioxidative Stress Pathway in Mouse Skin Epidermal JB6 P+ Cells through Epigenetic Modifications. Int. J. Mol. Sci. 2017, 18, 1546. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.Y.; Shu, L.; Khor, T.O.; Lee, J.H.; Fuentes, F.; Kong, A.N. A perspective on dietary phytochemicals and cancer chemoprevention: Oxidative stress, NRF2, and epigenomics. Top. Curr. Chem. 2013, 329, 133–162. [Google Scholar]
- Mai, A.; Altucci, L. Epi-drugs to fight cancer: From chemistry to cancer treatment, the road ahead. Int. J. Biochem. Cell Biol. 2009, 41, 199–213. [Google Scholar] [CrossRef]
- Yates, M.S.; Kensler, T.W. Chemopreventive promise of targeting the NRF2 pathway. Drug News Perspect. 2007, 20, 109–117. [Google Scholar] [CrossRef]
- Sigalotti, L.; Fratta, E.; Coral, S.; Cortini, E.; Covre, A.; Nicolay, H.J.; Anzalone, L.; Pezzani, L.; Di Giacomo, A.M.; Fonsatti, E.; et al. Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. J. Cell. Physiol. 2007, 212, 330–344. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.; de la Vega, M.R.; Cholanians, A.B.; Schmidlin, C.J.; Chapman, E.; Zhang, D.D. Modulating NRF2 in Disease: Timing Is Everything. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Satta, S.; Mahmoud, A.M.; Wilkinson, F.L.; Yvonne Alexander, M.; White, S.J. The Role of NRF2 in Cardiovascular Function and Disease. Oxid. Med. Cell. Longev. 2017, 2017, 9237263. [Google Scholar] [CrossRef] [PubMed]
- Sandoo, A.; van Zanten, J.J.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.J.; Wu, Z.Y.; Nie, X.W.; Bian, J.S. Role of Endothelial Dysfunction in Cardiovascular Diseases: The Link Between Inflammation and Hydrogen Sulfide. Front. Pharmacol. 2019, 10, 1568. [Google Scholar] [CrossRef] [Green Version]
- Naresh Amin, K.; Rajagru, P.; Sarkar, K.; Ganesh, M.R.; Suzuki, T.; Ali, D.; Kunka Mohanram, R. Pharmacological Activation of NRF2 by Rosolic Acid Attenuates Endoplasmic Reticulum Stress in Endothelial Cells. Oxid. Med. Cell. Longev. 2021, 2021, 2732435. [Google Scholar] [CrossRef]
- Amin, K.N.; Palanisamy, R.; Sarada, D.V.L.; Ali, D.; Suzuki, T.; Ramkumar, K.M. Effect of Rosolic acid on endothelial dysfunction under ER stress in pancreatic microenvironment. Free Radic. Res. 2021, 55, 698–713. [Google Scholar] [CrossRef]
- Rubio-Navarro, A.; Vazquez-Carballo, C.; Guerrero-Hue, M.; Garcia-Caballero, C.; Herencia, C.; Gutierrez, E.; Yuste, C.; Sevillano, A.; Praga, M.; Egea, J.; et al. NRF2 Plays a Protective Role against Intravascular Hemolysis-Mediated Acute Kidney Injury. Front. Pharmacol. 2019, 10, 740. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Buttari, B.; Panieri, E.; Profumo, E.; Saso, L. An Overview of NRF2 Signaling Pathway and Its Role in Inflammation. Molecules 2020, 25, 5474. [Google Scholar] [CrossRef]
- Egea, J.; Gonzalez-Rodriguez, A.; Gomez-Guerrero, C.; Moreno, J.A. Editorial: Role of NRF2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches. Front. Pharmacol. 2019, 10, 1149. [Google Scholar] [CrossRef]
- Luo, J.F.; Shen, X.Y.; Lio, C.K.; Dai, Y.; Cheng, C.S.; Liu, J.X.; Yao, Y.D.; Yu, Y.; Xie, Y.; Luo, P.; et al. Activation of NRF2/HO-1 Pathway by Nardochinoid C Inhibits Inflammation and Oxidative Stress in Lipopolysaccharide-Stimulated Macrophages. Front. Pharmacol. 2018, 9, 911. [Google Scholar] [CrossRef] [Green Version]
- Victor, P.; Sarada, D.; Ramkumar, K.M. Pharmacological activation of NRF2 promotes wound healing. Eur. J. Pharmacol. 2020, 886, 173395. [Google Scholar] [CrossRef]
- Ganesh, G.V.; Ramkumar, K.M. Dysregulation of NRF2 redox pathway in macrophages under diabetic microenvironment. Exp. Gerontol. 2021, 152, 111479. [Google Scholar] [CrossRef]
- Ganesh, V.G.; Ramkumar, K.M. Pterostilbene attenuates hemin-induced dysregulation of macrophage M2 polarization via NRF2 activation in experimental hyperglycemia. Inflammopharmacology 2023, 31, 2133–2145. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar]
- Galicia-Moreno, M.; Lucano-Landeros, S.; Monroy-Ramirez, H.C.; Silva-Gomez, J.; Gutierrez-Cuevas, J.; Santos, A.; Armendariz-Borunda, J. Roles of NRF2 in Liver Diseases: Molecular, Pharmacological, and Epigenetic Aspects. Antioxidants 2020, 9, 980. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.; Song, F.; Li, S.; Yuan, Y. Tanshinol ameliorates CCl(4)-induced liver fibrosis in rats through the regulation of NRF2/HO-1 and NF-kappaB/IkappaBalpha signaling pathway. Drug Des. Dev. Ther. 2018, 12, 1281–1292. [Google Scholar] [CrossRef] [Green Version]
- Long, D.J., 2nd; Waikel, R.L.; Wang, X.J.; Perlaky, L.; Roop, D.R.; Jaiswal, A.K. NAD(P)H:quinone oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res. 2000, 60, 5913–5915. [Google Scholar]
- Ramos-Gomez, M.; Kwak, M.K.; Dolan, P.M.; Itoh, K.; Yamamoto, M.; Talalay, P.; Kensler, T.W. Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in NRF2 transcription factor-deficient mice. Proc. Natl. Acad. Sci. USA 2001, 98, 3410–3415. [Google Scholar] [CrossRef]
- Guerrero-Hue, M.; Rayego-Mateos, S.; Vazquez-Carballo, C.; Palomino-Antolin, A.; Garcia-Caballero, C.; Opazo-Rios, L.; Morgado-Pascual, J.L.; Herencia, C.; Mas, S.; Ortiz, A.; et al. Protective Role of NRF2 in Renal Disease. Antioxidants 2020, 10, 39. [Google Scholar] [CrossRef]
- Sugumar, D.; Saravanan, J.; Emdormi, R.; Praveen, T.K. An Update on the Role of NRF2 and its Activators in Diseases Associated with Oxidative Stress. Indian J. Pharm. Sci. 2020, 82, 184–192. [Google Scholar] [CrossRef]
- Charlton, J.A.; Thompson, C.J.; Baylis, P.H. Possible mechanisms responsible for the rise in plasma vasopressin associated with diabetic ketoacidosis in the rat. J. Endocrinol. 1988, 116, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Chen, W.Y.; Rosner, B.A.; Tamimi, R.M.; Willett, W.C.; Eliassen, A.H. Fruit and vegetable consumption and breast cancer incidence: Repeated measures over 30 years of follow-up. Int. J. Cancer 2019, 144, 1496–1510. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Pinheiro-Castro, N.; Novaes, G.M.; Pascoal, G.F.L.; Ong, T.P. Bioactive food compounds, epigenetics and chronic disease prevention: Focus on early-life interventions with polyphenols. Food Res. Int. 2019, 125, 108646. [Google Scholar] [CrossRef]
- Harithpriya, K.; Jayasuriya, R.; Adhikari, T.; Rai, A.; Ramkumar, K.M. Modulation of transcription factors by small molecules in beta-cell development and differentiation. Eur. J. Pharmacol. 2023, 946, 175606. [Google Scholar] [CrossRef]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64 (Suppl. S3), S112–S120. [Google Scholar] [CrossRef] [Green Version]
- Salisbury, D.; Bronas, U. Reactive oxygen and nitrogen species: Impact on endothelial dysfunction. Nurs. Res. 2015, 64, 53–66. [Google Scholar] [CrossRef]
- Alfadda, A.A.; Sallam, R.M. Reactive Oxygen Species in Health and Disease. J. Biomed. Biotechnol. 2012, 2012, 936486. [Google Scholar] [CrossRef] [Green Version]
- Crass, J.R.; Carrucciu, J.M.; Goodman, K.; Harkavy, L.A.; Lledo-Perez, A.M.; van de Vegte, G.L.; Vogel, F.E. Premedication after minor reactions. AJR Am. J. Roentgenol. 1988, 150, 693–694. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, L.F.; Pedruzzi, L.M.; Stenvinkel, P.; Stockler-Pinto, M.B.; Daleprane, J.B.; Leite, M., Jr.; Mafra, D. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch NRF2. Biochimie 2013, 95, 1525–1533. [Google Scholar] [CrossRef]
- Suzuki, S.; Ono, R.; Narita, T.; Pask, A.J.; Shaw, G.; Wang, C.; Kohda, T.; Alsop, A.E.; Marshall Graves, J.A.; Kohara, Y.; et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 2007, 3, e55. [Google Scholar] [CrossRef]
- Kang, K.A.; Piao, M.J.; Ryu, Y.S.; Kang, H.K.; Chang, W.Y.; Keum, Y.S.; Hyun, J.W. Interaction of DNA demethylase and histone methyltransferase upregulates NRF2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget 2016, 7, 40594–40620. [Google Scholar] [CrossRef] [Green Version]
- Vyrenkova, T.E.; Gontuar, N.S. Organization of controll of ocular tuberculosis. Probl. Tuberk. 1971, 49, 14–16. [Google Scholar]
- Guerrero-Beltran, C.E.; Calderon-Oliver, M.; Pedraza-Chaverri, J.; Chirino, Y.I. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp. Toxicol. Pathol. Off. J. Ges. Fur Toxikol. Pathol. 2012, 64, 503–508. [Google Scholar] [CrossRef]
- Zhou, J.W.; Wang, M.; Sun, N.X.; Qing, Y.; Yin, T.F.; Li, C.; Wu, D. Sulforaphane-induced epigenetic regulation of NRF2 expression by DNA methyltransferase in human Caco-2 cells. Oncol. Lett. 2019, 18, 2639–2647. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.D.; Wu, R.; Li, S.; Yang, A.Y.; Kong, A.N. Anthocyanin Delphinidin Prevents Neoplastic Transformation of Mouse Skin JB6 P+ Cells: Epigenetic Re-activation of NRF2-ARE Pathway. AAPS J. 2019, 21, 83. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, I.; Cao, M.; Su, Z.Y.; Wu, R.; Guo, Y.; Fang, M.; Kong, A.N. Fucoxanthin Elicits Epigenetic Modifications, NRF2 Activation and Blocking Transformation in Mouse Skin JB6 P+ Cells. AAPS J. 2018, 20, 32. [Google Scholar] [CrossRef]
- Kang, K.A.; Piao, M.J.; Hyun, Y.J.; Zhen, A.X.; Cho, S.J.; Ahn, M.J.; Yi, J.M.; Hyun, J.W. Luteolin promotes apoptotic cell death via upregulation of NRF2 expression by DNA demethylase and the interaction of NRF2 with p53 in human colon cancer cells. Exp. Mol. Med. 2019, 51, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Q.; Wu, R.; Xiao, X.; Yang, C.; Yang, Y.; Wang, C.; Lin, L.; Kong, A.N. The dietary flavone luteolin epigenetically activates the NRF2 pathway and blocks cell transformation in human colorectal cancer HCT116 cells. J. Cell. Biochem. 2018, 119, 9573–9582. [Google Scholar] [CrossRef]
- Li, S.; Li, W.; Wang, C.; Wu, R.; Yin, R.; Kuo, H.C.; Wang, L.; Kong, A.N. Pelargonidin reduces the TPA induced transformation of mouse epidermal cells -potential involvement of NRF2 promoter demethylation. Chem. -Biol. Interact. 2019, 309, 108701. [Google Scholar] [CrossRef]
- Hong, B.; Su, Z.; Zhang, C.; Yang, Y.; Guo, Y.; Li, W.; Kong, A.N. Reserpine Inhibit the JB6 P+ Cell Transformation Through Epigenetic Reactivation of NRF2-Mediated Antioxidative Stress Pathway. AAPS J. 2016, 18, 659–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zhang, C.; Guo, Y.; Su, Z.Y.; Yang, Y.; Shu, L.; Kong, A.N. Blocking of JB6 cell transformation by tanshinone IIA: Epigenetic reactivation of NRF2 antioxidative stress pathway. AAPS J. 2014, 16, 1214–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Liu, L.; Zhang, X.; Jiang, X.; Wang, L. Tanshinone IIA prevents rifampicin-induced liver injury by regulating BSEP/NTCP expression via epigenetic activation of NRF2. Liver Int. Off. J. Int. Assoc. Study Liver 2020, 40, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ramirez, C.N.; Su, Z.Y.; Kong, A.N. Epigenetic modifications of triterpenoid ursolic acid in activating NRF2 and blocking cellular transformation of mouse epidermal cells. J. Nutr. Biochem. 2016, 33, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Khor, T.O.; Shu, L.; Saw, C.L.; Wu, T.Y.; Suh, N.; Yang, C.S.; Kong, A.N. A gamma-tocopherol-rich mixture of tocopherols maintains NRF2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J. Nutr. 2012, 142, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, H.; Teimouri, M.; Shabani, M.; Koushki, M.; Babaei Khorzoughi, R.; Namvarjah, F.; Izadi, P.; Meshkani, R. Resveratrol alleviates non-alcoholic fatty liver disease through epigenetic modification of the NRF2 signaling pathway. Int. J. Biochem. Cell Biol. 2020, 119, 105667. [Google Scholar] [CrossRef]
- Singh, B.; Shoulson, R.; Chatterjee, A.; Ronghe, A.; Bhat, N.K.; Dim, D.C.; Bhat, H.K. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways. Carcinogenesis 2014, 35, 1872–1880. [Google Scholar] [CrossRef] [Green Version]
- Khor, T.O.; Huang, Y.; Wu, T.Y.; Shu, L.; Lee, J.; Kong, A.N. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of NRF2 via promoter CpGs demethylation. Biochem. Pharmacol. 2011, 82, 1073–1078. [Google Scholar] [CrossRef]
- Su, Z.Y.; Khor, T.O.; Shu, L.; Lee, J.H.; Saw, C.L.; Wu, T.Y.; Huang, Y.; Suh, N.; Yang, C.S.; Conney, A.H.; et al. Epigenetic reactivation of NRF2 in murine prostate cancer TRAMP C1 cells by natural phytochemicals Z-ligustilide and Radix angelica sinensis via promoter CpG demethylation. Chem. Res. Toxicol. 2013, 26, 477–485. [Google Scholar] [CrossRef]
- Yang, J.; Wu, R.; Li, W.; Gao, L.; Yang, Y.; Li, P.; Kong, A.N. The triterpenoid corosolic acid blocks transformation and epigenetically reactivates NRF2 in TRAMP-C1 prostate cells. Mol. Carcinog. 2018, 57, 512–521. [Google Scholar] [CrossRef]
- Paredes-Gonzalez, X.; Fuentes, F.; Su, Z.Y.; Kong, A.N. Apigenin reactivates NRF2 antioxidative stress signaling in mouse skin epidermal JB6 P + cells through epigenetics modifications. AAPS J. 2014, 16, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.; Khor, T.O.; Su, Z.Y.; Saw, C.L.; Shu, L.; Cheung, K.L.; Huang, Y.; Yu, S.; Kong, A.N. Epigenetic modifications of NRF2 by 3,3’-diindolylmethane in vitro in TRAMP C1 cell line and in vivo TRAMP prostate tumors. AAPS J. 2013, 15, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Kubo, E.; Chhunchha, B.; Singh, P.; Sasaki, H.; Singh, D.P. Sulforaphane reactivates cellular antioxidant defense by inducing NRF2/ARE/Prdx6 activity during aging and oxidative stress. Sci. Rep. 2017, 7, 14130. [Google Scholar] [CrossRef] [Green Version]
- Thorell, J.I.; Adielsson, G. Antidepressive effects of electroconvulsive therapy and thyrotrophin-releasing hormone. Lancet 1973, 2, 43. [Google Scholar] [CrossRef]
- Al-Qirim, T.M.; Zafir, A.; Banu, N. Comparative antioxidant potential of Rauwolfia serpentina and Withania somnifera on cardiac tissues. FASEB J. 2007, 21, A271. [Google Scholar] [CrossRef]
- Katiyar, S.K.; Singh, T.; Prasad, R.; Sun, Q.; Vaid, M. Epigenetic alterations in ultraviolet radiation-induced skin carcinogenesis: Interaction of bioactive dietary components on epigenetic targets. Photochem. Photobiol. 2012, 88, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Karpinski, T.M.; Adamczak, A. Fucoxanthin-An Antibacterial Carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Lambotte, C.; Dodinval, P.; Beauduin, P.; Senterre, J. Case of severe neonatal craniofacial dysostosis. Crouzon’s syndrome with the aspect of “trefoil cranium”. J. Genet. Hum. 1974, 22, 317–322. [Google Scholar]
- Lopez-Lazaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef]
- Ke, R.; Vohra, M.; Casper, R. Prolonged inhibition of human myometrial contractility by intermittent isoproterenol. Am. J. Obstet. Gynecol. 1984, 149, 841–844. [Google Scholar] [CrossRef]
- Anzai, T.; Nakanishi, K.; Ishikawa, K.; Komine, S. Lipolytic activity of crude or partially purified lipase of the mouse mammary gland at various substrate concentrations. Biochem. Int. 1983, 6, 635–641. [Google Scholar] [PubMed]
- Wei, X.; Zhou, L.; Hu, L.; Huang, Y. Tanshinone IIA arrests cell cycle and induces apoptosis in 786-O human renal cell carcinoma cells. Oncol. Lett. 2012, 3, 1144–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Li, Y.; Abdolmaleky, H.M.; Li, L.; Zhou, J.R. Tanshinones inhibit the growth of breast cancer cells through epigenetic modification of Aurora A expression and function. PLoS ONE 2012, 7, e33656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, K.D.; Ait-Si-Ali, S.; Yokochi, T.; Wade, P.A.; Jones, P.L.; Wolffe, A.P. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 2000, 25, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, R.; Shi, W.; Li, L.; Liu, H.; Liu, Z.; Wu, L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. J. Agric. Food Chem. 2019, 67, 11288–11306. [Google Scholar] [CrossRef]
- Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: An anti- and pro-inflammatory triterpenoid. Mol. Nutr. Food Res. 2008, 52, 26–42. [Google Scholar] [CrossRef]
- Soo Lee, Y.; Jin, D.Q.; Beak, S.M.; Lee, E.S.; Kim, J.A. Inhibition of ultraviolet-A-modulated signaling pathways by asiatic acid and ursolic acid in HaCaT human keratinocytes. Eur. J. Pharmacol. 2003, 476, 173–178. [Google Scholar] [CrossRef]
- Li, L.; Zhang, X.; Cui, L.; Wang, L.; Liu, H.; Ji, H.; Du, Y. Ursolic acid promotes the neuroprotection by activating NRF2 pathway after cerebral ischemia in mice. Brain Res. 2013, 1497, 32–39. [Google Scholar] [CrossRef]
- Ma, J.Q.; Ding, J.; Zhang, L.; Liu, C.M. Protective effects of ursolic acid in an experimental model of liver fibrosis through NRF2/ARE pathway. Clin. Res. Hepatol. Gastroenterol. 2015, 39, 188–197. [Google Scholar] [CrossRef]
- Ju, J.; Hao, X.; Lee, M.J.; Lambert, J.D.; Lu, G.; Xiao, H.; Newmark, H.L.; Yang, C.S. A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer Prev. Res. 2009, 2, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Ju, J.; Paul, S.; So, J.Y.; DeCastro, A.; Smolarek, A.; Lee, M.J.; Yang, C.S.; Newmark, H.L.; Suh, N. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-gamma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 4242–4249. [Google Scholar] [CrossRef] [Green Version]
- Barve, A.; Khor, T.O.; Nair, S.; Reuhl, K.; Suh, N.; Reddy, B.; Newmark, H.; Kong, A.N. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int. J. Cancer 2009, 124, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.; Crozier, A. Plant foods and herbal sources of resveratrol. J Agric Food Chem 2002, 50, 3337–3340. [Google Scholar] [CrossRef]
- Banerjee, S.; Bueso-Ramos, C.; Aggarwal, B.B. Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res. 2002, 62, 4945–4954. [Google Scholar]
- Whitsett, T.; Carpenter, M.; Lamartiniere, C.A. Resveratrol, but not EGCG, in the diet suppresses DMBA-induced mammary cancer in rats. J. Carcinog. 2006, 5, 15. [Google Scholar] [CrossRef]
- Bonkowski, M.S.; Sinclair, D.A. Slowing ageing by design: The rise of NAD(+) and sirtuin-activating compounds. Nat. Rev. Mol. Cell Biol. 2016, 17, 679–690. [Google Scholar] [CrossRef]
- Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–218. [Google Scholar] [CrossRef] [Green Version]
- Das, L.; Vinayak, M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of NRF2 signalling and modulation of inflammation in prevention of cancer. PLoS ONE 2015, 10, e0124000. [Google Scholar] [CrossRef]
- Li, W.; Su, Z.Y.; Guo, Y.; Zhang, C.; Wu, R.; Gao, L.; Zheng, X.; Du, Z.Y.; Zhang, K.; Kong, A.N. Curcumin Derivative Epigenetically Reactivates NRF2 Antioxidative Stress Signaling in Mouse Prostate Cancer TRAMP C1 Cells. Chem. Res. Toxicol. 2018, 31, 88–96. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, L.; Xie, L.; Zheng, Y.; Liu, K.; Tang, H.; Liao, Y.; Li, X. Z-ligustilide: A review of its pharmacokinetics and pharmacology. Phytother. Res. PTR 2020, 34, 1966–1991. [Google Scholar] [CrossRef]
- Yang, W.J.; Li, Y.R.; Gao, H.; Wu, X.Y.; Wang, X.L.; Wang, X.N.; Xiang, L.; Ren, D.M.; Lou, H.X.; Shen, T. Protective effect of the ethanol extract from Ligusticum chuanxiong rhizome against streptozotocin-induced diabetic nephropathy in mice. J. Ethnopharmacol. 2018, 227, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, W.; Zhou, Y.Y.; Zhang, Y.N.; Li, J.Y.; Hu, L.H.; Li, J. Corosolic acid stimulates glucose uptake via enhancing insulin receptor phosphorylation. Eur. J. Pharmacol. 2008, 584, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Leng, J.; Li, J.J.; Tang, J.F.; Li, Y.; Liu, B.L.; Wen, X.D. Corosolic acid inhibits adipose tissue inflammation and ameliorates insulin resistance via AMPK activation in high-fat fed mice. Phytomedicine Int. J. Phytother. Phytopharm. 2016, 23, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, J.; Zhang, Q.; Chen, L.H.; Wang, Q. Corosolic acid ameliorates atherosclerosis in apolipoprotein E-deficient mice by regulating the nuclear factor-kappaB signaling pathway and inhibiting monocyte chemoattractant protein-1 expression. Circ. J. Off. J. Jpn. Circ. Soc. 2012, 76, 995–1003. [Google Scholar]
- Fujiwara, Y.; Komohara, Y.; Ikeda, T.; Takeya, M. Corosolic acid inhibits glioblastoma cell proliferation by suppressing the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B in tumor cells and tumor-associated macrophages. Cancer Sci. 2011, 102, 206–211. [Google Scholar] [CrossRef]
- Xu, Y.; Ge, R.; Du, J.; Xin, H.; Yi, T.; Sheng, J.; Wang, Y.; Ling, C. Corosolic acid induces apoptosis through mitochondrial pathway and caspase activation in human cervix adenocarcinoma HeLa cells. Cancer Lett. 2009, 284, 229–237. [Google Scholar] [CrossRef]
- Ku, C.Y.; Wang, Y.R.; Lin, H.Y.; Lu, S.C.; Lin, J.Y. Corosolic Acid Inhibits Hepatocellular Carcinoma Cell Migration by Targeting the VEGFR2/Src/FAK Pathway. PLoS ONE 2015, 10, e0126725. [Google Scholar] [CrossRef] [Green Version]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Xie, W.; Xie, W.; Zhuang, W.; Jiang, C.; Liu, N. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch. Gerontol. Geriatr. 2017, 73, 29–36. [Google Scholar] [CrossRef]
- Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: Progress, potential and promise (Review). Int. J. Oncol. 2007, 30, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahim, M.; Newman, K.; Vanderlaag, K.; Samudio, I.; Safe, S. 3,3′-diindolylmethane (DIM) and its derivatives induce apoptosis in pancreatic cancer cells through endoplasmic reticulum stress-dependent upregulation of DR5. Carcinogenesis 2006, 27, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Thomson, C.A.; Ho, E.; Strom, M.B. Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: Evidence from experimental and human studies. Nutr. Rev. 2016, 74, 432–443. [Google Scholar] [CrossRef] [Green Version]
- Oi, N.; Chen, H.; Ok Kim, M.; Lubet, R.A.; Bode, A.M.; Dong, Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res. 2012, 5, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, B.S.A.; Allwood, C.M. Cultural Differences in Answerability Judgments. Front. Psychol. 2018, 9, 1641. [Google Scholar] [CrossRef] [Green Version]
- Bali, P.; Im, H.I.; Kenny, P.J. Methylation, memory and addiction. Epigenetics 2011, 6, 671–674. [Google Scholar] [CrossRef] [Green Version]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
Phytocompounds | Phytocompounds Sources | Targets | Demethylation Activity of the Compounds | References |
---|---|---|---|---|
Sulforaphane | Cruciferous vegetables | DNMT1, DNMT3a | Sulforaphane demethylates the first 5 CpGs in the NRF2 promoter region, decreases DNMT1 and DNMT3a proteins, and increases downstream target gene NQO-1 in TRAMP C1 prostate cells | [74] |
DNMT1, DNMT3aDNMT3b | Sulforaphane decreases the protein levels of DNMT1, DNMT3a, and DNMT3b, increasing the mRNA and protein levels of NRF2, NQO1, and HO-1 in the Alzheimer’s disease model | [36] | ||
DNMT1 | Decreases protein levels of DNMT1, increases NRF2 levels, and prevents the neoplastic transformation of caco-2 cells | [75] | ||
Delphinidin | Red fruits, some cereals, aubergines, beans, cabbages, radishes, and onions | DNMT1, DNMT3a | Delphinidin decreases CpG methylation of the NRF2 promoter region, reduces protein expression of DNMT1 and DNMT3a, and increases protein and mRNA expression of HO-1, NQO-1, and SOD-1 in JB6 P+ cells | [76] |
Fucoxanthin | Brown seaweed | DNMT1, DNMT3a | Fucoxanthin downregulates DNMT1 and DNMT3a protein expression, increases HO-1, NQO-1, and SOD-1 protein and mRNA expression, and decreases CpG methylation of the NRF2 promoter region in JB6 P+ cells | [77] |
Luteolin | Celery, parsley, broccoli, onion leaves, carrots, peppers, cabbages, apple skins, and chrysanthemum flowers | DNMT1, DNMT3aDNMT3b | DNMT1, DNMT3a, and DNMT3b expression is downregulated, NRF2 methylation reduced, and increases TET1 binding to the NRF2 promoter in HT-29 cells | [78] |
DNMT1, DNMT3aDNMT3b | DNMT1, DNMT3a, and DNMT3b protein levels are decreased by luteolin treatment, while NRF2, NQO1, and HO-1 mRNA and protein levels are increased, all of which correspond to the reduction in NRF2 promoter methylation in HCT116 cells | [79] | ||
Pelargonidin | Berries, strawberries, blueberries, red radishes | DNMT1, DNMT3a | Pelargonidin increases protein and mRNA expression of HO-1, NQO-1, and SOD-1 in JB6 P+ cells while decreasing CpG methylation of the NRF2 promoter region and DNMT1 and DNMT3a protein expression in JB6 P+ cells | [80] |
Reserpine | Rauwolfia serpentine roots | DNMT1, DNMT3a | Reserpine decreases CpG methylation of the NRF2 promoter region and decreases the expression of DNMT1 and DNMT3a protein in JB6 P+ cells while increasing the protein and mRNA expression of HO-1, NQO-1, and SOD-1 | [81] |
Tanshinone IIA | Salvia miltiorrhiza | DNMT1, DNMT3aDNMT3b | Tanshinone IIA treatment decreases methylated CpGs in the NRF2 promoter; DNMT1, DNMT3a, and DNMT3b mRNA and protein levels decrease in JB6 P+ cells | [82] |
TET2 | Ten-eleven translocation 2 (TET2) is expressed as a result of TAN IIA, which mediates the demethylation of NRF2 and protects against RFP-induced cholestatic liver injury | [83] | ||
Ursolic acid | Rosemary, marjoram, lavender, thyme, organum, and apple fruit peel | DNMT1, DNMT3a | UA reduces the expression of epigenetic modifying enzymes, including the DNA methyltransferases DNMT1 and DNMT3a and the histone deacetylases, reduces NRF2 promoter methylation, and increases the expression of HO-1 and NQO-1 in JB6 P+ cells | [84] |
A γ-tocopherol-rich mixture of tocopherol | Nuts, seeds, and vegetable oils | DNMT1, DNMT3a DNMT3b | γ-tocopherol reduces DNMT1, DNMT3a, and DNMT3b protein levels and reverses hypermethylation of the Nfe2l2 promoter in C57BL/TGN TRAMP mice’s prostate tissues | [85] |
Resveratrol | Grapes, wine, peanuts, and soy | DNMT1, DNMT3aDNMT3b | Resveratrol increases mRNA and protein expression of NRF2, HO1, NQO1, and SOD and lowers levels of DNMT1, DNMT3a, and DNMT3b in liver tissue and HepG2 | [86] |
Hypomethylates first 5 CpGs in the NRF2 pathway and induces re-expression of NRF2, NQO-1, SOD3, and OGG1 in estrogen-induced mammary cancer rat model | [87] | |||
Curcumin | Turmeric | CUR reverses the methylation status of the first 5 CpGs in the promoter region of the NRF2 gene and increases mRNA expression levels of HO-1, NQO1, and UGT1A1; CUR treatment does not affect both mRNA and protein levels of DNMT1, 3A, and 3B. | [88] | |
Z-Ligustilide | Ligusticum striatum, Angelica sinensis | Z-Ligustilide demethylates the first five CpGs of the NRF2 promoter, resulting in re-expression of NRF2 and increased HO-1, NQO1, and UGT1A1 mRNA expression in TRAMP C1 cells; Z-Ligustilide does not affect both mRNA and protein levels of DNMT1, 3A, and 3B. | [89] | |
Corosolic acid | Guava, loquat, and olive | DNMT1, DNMT3aDNMT3b | The NRF2 gene is re-expressed, and the expression of HO-1, NQO1, and UGT1A1 mRNA in TRAMP C1 cells is increased as a result of corosolic acid treatment, which reduces the protein levels of DNMT1, DNMT3a, DNMT3b and the demethylation of the first five CpGs in the NRF2 promoter | [90] |
Apigenin | Parsley, chamomile, celery, vine spinach, artichokes, and oregano | DNMT1, DNMT3b | Apigenin demethylates 15 CpGs in NRF2 dose-dependently and enhances NRF2 and NQO1 levels in the JB6 P+ cell line; at higher doses, apigenin reduces the expression of DNMT1 and DNMT3b | [91] |
3,3-Diindolylmethane | Cruciferous vegetables | DNMT1, DNMT3aDNMT3b | 3,3-Diindolylmethane reverses CpGs’ methylation for the first 5 CpGs of the NRF2 promoter, which correlates with reduced mRNA expression of DNMT1, 3a, and 3b; enhances NRF2 and NQO1 levels in prostate cells | [92] |
Taxifolin | Olive oil, grapes, citrus fruits, onions | DNMT1, DNMT3aDNMT3b | Taxifolin activates the NRF2 antioxidant pathway by inhibiting DNMT1, DNMT3a, DNMT3b, HDAC1, HDAC3, and HDAC8 and reversing methylation at the first 15 CpGs of the NRF2 promoter; the expression of HO-1 and NQO1 is also increased in JB6 P+ cells | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divyajanani, S.; Harithpriya, K.; Ganesan, K.; Ramkumar, K.M. Dietary Polyphenols Remodel DNA Methylation Patterns of NRF2 in Chronic Disease. Nutrients 2023, 15, 3347. https://doi.org/10.3390/nu15153347
Divyajanani S, Harithpriya K, Ganesan K, Ramkumar KM. Dietary Polyphenols Remodel DNA Methylation Patterns of NRF2 in Chronic Disease. Nutrients. 2023; 15(15):3347. https://doi.org/10.3390/nu15153347
Chicago/Turabian StyleDivyajanani, Srinivasaragavan, Kannan Harithpriya, Kumar Ganesan, and Kunka Mohanram Ramkumar. 2023. "Dietary Polyphenols Remodel DNA Methylation Patterns of NRF2 in Chronic Disease" Nutrients 15, no. 15: 3347. https://doi.org/10.3390/nu15153347
APA StyleDivyajanani, S., Harithpriya, K., Ganesan, K., & Ramkumar, K. M. (2023). Dietary Polyphenols Remodel DNA Methylation Patterns of NRF2 in Chronic Disease. Nutrients, 15(15), 3347. https://doi.org/10.3390/nu15153347