Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-12T05:27:40.289Z Has data issue: false hasContentIssue false

Mica-Type Layer Silicates with Alkylammonium Ions

Published online by Cambridge University Press:  01 January 2024

Armin Weiss*
Affiliation:
Chemisches Institut der Universität Heidelberg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

More than 8000 different derivatives of mica-type layer silicates (muscovite, biotite, illite, vermiculite, beidellite, montmorillonite) with alkylammonium ions and different organic molecules as swelling liquids were prepared and characterized analytically by X-ray and chemical methods. The following results have been discussed in some detail.

Layer-lattice compounds are formed in simple stoichiometric relations. In n-alkyl-ammonium compounds, for instance, the sum (n-Cx,H2x+1NH3++n-CxH2x+1Y) per (Si, Al)4O10 is equal to 2.0 (Y = OH-, Cl-, Br-, NH2-, COH-, CONH2-, CN-).

The layer distance of the pure n-alkylammonium derivatives enables one to determine the charge density in the silicate layers. But in soils the ability of humic acids to undergo two-dimensional intracrystalline swelling and to react with alkylammonium ions must also be considered.

The properties of n-alkylammonium layer silicates are similar to those of alkyl-ammonium-uranium micas and of swelling vanadates (e.g. hewettite and pascoite). The swelling properties of alkyl-(α, ω)-diammonium ions are markedly influenced by the opportunities for hydrogen bonding. Mica-type layer silicates may show catalytic properties like protease or oxidase with ammonium ions, which are of general interest.

Type
Symposium on Clay-Organic Complexes
Copyright
Copyright © Clay Minerals Society 1961

References

Barrer, R M, MacLeod, D M. The activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Trans. Faraday Soc. 1955 51 1290 10.1039/tf9555101290CrossRefGoogle Scholar
Barrer, R M, Reay, J S S. Sorption and intercalation by methylammonium bentonites. Trans. Faraday Soc. 1957 54 691Google Scholar
Cowan, C T, White, D. The mechanism of exchange reactions occurring between sodium montmorillonite and various N-primary aliphatic amine salts. Trans. Faraday Soc. 1958 54 691 10.1039/tf9585400691CrossRefGoogle Scholar
Emerson, W W. Complex formation between montmorillonite and high polymers. Nature 1955 176 461 10.1038/176461a0CrossRefGoogle Scholar
Ensminger, L E, Gieseking, J E. The adsorption of proteins by montmorillonitic clays. Soil Science 1939 48 467473 10.1097/00010694-193912000-00003CrossRefGoogle Scholar
Ensminger, L E, Gieseking, J E. The absorption of proteins by montmorillonitic clays and its effect on base-exchange capacity. Soil Science 1941 51 125132 10.1097/00010694-194102000-00003CrossRefGoogle Scholar
Ensminger, L E, Gieseking, J E. Resistance of clay-absorbed proteins to proteolytic hydrolysis. Soil Science 1942 53 205 10.1097/00010694-194203000-00005CrossRefGoogle Scholar
Erbring, H, Lehmann, H. Austauschreaktionen an Na-Bentoniten mit grosvolumigen organischen Kolloidionen. Kolloid-Z. 1944 107 201205 10.1007/BF01501496CrossRefGoogle Scholar
Grim, R E, Allaway, W H, Cuthbert, F L. Reaction of different clay minerals with some organic cations. J. Amer. Ceram. Soc. 1947 30 137142 10.1111/j.1151-2916.1947.tb19549.xCrossRefGoogle Scholar
Hendricks, S B. Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals’ forces. J. Phys. Chem. 1941 45 6581 10.1021/j150406a006CrossRefGoogle Scholar
Jordan, J W. Alteration of the properties of bentonite by reaction with amines. Min. Mag. 1949 28 598605Google Scholar
Jordan, J W. Organophilic bentonites, I, Swelling in organic liquids. J. Phys. and Colloid. Chem. 1949 53 294306 10.1021/j150467a009CrossRefGoogle Scholar
Jordan, J W, Hook, B J, Finlayson, C M. Organophilic bentonites II, Organic liquid gels. J. Phys. Chem. 1950 54 1196 10.1021/j150482a012CrossRefGoogle Scholar
Jordan, J W, Williams, F J. Organophilic bentonites, III. Inherent properties. J. Phys. Chem. 1954 137 40Google Scholar
Kinter, E, Diamond, S. Characterization of montmorillonite saturated with short-chain amine cations, 2. Interlayer surface coverage by the amine cations. Clays and Clay Minerals 1963Google Scholar
Müller, O P, Jordan, J W, Brancato, J J. Bentonite flatting and gelling agents. Official Digest Federation Paint and Varnish Production Clubs 1949 451Google Scholar
Rowland, R A, Weiss, J E. Bentonite—methylaminè complexes. Clays and Clay Minerals 1963Google Scholar
Smith, C R. Base-exchange reactions of bentonite and salts of organic bases. J. Amer. Chem. Soc. 1934 56 1561 10.1021/ja01322a032CrossRefGoogle Scholar
Talibudeen, O. Interlamellar adsorption of protein monolayers on pure mont-morillonoid clays. Nature 1950 166 236 10.1038/166236a0CrossRefGoogle ScholarPubMed
Weiss, A. Die innerkristalline Quellung als allgemeines Modell für Quellungsvorgänge. Chem. Berichte 1958 91 487 10.1002/cber.19580910305CrossRefGoogle Scholar
Weiss, A. Über das Vorkommen eines innorkristallin quellungsfähigen Eisensilikates in Lungen Silikosekranker. Hoppe-Seyler Z. Physiol. Chem. 1961 324 153 10.1515/bchm2.1961.324.1.153CrossRefGoogle Scholar
Weiss, A, Hartl, K, Hofmann, U. Zur Kenntnis von organophilen Uranglimmern. Z. Naturforschg. 1957 12 351 10.1515/znb-1957-0601CrossRefGoogle Scholar
Weiss, A, Hartl, K, Michel, E. Zur Konstitution der Vanadinminerale Hewettit und Meta-Hewettit. Z. Naturforschg. 1961 16 842 10.1515/znb-1961-1219CrossRefGoogle Scholar
Weiss, A, Hofmann, U. Batavit. Z. Naturforschg. 1951 6 405409 10.1515/znb-1951-0801CrossRefGoogle Scholar
Weiss, A, Hofmann, U. Reaktionen im Innern des Schichtgitters von Uranglimmern. Z. Naturforschg. 1952 7 362 10.1515/znb-1952-0609CrossRefGoogle Scholar
Weiss, A, Kantner, I. Aber ein einfaches Verfahren zur Bestimmung der Somehtladung von quellungsfähigen Silikaten. Z. Naturforschg. 1960 16 804 10.1515/znb-1960-1211CrossRefGoogle Scholar
Weiss, A, Kantner, I, Eckel, M, Hofmann, G, Michel, E. Zur Kenntnis des glimmerähnlichen Minerals in Fremdstäuben aus Silikoselungen. Beitrage Silikoseforschg., Sonderband Grundfragen d. Silikoseforschg. 1960 3 45Google Scholar
Weiss, A, Koch, G. in G. Koch, Zur Kenntnis von Montmorillonit-Mineralen 1961Google Scholar
Weiss, A, Mehler, A, Hofmann, U. Zur Kenntnis von organophilem Vermikulit. Z. Naturforschg. 1956 11 431 10.1515/znb-1956-0802CrossRefGoogle Scholar
Weiss, A, Mehler, A, Hofmann, U. Kationenaustausch und innerkristallines Quellungsvermögen bei den Mineralen der Glimmergruppe. Z. Naturforschg. 1956 11 435 10.1515/znb-1956-0803CrossRefGoogle Scholar
Weiss, A, Michel, E. Über Kationenaustausch und innerkristallines Quellungsvermögen bei kettenförmigen Polyphosphaten. Z. Anorg. Allg. Chem. 1958 296 313 10.1002/zaac.19582960132CrossRefGoogle Scholar
Weiss, A, Michel, E. Über eine eindimensionale innerkristalline Quellung bei Mono-n-alkyl-ammonium Polyphosphaten. Z. Anorg. Allg. Chem. 1960 306 277 10.1002/zaac.19603060507CrossRefGoogle Scholar
Weiss, A, Michel, E, Fodnes, T. Kationenaustausch und innerkristallines Quellungsvermögen von kettenförmigen Poly vanadaten (Me+(VO3)n. Naturwissensch. 1962 49 11 10.1007/BF00632829CrossRefGoogle Scholar
Weiss, A, Michel, E, Weiss, Al. Einfluss von Wasserstoffbrüekenbindungen auf innerkristalline Quellungsvorgänge. Hydrogen Bonding 1959 London: Pergamon Press 495 10.1016/B978-0-08-009140-2.50057-9CrossRefGoogle Scholar
Weiss, A, Michel, E, Weiss, Al. Kationenaustausch und eindimensionales innerkristallines Quellungsvermögen von Polyvanadaten mit Schichtstruktur. Angew. Chem. 1961 73 707 10.1002/ange.19610732105CrossRefGoogle Scholar
Weiss, A, Taborsky, F, Hartl, K, Tröger, E. Zur Kenntnis des Uranminerals Trögerit. Z. Naturforschg. 1957 12 356 10.1515/znb-1957-0602CrossRefGoogle Scholar
Weiss, A, Thamerus, G. Zur Kenntnis von Al3+- und Si4+-Glimmern. Naturwissensch. 1961 48 70 10.1007/BF00639461CrossRefGoogle Scholar
Weiss, A, Weiss, Al. Ditinate, innerkristallin quellungsfähige Verbindungen. Angew. Chem. 1960 72 413 10.1002/ange.19600721204CrossRefGoogle Scholar