[go: up one dir, main page]

Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 31, 2020

Brain energetics, mitochondria, and traumatic brain injury

  • Haym Benaroya ORCID logo EMAIL logo

Abstract

We review current thinking about, and draw connections between, brain energetics and metabolism, and between mitochondria and traumatic brain injury. Energy is fundamental to proper brain function. Its creation in a useful form for neurons and glia, and consistently in response to the brain’s high energy needs, is critical for physiological pathways. Dysfunction in the mechanisms of energy production is at the center of neurological and neuropsychiatric pathologies. We examine the connections between energetics and mitochondria – the organelle responsible for almost all the energy production in the cell – and how secondary pathologies in traumatic brain injury result from energetic dysfunction. This paper interweaves these topics, a necessity since they are closely coupled, and identifies where there exist a lack of understanding and of data. In addition to summarizing current thinking in these disciplines, our goal is to suggest a framework for the mathematical modeling of mechanisms and pathways based on optimal energetic decisions.

Acknowledgments

It is with gratitude that the author thanks Rutgers University for the sabbatical time and intellectual environment, along with the scholarly resources, that allowed me to immerse myself in the study of neuroscience generally but more specifically the study of brain energetics, the role of the mitochondria, and the pathology of TBI, how they are coupled, and to think about how mathematical ideas from mechanics and dynamics may be applied to modeling and understanding of these disciplines. The reviewers are thanked for their insightful recommendations for the manuscript’s improvement in clarity and content.

References

Adiele, R.C. and Adiele, C.A. (2019). Metabolic defects in multiple sclerosis. Mitochondrion 44, 7–14.10.1016/j.mito.2017.12.005Search in Google Scholar PubMed

Agrawal, R., Tyagi, E., Vergnes, L., Reue, K., and Gomez-Pinilla, F. (2014). Coupling energy homeostasis with a mechanism to support plasticity in brain trauma. Biochim. Biophys. Acta 1842, 535–546.10.1016/j.bbadis.2013.12.004Search in Google Scholar PubMed

Al-Sarraj, S. (2016). The pathology of traumatic brain injury: a practical approach. Diagn. Histopathol. 22, 318–326.10.1016/j.mpdhp.2016.08.005Search in Google Scholar

Allaman, I., Belanger, M., and Magistretti, P.J. (2011). Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 34, 76–87.10.1016/j.tins.2010.12.001Search in Google Scholar PubMed

Allen, N. and Eroglu, C. (2017). Cell biology of astrocyte-synapse interaction. Neuron 96, 697–708.10.1016/j.neuron.2017.09.056Search in Google Scholar PubMed PubMed Central

Ashrafi, G. and Ryan, T.A. (2017). Glucose metabolism in nerve terminals. Curr. Opin. Neurobiol. 45, 156–161.10.1016/j.conb.2017.03.007Search in Google Scholar PubMed PubMed Central

Attwell, D. and Laughlin, S.B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cerebr. Blood F. Met. 21, 1133–1145.10.1097/00004647-200110000-00001Search in Google Scholar PubMed

Attwell, D., Buchan, A.M., Charpak, S., Lauritzen, M., MacVicar, B.A., and Newman, E.A. (2010). Glial and neuronal control of brain blood flow. Nature, 468, 232–243.10.1038/nature09613Search in Google Scholar PubMed PubMed Central

Aubert, A. and Costalat, R. (2002). A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage 17, 1162–1181.10.1006/nimg.2002.1224Search in Google Scholar PubMed

Aubert, A. and Costalat, R. (2005). Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J. Cerebr. Blood F. Met. 25, 1476–1490.10.1038/sj.jcbfm.9600144Search in Google Scholar PubMed

Aubert, A. and Costalat, R. (2007). Compartmentalization of brain energy metabolism between glia and neurons: insights from mathematical modeling. Glia 55, 1272–1279.10.1002/glia.20360Search in Google Scholar PubMed

Aubert, A., Costalat, R., and Valabrègue, R. (2001). Modeling of the coupling between brain electrical activity and metabolism. Acta Biotheor. 49, 301–326.10.1023/A:1014286728421Search in Google Scholar

Aubert, A., Costalat, R., Duffau, H., and Benali, H. (2002). Modeling of pathophysiological coupling between brain electrical activation, energy metabolism, and hemodynamics: insights for the interpretation of intracerebral tumor imaging. Acta Biotheor. 50, 281–295.10.1023/A:1022620818701Search in Google Scholar

Aubert, A., Costalat, R., Magistretti, P.J., and Pellerin, L. (2005). Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc. Natl. Acad. Sci. USA, 102, 16448–16453.10.1073/pnas.0505427102Search in Google Scholar PubMed PubMed Central

Aubert, A., Pellerin, L., Magistretti, P.J., and Costalat, R. (2007). A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl. Acad. Sci. USA, 104, 4188–4193.10.1073/pnas.0605864104Search in Google Scholar PubMed PubMed Central

Barres, B.A. (2003). What is a glial cell? Glia 43, 4–5.10.1002/glia.10252Search in Google Scholar PubMed

Barres, B.A. (2008). The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440.10.1016/j.neuron.2008.10.013Search in Google Scholar PubMed

Barros, L.F. (2010). Towards single-cell real-time imaging of energy metabolism in the brain. Front. Neuroenerg. 2, 1–2.10.3389/fnene.2010.00004Search in Google Scholar PubMed PubMed Central

Barros, L.F. and Deitmer, J.W. (2010). Glucose and lactate supply to the synapse. Brain Res. Rev. 63, 149–159.10.1016/j.brainresrev.2009.10.002Search in Google Scholar PubMed

Barros, L.F., Bittner, C.X., Loaiza, A., and Porras, O.H. (2007). A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55, 1222–1237.10.1002/glia.20375Search in Google Scholar PubMed

Bartnik-Olson, B.L., Harris, N.G., Shijo, K., and Sutton, R.L. (2013). Insights into the metabolic response to traumatic brain injury as revealed by 13C NMR spectroscopy. Front. Neuroenerg. 5, 1–9.10.3389/fnene.2013.00008Search in Google Scholar

Beard, D.A. (2005). A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS Comput. Biol. 1, 252–264.10.1371/journal.pcbi.0010036Search in Google Scholar

Bélanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724–738.10.1016/j.cmet.2011.08.016Search in Google Scholar

Benard, G., Bellance, N., James, D., Parrone, P., Fernandez, H., Letellier, T., and Rossignol, R. (2007). Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120, 838–848.10.1242/jcs.03381Search in Google Scholar

Bernick, K., Prevost, T.P., Suresha, S., and Socratec, S. (2011). Biomechanics of single cortical neurons. Acta Biomater. 7, 1210–1219.10.1016/j.actbio.2010.10.018Search in Google Scholar

Bertram, R., Pedersen, M.G., Luciani, D.S., and Sherman, A. (2006). A simplified model for mitochondrial ATP production. J. Theor. Biol. 243, 575–586.10.1016/j.jtbi.2006.07.019Search in Google Scholar

Blumbergs, P. (1998). Changing concepts of diffuse axonal injury. J. Clin. Neurosci. 5, 123–124.10.1016/S0967-5868(98)90026-1Search in Google Scholar

Bouzier-Sore, A.-K. and Pellerin, L. (2013). Unravelling the complex metabolic nature of astrocytes. Front. Neurosci. 7, 1–13.Search in Google Scholar

Buhlman, L.M. ed. (2016). Mitochondrial Mechanisms of Degeneration and Repair in Parkinson’s Disease (Cham, Switzerland: Springer Nature).10.1007/978-3-319-42139-1Search in Google Scholar

Büki, A. and Povlishock, J.T. (2006). All roads lead to disconnection – traumatic axonal injury revisited. Acta Neurochir. 148, 181–194.10.1007/s00701-005-0674-4Search in Google Scholar PubMed

Burda, J. and Sofroniew, M.V. (2017). Seducing astrocytes to the dark side. Cell Res. 27, 726–727.10.1038/cr.2017.37Search in Google Scholar PubMed PubMed Central

Burda, J., Bernstein, A.M., and Sofroniew, M.V. (2016). Astrocyte roles in traumatic brain injury. Exper. Neurol. 275, 305–315.10.1016/j.expneurol.2015.03.020Search in Google Scholar

Calvetti, D. and Somersalo, E. (2015). Life sciences through mathematical models. Rend. Fis. Acc. Lincei. 26 (Suppl. 2), S193–S201.10.1007/s12210-015-0422-5Search in Google Scholar

Calvetti, D. and Somersalo, E. (2019). Brain energy metabolism, Encycl. Comput. Neurosci., D. Jaeger and R. Jung, eds. (Cham, Switzerland: Springer Nature), Section B.Search in Google Scholar

Calvetti, D., Cheng, Y., and Somersalo, E. (2015). A spatially distributed computational model of brain cellular metabolism. J. Theor. Biol. 376, 48–65.10.1016/j.jtbi.2015.03.037Search in Google Scholar

Calvetti, D., Cheng, Y., and Somersalo, E. (2016). Uncertainty quantification in flux balance analysis of spatially lumped and distributed models of neuron-astrocyte metabolism. J. Math. Biol. 73, 1823–1849.10.1007/s00285-016-1011-7Search in Google Scholar

Camandola, S. and Mattson, M.P. (2017). Brain metabolism in health, aging, and neurodegeneration. EMBO J. 36, 1474–1492.10.15252/embj.201695810Search in Google Scholar

Castora, F.J. (2019). Mitochondrial function and abnormalities implicated in the pathogenesis of ASD. Prog. Neuro-Psychopha. 92, 83–108.10.1016/j.pnpbp.2018.12.015Search in Google Scholar

Chan, F., Lax, N.Z., Voss, C.M., Aldana, B.I., Whyte, S., Jenkins, A., Nicholson, C., Nichols, S., Tilley, E., Powell, Z., et al. (2019). The role of astrocytes in seizure generation: Insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain 142, 391–411.10.1093/brain/awy320Search in Google Scholar

Chatelin, S., Constantinesco, A., and Willinger, R. (2010). Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47, 255–276.10.3233/BIR-2010-0576Search in Google Scholar

Chen, Y., Meyer, J.N., Hill, H.Z., Lange, G., Condon, M.R., Klein, J.C., Ndirangul, D., and Falvo, M.J. (2017). Role of mitochondrial DNA damage and dysfunction on veterans with Gulf War Illness. PLoS One 12, e0184832.10.1371/journal.pone.0184832Search in Google Scholar

Chih, C.-P., Lipton, P., and Roberts, E.L. (2001). Do active cerebral neurons really use lactate rather than glucose? Trends Neurosci. 24, 10.10.1016/S0166-2236(00)01920-2Search in Google Scholar

Chuankui Y. (2012). A Neuron Model Based on Hamilton Principle and Energy Coding. In: Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science. Advances in Intelligent and Soft Computing. F. Gaol and Q. Nguyen, eds. (Berlin, Heidelberg: Springer), vol 145. pp. 395–401.Search in Google Scholar

Chung, W. and Allen, N. (2015). Astrocytes control synapse formation, function, and elimination. CSH Perspect. Biol. 7, a020370.10.1101/cshperspect.a020370Search in Google Scholar PubMed PubMed Central

Clarke, L. and Barres, B. (2013). Emerging roles of astrocytes in neural circuit development. Nat. Rev. Neurosci. 14, 311–321.10.1038/nrn3484Search in Google Scholar PubMed PubMed Central

Cloots, R., van Pommeled, J., Leaven, S., and Gears, M.G.D. (2013). Multi-scale mechanics of traumatic brain injury: predicting axonal strains from head loads. Biomech. Model Mech. 12, 137–150.10.1007/s10237-012-0387-6Search in Google Scholar PubMed

Cloutier, M., Bolger, F.B., and Lowry, J.P. (2009). An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. J. Comput. Neurosci. 27, 391–414.10.1007/s10827-009-0152-8Search in Google Scholar PubMed

Corbo, J. and Tripathi, P. (2004). Delayed presentation of diffuse axonal injury: a case report. Ann. Emerg. Med. 44, 1, 57–60.10.1016/j.annemergmed.2003.11.010Search in Google Scholar PubMed

Correia, S.C. and Moreira, P.I. (2018). Role of mitochondria in neurodegenerative diseases: the dark side of the “energy factory.” Mitochondrial Biology and Experimental Therapeutics. P.J. Oliviera, ed. (Cham, Switzerland: Springer Nature), pp. 213–240.10.1007/978-3-319-73344-9_11Search in Google Scholar

Corty, M. and Freeman, M. (2013). Architects in neural circuit design: glia control neuron numbers and connectivity. J. Cell Biol. 203, 395–405.10.1083/jcb.201306099Search in Google Scholar PubMed PubMed Central

Cullen, D.K., Simon, C.M., and Lapaca, M.C. (2007). Strain rate-dependent induction of reactive astrogliosis and cell death in three-dimensional neuronal-astrocytic co-cultures. Brain Res. 1158, 103–115.10.1016/j.brainres.2007.04.070Search in Google Scholar PubMed PubMed Central

De Rooij, R. and Kuhl, E. (2016). Constitutive modeling of brain tissue: current perspectives. Appl. Mech. Rev. 68, 1–16.10.1115/1.4032436Search in Google Scholar

Dickel, G. (1989). Hamilton’s principle of least action in nervous excitation. J. Chem. Soc. Faraday Trans. 85, 1463–1468.10.1039/f19898501463Search in Google Scholar

Dienel, G.A. (2014). Lactate shuttling and lactate use as a fuel after traumatic brain injury: metabolic considerations. J. Cerebr. Blood F. Met. 34, 1736–1748.10.1038/jcbfm.2014.153Search in Google Scholar PubMed PubMed Central

Dienel, G.A. (2017). The metabolic trinity, glucose-glycogen-lactate, links astrocytes and neurons in brain energetics, signaling, memory, and gene expression. Neurosci. Lett. 637, 18–25.10.1016/j.neulet.2015.02.052Search in Google Scholar PubMed

Dimou, L. and Gallo, V. (2015). NG-2 glia and their functions in the central nervous system. Glia 63, 1429–1451.10.1002/glia.22859Search in Google Scholar PubMed PubMed Central

Dimou, L. and Gotz, M. (2014). Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol. Rev. 94, 709–737.10.1152/physrev.00036.2013Search in Google Scholar PubMed

DiNuzzo, M. and Nedergaard, M. (2017). Brain energetics during the sleep-wake cycle. Curr. Opin. Neurobiol. 47, 65–72.10.1016/j.conb.2017.09.010Search in Google Scholar PubMed PubMed Central

Diogo, C.V., Yambire, K.F., Mosquera, L.F., Branco, T., and Raimundo, N. (2018). Mitochondrial adventures at the organelle society. Biochem. Bioph. Res. Commun. 500, 87–93.10.1016/j.bbrc.2017.04.124Search in Google Scholar PubMed PubMed Central

Dossi, E., Vasile, F., and Rouach, N. (2018). Human astrocytes in the diseased brain. Brain Res. Bull. 136, 139–156.10.1016/j.brainresbull.2017.02.001Search in Google Scholar PubMed PubMed Central

Drapaca, C.S. (2015). An electromechanical model of neuronal dynamics using Hamilton’s principle. Front. Cell. Neuro. 9, 1–8.10.3389/fncel.2015.00271Search in Google Scholar PubMed PubMed Central

Eisenberg, B. (2011). Mass action in ionic solutions. Chem. Phys. Lett. 511, 1–6.10.1016/j.cplett.2011.05.037Search in Google Scholar PubMed PubMed Central

Eisner, V., Picard, M., and Hajnóczky, G. (2018). Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat. Cell Biol. 20, 755–765.10.1038/s41556-018-0133-0Search in Google Scholar PubMed PubMed Central

El Sayed, T., Mota, A., Fraternali, F., and Ortiz, M. (2008). Biomechanics of traumatic brain injury. Comp. Meth. Appl. Mech. Eng. 197, 4692–4701.10.1016/j.cma.2008.06.006Search in Google Scholar

Elfawy, H.A. and Das, B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life Sci. 218, 165–184.10.1016/j.lfs.2018.12.029Search in Google Scholar PubMed

Engl, E. and Attwell, D. (2015). Non-signalling energy use in the brain. J. Physiol. 59316, 3417–3429.10.1113/jphysiol.2014.282517Search in Google Scholar PubMed PubMed Central

Escartin, C. and Rouach, N. (2013). Astroglial networking contributes to neurometabolic coupling. Front. Neuroenerg. 5, 1–8.10.3389/fnene.2013.00004Search in Google Scholar PubMed PubMed Central

Escartin, C., Valette, J., Lebon, V., and Bonvento, G. (2006). Neuron-astrocyte interactions in the regulation of brain energy metabolism: a focus on NMR spectroscopy. J. Neurochem. 99, 393–401.10.1111/j.1471-4159.2006.04083.xSearch in Google Scholar PubMed

Feng, Q. and Kornmann, B. (2018). Mechanical forces on cellular organelles. J. Cell Sci. 131, 1–9.10.1242/jcs.218479Search in Google Scholar PubMed

Gibbons, A. (1988). Solving the brain’s energy crisis. Science 280, 1345–1347.10.1126/science.280.5368.1345Search in Google Scholar PubMed

Giorgi, C., De Stefani, D., Bononi, A., Rizzuto, R., and Pinton, P. (2009). Structural and functional link between the mitochondrial networks and the endoplasmic reticulum. Int. J. Biochem. Cell Biol. 41, 1817–1827.10.1016/j.biocel.2009.04.010Search in Google Scholar PubMed PubMed Central

Glia-neuron interactions in developing circuits. (2018). Symposium at The Rockefeller University, New York, 25 September.Search in Google Scholar

Göbel, B., Langemann, D., Oltmanns, K.M., and Chung, M. (2010). Compact energy metabolism model: brain controlled energy supply. J. Theor. Biol. 264, 1214–1224.10.1016/j.jtbi.2010.02.033Search in Google Scholar PubMed

Gotz, M., Sirko, S., Beckers, J., and Irmler, M. (2015). Reactive astrocytes as neural stem or progenitor cells – in vivo lineage, in vitro potential, and genome-wide expression analysis. Glia 63, 1452–1468.10.1002/glia.22850Search in Google Scholar PubMed PubMed Central

Greenwood, S.M., Mizielinska, S.M., Frenguelli, B.G., Harvey, J., and Connolly, C.N. (2007). Mitochondrial dysfunction and dendritic beading during neuronal toxicity. J. Biol. Chem. 282, 26235–26244.10.1074/jbc.M704488200Search in Google Scholar

Gupta, R. and Sen, N. (2016). Traumatic brain injury: a risk factor for neurodegenerative diseases. Rev. Neurosci. 27, 93–100.10.1515/revneuro-2015-0017Search in Google Scholar

Hardy, W., Khalil, T., and King, A.I. (1994). Literature review of head injury biomechanics. Intl. J. Impact Eng. 15, 561–586.10.1016/0734-743X(94)80034-7Search in Google Scholar

Harris, J.J. and Attwell, D. (2012). The energetics of CNS white matter. J. Neurosci. 32, 356–371.10.1523/JNEUROSCI.3430-11.2012Search in Google Scholar PubMed PubMed Central

Harris, J.J., Jolivet, R., and Attwell, D. (2012). Synaptic energy use and supply. Neuron 75, 762–777.10.1016/j.neuron.2012.08.019Search in Google Scholar PubMed

Hemphill, M., Dauth, S., Yu, C.-J., and Parker, K.K. (2015). Traumatic brain injury and the neuronal microenvironment: a potential role for neuropathological mechanotransduction. Neuron 85, 1177–1192.10.1016/j.neuron.2015.02.041Search in Google Scholar PubMed

Hertz, L., Peng, L., and Dienel, G.A. (2007). Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis. J. Cerebr. Blood F. Met. 27, 219–249.10.1038/sj.jcbfm.9600343Search in Google Scholar PubMed

Hill, C., Coleman, M., and Menon, D.K. (2016). Traumatic axonal injury: mechanisms and translational opportunities. Trends Neurosci. 39, 311–324.10.1016/j.tins.2016.03.002Search in Google Scholar PubMed PubMed Central

Hitze, B., Hubold, C., van Dyken, R., Schlichting, K., Lehnert, H., and Entringer, S. (2010). How the selfish brain organizes its supply and demand. Front. Neuroenerg. 2, 1–13.10.3389/fnene.2010.00007Search in Google Scholar PubMed PubMed Central

Hoitzing, H., Johnson, G., and Jones, N.S. (2015). What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. Bioessays 37, 687–700.10.1002/bies.201400188Search in Google Scholar PubMed PubMed Central

Howarth, C. (2014). The contribution of astrocytes to the regulation of cerebral blood flow. Front. Neurosci. 8, 1–9.10.3389/fnins.2014.00103Search in Google Scholar PubMed PubMed Central

Jha, M.K. and Morrison, B.M. (2018). Glia-neuron energy metabolism in health and diseases: new insights into the role of nervous system metabolic transporters. Exp. Neurol. 309, 23–31.10.1016/j.expneurol.2018.07.009Search in Google Scholar PubMed PubMed Central

Jin, X., Zhu, F., Mao, H., Shen, M., and Yang, K.H. (2013). A comprehensive experimental study on material properties of human brain tissue. J. Biomech. 46, 2795–2801.10.1016/j.jbiomech.2013.09.001Search in Google Scholar PubMed

Johnson, V., Stewart, W., and Smith, D.H. (2013). Axonal pathology in traumatic brain injury. Exp. Neurol. 246, 35–43.10.1016/j.expneurol.2012.01.013Search in Google Scholar PubMed PubMed Central

Jolivet, R., Magistretti, P.J., and Weber, B. (2009). Deciphering neuron-glia compartmentalization in cortical energy metabolism. Front. Neuroenerg. 1, 1–10.10.3389/neuro.14.004.2009Search in Google Scholar PubMed PubMed Central

Joshi, A.U. and Mochly-Rosen, D. (2018). Mortal engines: mitochondrial bioenergetics and dysfunction in neurodegenerative diseases. Pharmacol. Res. 138, 2–15.10.1016/j.phrs.2018.08.010Search in Google Scholar PubMed PubMed Central

Kallakuri, S., Li, Y., Zhou, R., Bandaru, S., Zakaria, N., Zhang, L., and Cavanaugh, J.M. (2012). Impaired axoplasmatic transport is the dominant injury induced by an impact acceleration injury device: an analysis of traumatic axonal injury in pyramidal tract and corpus callosum of rats. Brain Res. 1452, 29–38.10.1016/j.brainres.2012.02.065Search in Google Scholar PubMed

Kembro, J.M., Aon, M.A., Winslow, R.L., O’Rourke, B., and Cortassa, S. (2013). Integrating mitochondrial energetics, Redox and ROS metabolic networks: a two-compartment model. Biophys. J. 104, 332–343.10.1016/j.bpj.2012.11.3808Search in Google Scholar PubMed PubMed Central

Kimelberg, H.K. and Nedergaard, M. (2010). Functions of astrocytes and their potential as therapeutic targets. Neurotheraputics 7, 338–353.10.1016/j.nurt.2010.07.006Search in Google Scholar PubMed PubMed Central

Koslik, H.J., Hamilton, G., and Golomb, B.A. (2014). Mitochondrial dysfunction in Gulf War Illness revealed by 31Phosphorus magnetic resonance spectroscopy: a case-control study. PLoS One 9, e92887.10.1371/journal.pone.0092887Search in Google Scholar PubMed PubMed Central

Kurt, B. and Topal, T. (2013). Mitochondrial disease. Dis. Mol. Med. 1, 11–14.10.5455/dmm.20130107125901Search in Google Scholar

Lackner, L.L. (2014). Shaping the dynamic mitochondrial network. BMC Biol. 12, 35.10.1186/1741-7007-12-35Search in Google Scholar

LaPlaca, M., Simon, C., Prado, G.R., and Cullen, D.K. (2007). CNS injury biomechanics and experimental models. Prog. Brain Res. 161, 13–26.10.1016/S0079-6123(06)61002-9Search in Google Scholar

Laughlin, S.B. and Atwell, D. (2004). Neural energy consumption and the representation of mental events. Brain Energetics and neuronal activity. R.G. Shulman and D.L. Rothman, eds. (Chichester, England: John Wiley & Sons), pp. 111–124.10.1002/0470020520.ch7Search in Google Scholar

Laurer, H., Lenzlinger, P., and McIntosh, T.K. (2000). Models of traumatic brain injury. Eur. J. Trauma 3, 95–110.10.1007/s000680050007Search in Google Scholar

Lemonde, H. and Rahman, S. (2014). Inherited mitochondrial disease. Pediatr. Child Health 25, 133–138.10.1016/j.paed.2014.11.002Search in Google Scholar

Li, X. and Feng, D. (2009). Diffuse axonal injury: novel insights into detection and treatment. J. Clin. Neurosci. 16, 614–619.10.1016/j.jocn.2008.08.005Search in Google Scholar PubMed

Liddelow, S. and Barres, B. (2015). Snapshot: astrocytes in health and disease. Cell, 162, 1170–1170e1.10.1016/j.cell.2015.08.029Search in Google Scholar PubMed

Lim, C.T., Zhou, E.H., and Quek, S.T. (2006). Mechanical models for living cells – a review. J. Biomech. 39, 195–216.10.1016/j.jbiomech.2004.12.008Search in Google Scholar PubMed

Loane, D. and Kumar, A. (2016). Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp. Neurol. 275, 316–327.10.1016/j.expneurol.2015.08.018Search in Google Scholar PubMed PubMed Central

Lu, Y. and Franze, K. (2006). Viscoelastic prop of individual glial cells and neurons in the CNS. Proc. Natl. Acad. Sci. USA 103, 17759–17764.10.1073/pnas.0606150103Search in Google Scholar PubMed PubMed Central

Mächler, P., Wyss, M.T., Elsayed, M., Stobart, J., Gutierrez, R., Von Faber-Castell, A., Kaelin, V., Zuend, M., San Martín, A., Romero-Gómez, I., et al. (2016). In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102.10.1016/j.cmet.2015.10.010Search in Google Scholar PubMed

Magistretti, P.J. and Allaman, I. (2015). A cellular perspective on brain energy metabolism and functional imaging. Neuron 86, 883–901.10.1016/j.neuron.2015.03.035Search in Google Scholar PubMed

Magistretti, P.J. and Allaman, I. (2016). Brain energy and metabolism. Neuroscience in the 21st Century. D.W. Pfaff and N.D. Volkow, eds. (New York: Springer Science+Business Media), pp. 1879–1909.10.1007/978-1-4939-3474-4_56Search in Google Scholar

Magistretti, P.J. and Pellerin, L. (1999). Cellular mechanisms of brain energy metabolism and their relevance to function brain imaging. Philos. T. Roy. Soc. B, 354, 1155–1163.10.1098/rstb.1999.0471Search in Google Scholar PubMed PubMed Central

Magistretti, P.J., Pellerin, L., Rothman, D.L., and Shulman, R.G. (1999). Energy on demand. Science 283, 496–497.10.1126/science.283.5401.496Search in Google Scholar PubMed

Magnus, G. and Keizer, J. (1997). Minimal model of β-cell mitochondrial Ca2+ handling. Am. J. Physiol. 273, C717–C733.10.1152/ajpcell.1997.273.2.C717Search in Google Scholar PubMed

Magnus, G. and Keizer, J. (1998a). Minimal model of β-cell mitochondrial calcium handling and electrical activity I: cytoplasmic variables. Am. J. Physiol. 274, C1158–C1173.10.1152/ajpcell.1998.274.4.C1158Search in Google Scholar PubMed

Magnus, G. and Keizer, J. (1998b). Minimal model of β-cell mitochondrial calcium handling and electrical activity II: mitochondrial variables. Am. J. Physiol. 274, C1174–C1184.10.1152/ajpcell.1998.274.4.C1174Search in Google Scholar PubMed

Manivannan, S. and Makwana, M. (2018). Profiling biomarkers of traumatic axonal injury: from mouse to man. Clin. Neurol. Neurosur. 171, 6–20.10.1016/j.clineuro.2018.05.017Search in Google Scholar PubMed

Manoli, I., Alesci, S., Blackman, M.R., Su, Y.A., Rennert, O.M., and Chrousos, G.P. (2007). Mitochondria as key components of the stress response. Trends Endocrin. Met. 18, 190–198.10.1016/j.tem.2007.04.004Search in Google Scholar

Marchi, S., Patergnani, S., and Pinton, P. (2014). The endoplasmic reticulum-mitochondria connection: one touch multiple functions. Biochim. Biophys. Acta 1837, 461–469.10.1016/j.bbabio.2013.10.015Search in Google Scholar

Martinac, B. (2014). The ion channels to cytoskeleton connection as potential mechanism of mechanosensitivity. Biochim. Biophys. Acta 1838, 682–691.10.1016/j.bbamem.2013.07.015Search in Google Scholar

Maurya, V., Bairaria, A., Adya, C.M., and Rajesh, Y.S. (2006). Diffuse axonal injury. MJAFI 62, 277–279.10.1016/S0377-1237(06)80021-3Search in Google Scholar

Menon, D., Schwab, K., Wright, D.W., and Maas, A.I. (2010). Position statement: definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 91, 1637–1640.10.1016/j.apmr.2010.05.017Search in Google Scholar PubMed

Mergenthaler, P., Lindauer, U., Dienel, G.A., and Meisel, A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597.10.1016/j.tins.2013.07.001Search in Google Scholar PubMed PubMed Central

Meythaler, J., Peduzzi, J., Eleftheriou, E., and Novack, T.A. (2001). Current concepts: diffuse axonal injury – traumatic brain injury. Arch. Phys. Med. Rehabil. 82, 1461–1471.10.1053/apmr.2001.25137Search in Google Scholar PubMed

Nguyen, M., Wong, Y.C., Ysselstein, D., Severino, A., and Krainc, D. (2019). Synaptic, mitochondrial, and lysosomal dysfunction in Parkinson’s disease. Trends Neurosci. 42, 140–149.10.1016/j.tins.2018.11.001Search in Google Scholar PubMed PubMed Central

Moeendarbary, E. and Harris, A.R. (2014). Cell mechanics: principles, practices, and prospects. WIRE’s Sys. Bio. Med. 6, 371–388.10.1002/wsbm.1275Search in Google Scholar PubMed PubMed Central

Mohammadipour, A. and Alemi, A. (2017). Micromechanical analysis of brain’s diffuse axonal injury. J. Biomech. 65, 61–74.10.1016/j.jbiomech.2017.09.029Search in Google Scholar PubMed

Monnerie, H., Tang-Schomer, D., Iwata, A., Smith, D.H., Kim, H.A., and le Roux, P.D. (2010). Dendritic alterations after dynamic axonal stretch injury in vitro. Exp. Neurol. 224, 415–423.10.1016/j.expneurol.2010.05.001Search in Google Scholar PubMed PubMed Central

Nortley, R. and Attwell, D. (2017). Control of brain energy supply by astrocytes. Curr. Opin. Neurobiol. 47, 80–85.10.1016/j.conb.2017.09.012Search in Google Scholar PubMed

Oschmann, F., Berry, H., Obermayer, K., and Lenk, K. (2018). From in silico astrocyte cell models to neuron-astrocyte network models: a review. Brain Res. Bull. 136, 76–84.10.1016/j.brainresbull.2017.01.027Search in Google Scholar PubMed

Pagliuso, A., Cossart, P., and Stavru, F. (2018). The ever-growing complexity of the mitochondrial fission machinery. Cell Mol. Life Sci. 75, 355–374.10.1007/s00018-017-2603-0Search in Google Scholar PubMed PubMed Central

Panchal, K. and Tiwari, A.K. (2019). Mitochondrial dynamics, a key executioner in neurodegenerative diseases. Mitochondrion 47, 151–173.10.1016/j.mito.2018.11.002Search in Google Scholar PubMed

Peebles, P. and Cruz, S. (2018). A primer on traumatic brain injury for nursing faculty. J. Prof. Nurs. 34, 488–493.10.1016/j.profnurs.2018.01.002Search in Google Scholar PubMed

Peppiatt, C. and Attwell, D. (2004). Feeding the brain. Nature, 431, 137–138.10.1038/431137aSearch in Google Scholar PubMed

Petit, J.-M. and Magistretti, P.J. (2016). Regulation of neuron-astrocyte metabolic coupling across the sleep-wake cycle. Neuroscience 323, 135–156.10.1016/j.neuroscience.2015.12.007Search in Google Scholar PubMed

Petridou, N.I., Spiró, Z., and Heisenberg, C.-P. (2017). Multiscale force sensing in development. Nat Cell Biol 19, 581–588.10.1038/ncb3524Search in Google Scholar PubMed

Pissadaki, E.K. and Bolam, J.P. (2013). The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front. Comput. Neurosci. 7, 1–17.10.3389/fncom.2013.00013Search in Google Scholar PubMed PubMed Central

Prebil, M., Jensen, J., Zorec, R., and Kreft, M. (2011). Astrocytes and energy metabolism. Arch. Physiol. Biochem. 117, 64–69.10.3109/13813455.2010.539616Search in Google Scholar

Prins, M., Greco, T., Alexander, D., and Giza, C. (2013). The paraphysiology of traumatic brain injury at a glance. Dis. Model Mech. 6, 1307–1315.Search in Google Scholar

Raichle, M.E. and Gusnard, D.A. (2002). Appraising the brains’ energy budget. P. Natl. Acad. Sci. USA 99, 10237–10239.10.1073/pnas.172399499Search in Google Scholar

Ramos-Cejudo, J., Wisniewski, T., Marmar, C., Zetterberg, H., Blennow, K., de Leon, M.J., and Fossati, S. (2018). Traumatic brain injury and Alzheimer’s disease: the cerebrovascular link. EBioMed. 28, 21–30.10.1016/j.ebiom.2018.01.021Search in Google Scholar

Rishal, I. and Fainzilber, M. (2014). Axon-soma communication in neuronal injury. Nat. Rev. Neurol. 15, 32–42.10.1038/nrn3609Search in Google Scholar

Robinson, M.B. and Jackson, J.G. (2016). Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem. Int. 98, 56–71.10.1016/j.neuint.2016.03.014Search in Google Scholar

Rossi, M.J. and Pekkurnaz, G. (2019). Powerhouse of the mind: mitochondrial plasticity at the synapse. Curr. Opin. Neurobiol. 57, 149–155.10.1016/j.conb.2019.02.001Search in Google Scholar

Roth, B.J. (2016). A mathematical model of mechanotransduction. arXiv, 1611.08287.Search in Google Scholar

Saa, A. and Siqueira, K.M. (2013). Modeling ATP production in mitochondria. Bull. Math. Biol. 75, 1636–1651.10.1007/s11538-013-9862-1Search in Google Scholar

Scemes, E. and Spray, D.C. (2004). The astrocytic syncytium. Adv. Molec. Cell Biol. 31, 165–179.10.1016/S1569-2558(03)31007-0Search in Google Scholar

Schapira, A.H.V. (2012). Mitochondrial diseases. Lancet 379, 1825–1834.10.1016/S0140-6736(11)61305-6Search in Google Scholar

Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. CSH Perspect. Biol. 5, a011304.10.1101/cshperspect.a011304Search in Google Scholar PubMed PubMed Central

Sedlackova, L. and Korolchuk, V.I. (2019). Mitochondrial quality control as a key determinant of cell survival. BBA – Molec. Cell Res. 1866, 575–587.10.1016/j.bbamcr.2018.12.012Search in Google Scholar

Shaham, S. (2005). Glia-neuron interactions in nervous system function and development. Curr. Top. Dev. Biol. 69, 39–66.10.1016/S0070-2153(05)69003-5Search in Google Scholar

Sheeran, F.L. and Pepe, S. (2017). Mitochondrial bioenergetics and dysfunction in failing heart. Mitochondrial dynamics in cardiovascular medicine. G. Santulli, ed. (Cham, Switzerland: Springer Nature), pp. 65–80.10.1007/978-3-319-55330-6_4Search in Google Scholar

Siedler, D. and Chuah, M. (2014). Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front. Cell Neurosci. 8, 1–10.10.3389/fncel.2014.00429Search in Google Scholar

Simcox, E.M. and Reeve, A.K. (2016). An introduction to mitochondria, their structure and functions. Mitochondrial dysfunction in neurodegenerative disorders. A.K. Reeve, E.M. Simcox, M.R. Duchen and D.M. Turnbull, eds. (Cham, Switzerland: Springer Nature), pp. 3–32.10.1007/978-3-319-28637-2_1Search in Google Scholar

Skulachev, V.P. (2001). Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem. Sci. 26, 23–29.10.1016/S0968-0004(00)01735-7Search in Google Scholar

Sofroniew, M. and Vinters, H. (2010). Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35.10.1007/s00401-009-0619-8Search in Google Scholar PubMed PubMed Central

Somersalo, E., Cheng, Y., and Calvetti, D. (2012). The metabolism of neurons and astrocytes through mathematical models. Ann. Biomed. Eng. 40, 2328–2344.10.1007/s10439-012-0643-zSearch in Google Scholar PubMed

Spani, C., Braun, D., and van Eldik, L.J. (2018). Sex-related responses after traumatic brain injury: considerations for preclinical modeling. Front. Neuroendocrin. 50, 52–66.10.1016/j.yfrne.2018.03.006Search in Google Scholar PubMed PubMed Central

Stogsdill, J. and Eroglu, C. (2018). The interplay between neurons and glia in synapse development and plasticity. Curr. Opin. Neurobiol. 42, 1–8.10.1016/j.conb.2016.09.016Search in Google Scholar PubMed PubMed Central

Suter, D. and Miller, K. (2011). The emerging role of forces in axonal elongation. Prog. Neurobiol. 94, 91–101.10.1016/j.pneurobio.2011.04.002Search in Google Scholar PubMed PubMed Central

Tang, B.L. (2018). Brain activity-induced neuronal glucose uptake/glycolysis: is the lactate shuttle not required? Brain Res. Bull. 137, 225–228.10.1016/j.brainresbull.2017.12.010Search in Google Scholar PubMed

Turner, D.A. and Adamson, D.C. (2011). Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J. Neuropath. Exp. Neur. 70, 167–176.10.1097/NEN.0b013e31820e1152Search in Google Scholar PubMed PubMed Central

Tzameli, I. (2012). The evolving role of mitochondria in metabolism. Trends Endocrin. Met. 23, 417–419.10.1016/j.tem.2012.07.008Search in Google Scholar PubMed

Vakifahmetoglu-Norberg, H., Ouchida, A.T., and Norberg, E. (2017). The role of mitochondria in metabolism and cell death. Biochem. Bioph. Res. Co. 482, 426–431.10.1016/j.bbrc.2016.11.088Search in Google Scholar PubMed

Valabrègue, R., Aubert, A., Burger, J., Bittoun, J., and Costalat, R. (2003). Relation between cerebral blood flow and metabolism explained by a model of oxygen exchange. J Cerebr. Blood F. Met. 23, 536–545.10.1097/01.WCB.0000055178.31872.38Search in Google Scholar PubMed

Van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. CSH Perspect. Biol. 5, a011072.10.1101/cshperspect.a011072Search in Google Scholar PubMed PubMed Central

Vanhauwaert, R., Bharat, V., and Wang, X. (2019). Surveillance and transport of mitochondria in neurons. Curr. Opin. Neurobiol. 57, 87–93.10.1016/j.conb.2019.01.015Search in Google Scholar PubMed

Vatov, L., Kizner, Z., Ruppin, E., Meilin, S., Manor, T., and Mayevsky, A. (2006). Modeling brain energy metabolism and function: a multiparametric monitoring approach. B. Math. Biol. 68, 275–291.10.1007/s11538-005-9008-1Search in Google Scholar PubMed

Venkateswaran, N., Sekhar, S., Sanjayasarathy, T.T., Krishnan, S.N., Kabaleeswaran, D.K., Ramanathan, S., Narayanasamy, N., Jagathrakshakan, S.S., and Vignesh, S.R. (2012). Energetics based spike generation of a single neuron: simulation results and analysis. Front. Neuroenerg. 4, 1–12.10.3389/fnene.2012.00002Search in Google Scholar PubMed PubMed Central

Verkhratsky, A. and Nedergaard, M. (2018). Physiology astroglia. Physiol. 98, 239–389.10.1007/978-981-13-9913-8_3Search in Google Scholar PubMed PubMed Central

Vinogradskaya, I.S., Kuznetsova, T.G., and Suprunenko, E.A. (2014). Mitochondrial network of skeletal muscle fiber. Mosc. U. Biol. Bull. 69, 57–66.10.3103/S009639251402014XSearch in Google Scholar

Von Bartheld, C.S., Bahney, J., and Herculano-Houzel, S. (2016). The search for true numbers of neurons and glial cells in the human brain: a review of 150 years of cell counting. J. Comp. Neurol. – Res. Syst. Neurosci. 524, 3865–3895.10.1002/cne.24040Search in Google Scholar PubMed PubMed Central

Wai, T. and Langer, T. (2016). Mitochondrial dynamics and metabolic regulation. Trends Endocrin. Met. 27, 105–117.10.1016/j.tem.2015.12.001Search in Google Scholar PubMed

Watson, W.D., Buonora, J.E., Yarnell, A.M., Lucky, J.J., D’Acchille, M.I., McMullen, D.C., Boston, A.G., Kuczmarski, A.V., Kean, W.S., Verma, A., et al. (2014). Impaired cortical mitochondrial function following TBI precedes behavioral changes. Front. Neuroenerg. 5, 1–13.Search in Google Scholar

Wei, A.-C., Aon, M.A., O’Rourke, B., Winslow, R.L., and Cortassa, S. (2011). Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach. Biophys. J. 100, 2894–2903.10.1016/j.bpj.2011.05.027Search in Google Scholar PubMed PubMed Central

Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim. Biophys. Acta 1817, 1833–1838.10.1016/j.bbabio.2012.02.033Search in Google Scholar PubMed

Wright, R. and Ramesh, K. (2012). An axonal strain injury criterion for traumatic brain injury. Biomech. Model. Mechanobiol. 11, 245–260.10.1007/s10237-011-0307-1Search in Google Scholar PubMed

Yang, X. and Wen, W. (2011). From myelin debris to inflammatory responses: a vicious circle in diffuse axonal injury. Med. Hypotheses, 77, 60–62.10.1016/j.mehy.2011.03.023Search in Google Scholar PubMed

Zamponi, N., Zamponi, E., Canna, S.A., Billoni, O.V., Helguera, P.R., and Chialvo, D.R. (2018). Mitochondrial network complexity emerges from fission/fusion dynamics. Sci. Rep. 8, 1–10.10.1038/s41598-017-18351-5Search in Google Scholar PubMed PubMed Central

Zhao, W., Choate, B., and Ji, S. (2018). Material properties of the brain in injury-relevant conditions – experiments and computational modeling. J. Mech. Behav. Biomed. Mater. 80, 222–234.10.1016/j.jmbbm.2018.02.005Search in Google Scholar PubMed PubMed Central

Zick, M. and Reichert, A.S. (2011). Mitochondria. Cellular Domains. I.R. Nabi, ed. (Chichester, England: John Wiley & Sons), pp. 87–111.10.1002/9781118015759.ch6Search in Google Scholar

Received: 2019-09-05
Accepted: 2019-11-13
Published Online: 2020-01-31
Published in Print: 2020-05-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.10.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0086/html
Scroll to top button