Abstract
PI-C (Proportional-Integral-Compensating) controllers are observer-based compensators with integral action containing an inverse model of the plant. Originally developed for windup prevention in case of sensor saturation they are also useful in the presence of actuator saturation. They allow to achieve a nearly perfect disturbance attenuation while the loop gain satisfies the Circle Criterion. It has also been demonstrated that PI-C controllers can solve the windup problem in case of joint input and output saturation. The design of PI-C controllers has only been formulated in the frequency domain so far which, in the MIMO case, requires the manipulation of polynomial matrices. Here, the state-space design of PI-C controllers is presented.
Zusammenfassung
PI-C-Regler sind beobachterbasierte Regler mit I-Anteil, die ein inverses Streckenmodel enthalten. Ursprünglich für die Vermeidung von Windup beim Vorhandensein von Sensor-Sättigung entwickelt, sind sie aber auch bei Stellbegrenzungen einsetzbar. Sie erlauben eine nahezu ideale Störunterdrückung, ohne dass der Linearteil des nichtlinearen Kreises das Kreiskriterium verletzt. Auch der Fall gleichzeitiger Ein- und Ausgangsbegrenzungen lässt sich mit PI-C-Reglern lösen. Der Entwurf von kompensierenden PI-Reglern wurde bisher nur im Frequenzbereich formuliert, was bei Mehrgrössensystemen die Manipulation von Polynommatrizen erfordert. Hier wird der Zeitbereichsentwurf solcher Regelungen vorgestellt.
About the author

Dr.-Ing. Peter Hippe worked as Akademischer Direktor at Lehrstuhl für Regelungstechnik of the Universität Erlangen-Nürnberg till September 2006. Main fields of interest: Control systems with plant input restrictions, design of state controllers and of MIMO compensators in the frequency domain.
Acknowledgement
The author wants to thank Prof. G. Roppenecker for his very helpful contributions.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
[1] P. Hippe, Windup in Control – its Effects and Their Prevention, Berlin, Heidelberg, New York, London, Springer, 2006.Search in Google Scholar
[2] D. S. Bernstein and A. N. Michel, “A chronological bibliography on saturating actuators,” Int. J. Robust Nonlinear Control, vol. 5, pp. 375–380, 1995. https://doi.org/10.1002/rnc.4590050502.Search in Google Scholar
[3] C. Gökçek, P. T. Kabamba, and S. M. Meerkov, “An LQR/LQG theory for systems with saturating actuators,” IEEE Trans. Autom. Control, vol. 46, pp. 1529–1542, 2001. https://doi.org/10.1109/9.956049.Search in Google Scholar
[4] A. Saberi, Z. Lin, and A. R. Teel, “Control of linear systems with saturating actuators,” IEEE Trans. Autom. Control, vol. 41, pp. 368–378, 1996. https://doi.org/10.1109/9.486638.Search in Google Scholar
[5] S. Tarbouriech, G. Garcia, and A. H. Glattfelder, Advanced Strategies in Control Systems with Input and Output Constraints, Vol. 336 of Lecture Notes in Control and Information Sciences, Berlin, Heidelberg, New York, London, Springer, 2007.10.1007/978-3-540-37010-9Search in Google Scholar
[6] M. C. Turner and L. Zaccarian, “Special issue on anti-windup,” Int. J. Syst. Sci., vol. 37, p. 65, 2006. https://doi.org/10.1080/00207720612331392435.Search in Google Scholar
[7] L. Zaccarian and A. R. Teel, Modern Anti-windup Synthesis: Control Augmentation for Actuator Saturation, Princeton, Oxford, Princeton University Press, 2011.10.23943/princeton/9780691147321.001.0001Search in Google Scholar
[8] M. C. Turner and S. Tarbouriech, “Anti-windup compensation for systems with sensor saturation: a study of architecture and structure,” Int. J. Control, vol. 82, pp. 1253–1266, 2009. https://doi.org/10.1080/00207170802512816.Search in Google Scholar
[9] P. Hippe, Windup in Control Owing to Sensor Saturation, Berlin, Heidelberg, New York, London, Springer, 2021.10.1007/978-3-030-73133-5Search in Google Scholar
[10] P. Hippe, “An alternative method for windup prevention,” Automatisierungstechnik, vol. 69, pp. 750–758, 2021. https://doi.org/10.1515/auto-2021-0051.Search in Google Scholar
[11] E. J. Davison, “The robust control of a servomechanism problem for linear time-invariant multivariable systems,” IEEE Trans. Autom. Control, vol. 21, pp. 25–34, 1976. https://doi.org/10.1109/tac.1976.1101137.Search in Google Scholar
[12] E. J. Davison and A. Goldenberg, “Robust control of a general servomechanism problem: the servo-compensator,” Automatica, vol. 11, pp. 461–471, 1975. https://doi.org/10.1016/0005-1098(75)90022-9.Search in Google Scholar
[13] P. Hippe and J. Deutscher, Design of Observer-Based Compensators – From the Time to the Frequency Domain, Berlin, Heidelberg, New York, London, Springer, 2009.10.1007/978-1-84882-537-6Search in Google Scholar
[14] J. Deutscher and G. Roppenecker, “Robust asymptotic disturbance rejection using observer-based disturbance feedforward (in German),” Automatisierungstechnik, vol. 62, pp. 547–561, 2014. https://doi.org/10.1515/auto-2014-1104.Search in Google Scholar
[15] P. Hippe, “Simplified design of observer-based PI control in view of input saturation,” Automatisierungstechnik, vol. 38, pp. 274–278, 1990. https://doi.org/10.1524/auto.1990.38.112.274.Search in Google Scholar
[16] D. G. Luenberger, “Observers for multivariable systems,” IEEE Trans. Autom. Control, vol. 11, pp. 190–197, 1966. https://doi.org/10.1109/tac.1966.1098323.Search in Google Scholar
[17] T. W. C. Williams and P. J. Antsaklis, “A unifying approach to the decoupling of linear multivariable systems,” Int. J. Control, vol. 44, pp. 181–201, 1986. https://doi.org/10.1080/00207178608933589.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston