[go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of obesity and adipose tissue dysfunction in osteoarthritis pain

Abstract

Obesity has a pivotal and multifaceted role in pain associated with osteoarthritis (OA), extending beyond the mechanistic influence of BMI. It exerts its effects both directly and indirectly through various modifiable risk factors associated with OA-related pain. Adipose tissue dysfunction is highly involved in OA-related pain through local and systemic inflammation, immune dysfunction, and the production of pro-inflammatory cytokines and adipokines. Adipose tissue dysfunction is intricately connected with metabolic syndrome, which independently exerts specific effects on OA-related pain, distinct from its association with BMI. The interplay among obesity, adipose tissue dysfunction and metabolic syndrome influences OA-related pain through diverse pain mechanisms, including nociceptive pain, peripheral sensitization and central sensitization. These complex interactions contribute to the heightened pain experience observed in individuals with OA and obesity. In addition, pain management strategies are less efficient in individuals with obesity. Importantly, therapeutic interventions targeting obesity and metabolic syndrome hold promise in managing OA-related pain. A deeper understanding of the intricate relationship between obesity, metabolic syndrome and OA-related pain is crucial and could have important implications for improving pain management and developing innovative therapeutic options in OA.

Key points

  • Obesity serves as an important risk factor for pain in osteoarthritis (OA) and is associated with all modifiable risk factors related to OA-related pain.

  • Adipose tissue dysfunction has a specific role in OA-related pain independently of BMI.

  • Serum and synovial fluid levels of leptin are closely associated with OA-related pain after adjustment for BMI, whereas the role of adiponectin in OA pain is controversial.

  • Metabolic syndrome is associated with OA-related pain independently of BMI.

  • Obesity modulates nociceptive, neuropathic-like and nociplastic pain through neuromodulators and both peripheral and central sensitization.

  • Therapeutics used in the treatment of obesity and metabolic syndrome could also hold promise for the management of OA-related pain, particularly GLP1R agonists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Relationship between obesity and osteoarthritis-related pain risk factors.
Fig. 2: Adipose tissue expansion in obesity and metabolite production.
Fig. 3: Interplay between obesity, adipose tissue dysfunction, metabolic syndrome and osteoarthritis-related pain.
Fig. 4: Adipose tissue dysfunction and osteoarthritis-related pain phenotypes.

Similar content being viewed by others

References

  1. Wallace, I. J. et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl Acad. Sci. USA 114, 9332–9336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Safiri, S. et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann. Rheum. Dis. 79, 819–828 (2020).

    Article  PubMed  Google Scholar 

  4. Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    Article  PubMed  Google Scholar 

  5. González-Muniesa, P. et al. Obesity. Nat. Rev. Dis. Prim. 3, 17034 (2017).

    Article  PubMed  Google Scholar 

  6. The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377, 13–27 (2017).

    Article  Google Scholar 

  7. Berenbaum, F., Wallace, I. J., Lieberman, D. E. & Felson, D. T. Modern-day environmental factors in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 14, 674–681 (2018).

    Article  PubMed  Google Scholar 

  8. Zheng, H. & Chen, C. Body mass index and risk of knee osteoarthritis: systematic review and meta-analysis of prospective studies. BMJ Open 5, e007568 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study: overweight/obesity and the risk of developing OA. Arthritis Rheumatol. 68, 1869–1875 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).

    Article  PubMed  Google Scholar 

  11. Visser, A. et al. Adiposity and hand osteoarthritis: the Netherlands Epidemiology of Obesity study. Arthritis Res. Ther. 16, R19 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Collins, K. H. et al. Adipose tissue is a critical regulator of osteoarthritis. Proc. Natl Acad. Sci. USA 118, e2021096118 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Kahn, C. R., Wang, G. & Lee, K. Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 129, 3990–4000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kawai, T., Autieri, M. V. & Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 320, C375–C391 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Malfait, A.-M. & Schnitzer, T. J. Towards a mechanism-based approach to pain management in osteoarthritis. Nat. Rev. Rheumatol. 9, 654–664 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gossec, L. et al. The role of pain and functional impairment in the decision to recommend total joint replacement in hip and knee osteoarthritis: an international cross-sectional study of 1909 patients. Report of the OARSI-OMERACT Task Force on total joint replacement. Osteoarthr. Cartil. 19, 147–154 (2011).

    Article  CAS  Google Scholar 

  17. Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 21, 1145–1153 (2013).

    Article  CAS  Google Scholar 

  18. Losina, E., Song, S., Bensen, G. P. & Katz, J. N. Opioid use among medicare beneficiaries with knee osteoarthritis: prevalence and correlates of chronic use. Arthritis Care Res. 75, 876–884 (2023).

    Article  Google Scholar 

  19. Eitner, A., Hofmann, G. O. & Schaible, H.-G. Mechanisms of osteoarthritic pain. studies in humans and experimental models. Front. Mol. Neurosci. 10, 349 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jinks, C., Jordan, K. P., Blagojevic, M. & Croft, P. Predictors of onset and progression of knee pain in adults living in the community. A prospective study. Rheumatology 47, 368–374 (2007).

    Article  Google Scholar 

  21. Chin, S.-H., Huang, W.-L., Akter, S. & Binks, M. Obesity and pain: a systematic review. Int. J. Obes. 44, 969–979 (2020).

    Article  Google Scholar 

  22. Wluka, A. E., Lombard, C. B. & Cicuttini, F. M. Tackling obesity in knee osteoarthritis. Nat. Rev. Rheumatol. 9, 225–235 (2013).

    Article  PubMed  Google Scholar 

  23. Murphy, L. et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59, 1207–1213 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Raud, B. et al. Level of obesity is directly associated with the clinical and functional consequences of knee osteoarthritis. Sci. Rep. 10, 3601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Emery, C. F., Finkel, D. & Dahl Aslan, A. K. Bidirectional associations between body mass and bodily pain among middle-aged and older adults. Pain 163, 2061–2067 (2022).

    Article  PubMed  Google Scholar 

  26. Collins, A. T. et al. Obesity alters the in vivo mechanical response and biochemical properties of cartilage as measured by MRI. Arthritis Res. Ther. 20, 232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Robbins, S. M. et al. Association of pain with frequency and magnitude of knee loading in knee osteoarthritis. Arthritis Care Res. 63, 991–997 (2011).

    Article  Google Scholar 

  28. Chen, L. et al. Pathogenesis and clinical management of obesity-related knee osteoarthritis: impact of mechanical loading. J. Orthop. Transl. 24, 66–75 (2020).

    CAS  Google Scholar 

  29. Beckwée, D. et al. The influence of joint loading on bone marrow lesions in the knee: a systematic review with meta-analysis. Am. J. Sports Med. 43, 3093–3107 (2015).

    Article  PubMed  Google Scholar 

  30. Aso, K., Shahtaheri, S. M., McWilliams, D. F. & Walsh, D. A. Association of subchondral bone marrow lesion localization with weight-bearing pain in people with knee osteoarthritis: data from the Osteoarthritis Initiative. Arthritis Res. Ther. 23, 35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Felson, D. T., Goggins, J., Niu, J., Zhang, Y. & Hunter, D. J. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum. 50, 3904–3909 (2004).

    Article  PubMed  Google Scholar 

  32. Lo, G. H., Harvey, W. F. & McAlindon, T. E. Associations of varus thrust and alignment with pain in knee osteoarthritis. Arthritis Rheum. 64, 2252–2259 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mohamed, N. S. et al. The rise of obesity among total knee arthroplasty patients. J. Knee Surg. 35, 001–006 (2022).

    Article  Google Scholar 

  34. Weiss, E. Knee osteoarthritis, body mass index and pain: data from the Osteoarthritis Initiative. Rheumatology 53, 2095–2099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cimmino, M. A. et al. Body mass and osteoarthritic pain: results from a study in general practice. Clin. Exp. Rheumatol. 31, 843–849 (2013).

    PubMed  Google Scholar 

  36. Gløersen, M. et al. Associations of body mass index with pain and the mediating role of inflammatory biomarkers in people with hand osteoarthritis. Arthritis Rheumatol. 74, 810–817 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Magnusson, K. et al. Body mass index and progressive hand osteoarthritis: data from the Oslo hand osteoarthritis cohort. Scand. J. Rheumatol. 44, 331–336 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Glass, N. et al. Examining sex differences in knee pain: the Multicenter Osteoarthritis Study. Osteoarthr. Cartil. 22, 1100–1106 (2014).

    Article  CAS  Google Scholar 

  39. Vaughn, I. A., Terry, E. L., Bartley, E. J., Schaefer, N. & Fillingim, R. B. Racial-ethnic differences in osteoarthritis pain and disability: a meta-analysis. J. Pain. 20, 629–644 (2019).

    Article  PubMed  Google Scholar 

  40. Zheng, S. et al. Depression in patients with knee osteoarthritis: risk factors and associations with joint symptoms. BMC Musculoskelet. Disord. 22, 40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. van Tunen, J. A. C. et al. Association of osteoarthritis risk factors with knee and hip pain in a population-based sample of 29–59 year olds in Denmark: a cross-sectional analysis. BMC Musculoskelet. Disord. 19, 300 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Glass, N. A. et al. The relationship between quadriceps muscle weakness and worsening of knee pain in the MOST cohort: a 5-year longitudinal study. Osteoarthr. Cartil. 21, 1154–1159 (2013).

    Article  CAS  Google Scholar 

  43. Corrigan, P. et al. Relation of temporal asymmetry during walking to two-year knee pain outcomes in those with mild-to-moderate unilateral knee pain: an exploratory analysis from the Multicenter Osteoarthritis Study. Arthritis Care Res 75, 1735–1743 (2023).

    Article  Google Scholar 

  44. Zhaoyang, R. & Martire, L. M. Daily sedentary behavior predicts pain and affect in knee arthritis. Ann. Behav. Med. 53, 642–651 (2019).

    Article  PubMed  Google Scholar 

  45. Boer, C. G. et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat. Commun. 10, 4881 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alenazi, A. M. et al. Type 2 diabetes affects joint pain severity in people with localized osteoarthritis: a retrospective study. Pain. Med. 21, 1025–1031 (2020).

    Article  PubMed  Google Scholar 

  47. Magnusson, K. et al. Diabetes is associated with increased hand pain in erosive hand osteoarthritis: data from a population-based study: hand pain in erosive versus nonerosive hand OA. Arthritis Care Res. 67, 187–195 (2015).

    Article  Google Scholar 

  48. Rehling, T., Bjørkman, A.-S. D., Andersen, M. B., Ekholm, O. & Molsted, S. Diabetes is associated with musculoskeletal pain, osteoarthritis, osteoporosis, and rheumatoid arthritis. J. Diabetes Res. 2019, 6324348 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pan, F., Tian, J., Cicuttini, F. & Jones, G. Metabolic syndrome and trajectory of knee pain in older adults. Osteoarthr. Cartil. 28, 45–52 (2020).

    Article  CAS  Google Scholar 

  50. Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818.e17 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gierach, M., Gierach, J., Ewertowska, M., Arndt, A. & Junik, R. Correlation between body mass index and waist circumference in patients with metabolic syndrome. ISRN Endocrinol. 2014, 514589 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ganz, M. L. et al. The association of body mass index with the risk of type 2 diabetes: a case–control study nested in an electronic health records system in the United States. Diabetol. Metab. Syndr. 6, 50 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abbasi, A., Juszczyk, D., Van Jaarsveld, C. H. M. & Gulliford, M. C. Body-mass index and incidence of type 1 and type 2 diabetes in children and young adults in the UK: an observational cohort study. Lancet 388, S16 (2016).

    Article  Google Scholar 

  54. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Veronese, N. et al. Mediterranean diet and knee osteoarthritis outcomes: a longitudinal cohort study. Clin. Nutr. 38, 2735–2739 (2019).

    Article  PubMed  Google Scholar 

  57. Zhao, G. et al. Depression and anxiety among US adults: associations with body mass index. Int. J. Obes. 33, 257–266 (2009).

    Article  CAS  Google Scholar 

  58. Silva, D. A., Coutinho, E. D. S. F., Ferriani, L. O. & Viana, M. C. Depression subtypes and obesity in adults: a systematic review and meta‐analysis. Obes. Rev. 21, e12966 (2020).

    Article  PubMed  Google Scholar 

  59. Campbell, S. D. I. et al. Sedentary behavior and body weight and composition in adults: a systematic review and meta-analysis of prospective studies. Sports Med. 48, 585–595 (2018).

    Article  PubMed  Google Scholar 

  60. Silveira, E. A. et al. Sedentary behavior, physical inactivity, abdominal obesity and obesity in adults and older adults: a systematic review and meta-analysis. Clin. Nutr. ESPEN 50, 63–73 (2022).

    Article  PubMed  Google Scholar 

  61. Bollinger, L. M. & Ransom, A. L. The association of obesity with quadriceps activation during sit-to-stand. Phys. Ther. 100, 2134–2143 (2020).

    Article  PubMed  Google Scholar 

  62. Sarkar, A., Bansal, N. & Singh, S. Effects of obesity on quadriceps dynamic strengthening and isometrics exercise for the treatment of knee osteoarthritis patients. Br. J. Sports Med. 44, i13–i14 (2010).

    Article  Google Scholar 

  63. Boyce, L. et al. The outcomes of total knee arthroplasty in morbidly obese patients: a systematic review of the literature. Arch. Orthop. Trauma. Surg. 139, 553–560 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Martinez-Cano, J. P. et al. Body mass index and knee arthroplasty. J. Clin. Orthop. Trauma. 11, S711–S716 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lincoln, K. D., Abdou, C. M. & Lloyd, D. Race and socioeconomic differences in obesity and depression among Black and non-Hispanic White Americans. J. Health Care Poor Underserved 25, 257–275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lofton, H., Ard, J. D., Hunt, R. R. & Knight, M. G. Obesity among African American people in the United States: a review. Obesity 31, 306–315 (2023).

    Article  PubMed  Google Scholar 

  67. Dong, H.-J., Larsson, B., Levin, L.-Å., Bernfort, L. & Gerdle, B. Is excess weight a burden for older adults who suffer chronic pain? BMC Geriatr. 18, 270 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vennu, V., Alenazi, A. M., Abdulrahman, T. A., Binnasser, A. S. & Bindawas, S. M. Obesity and multisite pain in the lower limbs: data from the osteoarthritis initiative. Pain. Res. Manag. 2020, 6263505 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Karsdal, M. A. et al. Osteoarthritis – a case for personalized health care? Osteoarthr. Cartil. 22, 7–16 (2014).

    Article  CAS  Google Scholar 

  70. Raja, S. N. et al. The revised IASP definition of pain: concepts, challenges, and compromises. Pain 161, 1976–1982 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thakur, M., Dickenson, A. H. & Baron, R. Osteoarthritis pain: nociceptive or neuropathic? Nat. Rev. Rheumatol. 10, 374–380 (2014).

    Article  PubMed  Google Scholar 

  72. Kanthawang, T. et al. Obese and overweight individuals have greater knee synovial inflammation and associated structural and cartilage compositional degeneration: data from the osteoarthritis initiative. Skelet. Radiol. 50, 217–229 (2021).

    Article  Google Scholar 

  73. Del Sordo, L. et al. Impaired efferocytosis by synovial macrophages in patients with knee osteoarthritis. Arthritis Rheumatol. 75, 685–696 (2023).

    Article  PubMed  Google Scholar 

  74. Miller, R. E., Miller, R. J. & Malfait, A.-M. Osteoarthritis joint pain: the cytokine connection. Cytokine 70, 185–193 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miscio, G. et al. Obesity and peripheral neuropathy risk: a dangerous liaison. J. Peripher. Nerv. Syst. 10, 354–358 (2005).

    Article  PubMed  Google Scholar 

  76. Kazamel, M., Stino, A. M. & Smith, A. G. Metabolic syndrome and peripheral neuropathy. Muscle Nerve 63, 285–293 (2021).

    Article  PubMed  Google Scholar 

  77. Hochman, J. R., French, M. R., Bermingham, S. L. & Hawker, G. A. The nerve of osteoarthritis pain. Arthritis Care Res. 62, 1019–1023 (2010).

    Article  Google Scholar 

  78. Hozumi, J. et al. Relationship between neuropathic pain and obesity. Pain. Res. Manag. 2016, 2487924 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Güngör Demir, U., Demir, A. N. & Toraman, N. F. Neuropathic pain in knee osteoarthritis. Adv. Rheumatol. 61, 67 (2021).

    Article  PubMed  Google Scholar 

  80. WHO Consultation on Obesity. Obesity: preventing and managing the global epidemic: report of a WHO consultation. Technical Report Series 894 (WHO, 2000).

  81. WHO Expert Consultation Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 363, 157–163 (2004).

    Article  Google Scholar 

  82. WHO Expert Committee. Physical status: the use and interpretation of anthropometry. Technical Report Series 854 (WHO, 1995).

  83. Lam, B. C. C., Koh, G. C. H., Chen, C., Wong, M. T. K. & Fallows, S. J. Comparison of body mass index (BMI), body adiposity index (BAI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE 10, e0122985 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schutz, Y., Kyle, U. & Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18–98 y. Int. J. Obes. 26, 953–960 (2002).

    Article  CAS  Google Scholar 

  85. Mikkilineni, H. et al. Ultrasound evaluation of infrapatellar fat pad impingement: an exploratory prospective study. Knee 25, 279–285 (2018).

    Article  PubMed  Google Scholar 

  86. Ramirez, M. E. Measurement of subcutaneous adipose tissue using ultrasound images. Am. J. Phys. Anthropol. 89, 347–357 (1992).

    Article  CAS  PubMed  Google Scholar 

  87. Klopfenstein, B. J. et al. Comparison of 3 T MRI and CT for the measurement of visceral and subcutaneous adipose tissue in humans. Br. J. Radiol. 85, e826–e830 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bucerius, J. et al. Arterial and fat tissue inflammation are highly correlated: a prospective 18F-FDG PET/CT study. Eur. J. Nucl. Med. Mol. Imaging 41, 934–945 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Walsh, T. P. et al. The association between body fat and musculoskeletal pain: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 19, 233 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Visser, A. W. et al. The role of fat mass and skeletal muscle mass in knee osteoarthritis is different for men and women: the NEO study. Osteoarthr. Cartil. 22, 197–202 (2014).

    Article  CAS  Google Scholar 

  91. Yoo, J. J., Cho, N. H., Lim, S. H. & Kim, H. A. Relationships between body mass index, fat mass, muscle mass, and musculoskeletal pain in community residents: increased body fat mass and musculoskeletal pain. Arthritis Rheumatol. 66, 3511–3520 (2014).

    Article  PubMed  Google Scholar 

  92. Jin, X. et al. Longitudinal associations between adiposity and change in knee pain: Tasmanian older adult cohort study. Semin. Arthritis Rheum. 45, 564–569 (2016).

    Article  PubMed  Google Scholar 

  93. Kim, H. I. et al. Effects of sarcopenia and sarcopenic obesity on joint pain and degenerative osteoarthritis in postmenopausal women. Sci. Rep. 12, 13543 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jeanmaire, C. et al. Body composition and clinical symptoms in patients with hip or knee osteoarthritis: results from the KHOALA cohort. Semin. Arthritis Rheum. 47, 797–804 (2018).

    Article  PubMed  Google Scholar 

  95. Godziuk, K., Prado, C. M., Woodhouse, L. J. & Forhan, M. The impact of sarcopenic obesity on knee and hip osteoarthritis: a scoping review. BMC Musculoskelet. Disord. 19, 271 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Knoop, J. et al. Identification of phenotypes with different clinical outcomes in knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res. 63, 1535–1542 (2011).

    Article  Google Scholar 

  97. Ribeiro Rosa, K. et al. Role of central obesity on pain onset and its association with cardiovascular disease: a retrospective study of a hospital cohort of patients with osteoarthritis. BMJ Open 12, e066453 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lohmander, L. S., Gerhardsson de Verdier, M., Rollof, J., Nilsson, P. M. & Engström, G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann. Rheum. Dis. 68, 490–496 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Li, S. et al. Association of visceral adiposity with pain but not structural osteoarthritis. Arthritis Rheumatol. 72, 1103–1110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Leitner, B. P. et al. Mapping of human brown adipose tissue in lean and obese young men. Proc. Natl Acad. Sci. USA 114, 8649–8654 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Britton, K. A. et al. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 62, 921–925 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wajchenberg, B. L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21, 697–738 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Zapata-Linares, N., Eymard, F., Berenbaum, F. & Houard, X. Role of adipose tissues in osteoarthritis. Curr. Opin. Rheumatol. 33, 84–93 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Eymard, F. et al. Knee and hip intra-articular adipose tissues (IAATs) compared with autologous subcutaneous adipose tissue: a specific phenotype for a central player in osteoarthritis. Ann. Rheum. Dis. 76, 1142–1148 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Silva, K. R. et al. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots. PLoS ONE 12, e0174115 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sakers, A., De Siqueira, M. K., Seale, P. & Villanueva, C. J. Adipose-tissue plasticity in health and disease. Cell 185, 419–446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Scheja, L. & Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol. 15, 507–524 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Choe, S. S., Huh, J. Y., Hwang, I. J., Kim, J. I. & Kim, J. B. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front. Endocrinol. 7, 30 (2016).

    Article  Google Scholar 

  109. Nance, S. A., Muir, L. & Lumeng, C. Adipose tissue macrophages: regulators of adipose tissue immunometabolism during obesity. Mol. Metab. 66, 101642 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yao, J., Wu, D. & Qiu, Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front. Immunol. 13, 977485 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morigny, P., Boucher, J., Arner, P. & Langin, D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat. Rev. Endocrinol. 17, 276–295 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Longo, M. et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 20, 2358 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hajer, G. R., Van Haeften, T. W. & Visseren, F. L. J. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart J. 29, 2959–2971 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Blüher, M. Adipose tissue dysfunction in obesity. Exp. Clin. Endocrinol. Diabetes 117, 241–250 (2009).

    Article  PubMed  Google Scholar 

  115. Tchernof, A. & Després, J.-P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Horwich, T. B., Fonarow, G. C. & Clark, A. L. Obesity and the obesity paradox in heart failure. Prog. Cardiovasc. Dis. 61, 151–156 (2018).

    Article  PubMed  Google Scholar 

  117. Elagizi, A. et al. An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog. Cardiovasc. Dis. 61, 142–150 (2018).

    Article  PubMed  Google Scholar 

  118. Bosello, O. & Vanzo, A. Obesity paradox and aging. Eat. Weight Disord. 26, 27–35 (2021).

    Article  PubMed  Google Scholar 

  119. Hassan, M., Latif, N. & Yacoub, M. Adipose tissue: friend or foe? Nat. Rev. Cardiol. 9, 689–702 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Chang, J. et al. Systemic and local adipose tissue in knee osteoarthritis. Osteoarthr. Cartil. 26, 864–871 (2018).

    Article  CAS  Google Scholar 

  121. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

    Article  Google Scholar 

  122. Puenpatom, R. A. & Victor, T. W. Increased prevalence of metabolic syndrome in individuals with osteoarthritis: an analysis of NHANES III data. Postgrad. Med. 121, 9–20 (2009).

    Article  PubMed  Google Scholar 

  123. Courties, A., Sellam, J. & Berenbaum, F. Metabolic syndrome-associated osteoarthritis. Curr. Opin. Rheumatol. 29, 214–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  124. Courties, A., Berenbaum, F. & Sellam, J. The phenotypic approach to osteoarthritis: a look at metabolic syndrome-associated osteoarthritis. Jt Bone Spine 86, 725–730 (2019).

    Article  CAS  Google Scholar 

  125. Courties, A., Gualillo, O., Berenbaum, F. & Sellam, J. Metabolic stress-induced joint inflammation and osteoarthritis. Osteoarthr. Cartil. 23, 1955–1965 (2015).

    Article  CAS  Google Scholar 

  126. Tomi, A.-L. et al. Increased prevalence and severity of radiographic hand osteoarthritis in patients with HIV-1 infection associated with metabolic syndrome: data from the cross-sectional METAFIB-OA study. Ann. Rheum. Dis. 75, 2101–2107 (2016).

    Article  PubMed  Google Scholar 

  127. Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis. 74, 1842–1847 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Berenbaum, F., Griffin, T. M. & Liu‐Bryan, R. Review: metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol. 69, 9–21 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Niu, J., Clancy, M., Aliabadi, P., Vasan, R. & Felson, D. T. Metabolic syndrome, its components, and knee osteoarthritis: the Framingham Osteoarthritis Study. Arthritis Rheumatol. 69, 1194–1203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Charton, A. et al. Metabolic syndrome is associated with more pain in hand osteoarthritis: results from the DIGICOD cohort. Ann. Rheum. Dis. 82, 1038 abstr. POS1370 (2023).

    Google Scholar 

  131. Sanchez-Santos, M. et al. Association of metabolic syndrome with knee and hand osteoarthritis: a community-based study of women. Semin. Arthritis Rheum. 48, 791–798 (2019).

    Article  CAS  PubMed  Google Scholar 

  132. Afifi, A. E.-M. A. et al. Osteoarthritis of knee joint in metabolic syndrome. Clin. Rheumatol. 37, 2855–2861 (2018).

    Article  PubMed  Google Scholar 

  133. Abourazzak, F. et al. Does metabolic syndrome or its individual components affect pain and function in knee osteoarthritis women? Curr. Rheumatol. Rev. 11, 8–14 (2015).

    Article  PubMed  Google Scholar 

  134. Shin, D. Association between metabolic syndrome, radiographic knee osteoarthritis, and intensity of knee pain: results of a national survey. J. Clin. Endocrinol. Metab. 99, 3177–3183 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Sowers, M. et al. Knee osteoarthritis in obese women with cardiometabolic clustering. Arthritis Rheum. 61, 1328–1336 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Li, H., George, D. M., Jaarsma, R. L. & Mao, X. Metabolic syndrome and components exacerbate osteoarthritis symptoms of pain, depression and reduced knee function. Ann. Transl. Med. 4, 133–133 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Courties, A. & Sellam, J. Osteoarthritis and type 2 diabetes mellitus: what are the links? Diabetes Res. Clin. Pract. 122, 198–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Louati, K., Vidal, C., Berenbaum, F. & Sellam, J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open. 1, e000077 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Williams, M. F., London, D. A., Husni, E. M., Navaneethan, S. & Kashyap, S. R. Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis. J. Diabetes Complications 30, 944–950 (2016).

    Article  PubMed  Google Scholar 

  140. Schett, G. et al. Diabetes is an independent predictor for severe osteoarthritis. Diabetes Care 36, 403–409 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Eitner, A., Culvenor, A. G., Wirth, W., Schaible, H. & Eckstein, F. Impact of diabetes mellitus on knee osteoarthritis pain and physical and mental status: data from the osteoarthritis initiative. Arthritis Care Res. 73, 540–548 (2021).

    Article  Google Scholar 

  142. Charen, D. A., Solomon, D., Zubizarreta, N., Poeran, J. & Colvin, A. C. Examining the association of knee pain with modifiable cardiometabolic risk factors. Arthritis Care Res. 73, 1777–1783 (2021).

    Article  CAS  Google Scholar 

  143. Alenazi, A. M. et al. The association of diabetes with knee pain severity and distribution in people with knee osteoarthritis using data from the osteoarthritis initiative. Sci. Rep. 10, 3985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Banks, S. E., Riley, T. R. & Naides, S. J. Musculoskeletal complaints and serum autoantibodies associated with chronic hepatitis C and nonalcoholic fatty liver disease. Dig. Dis. Sci. 52, 1177–1182 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Baudart, P., Louati, K., Marcelli, C., Berenbaum, F. & Sellam, J. Association between osteoarthritis and dyslipidaemia: a systematic literature review and meta-analysis. RMD Open. 3, e000442 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Xiong, J., Long, J., Chen, X., Li, Y. & Song, H. Dyslipidemia might be associated with an increased risk of osteoarthritis. BioMed Res. Int. 2020, 3105248 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Lo, K., Au, M., Ni, J. & Wen, C. Association between hypertension and osteoarthritis: a systematic review and meta-analysis of observational studies. J. Orthop. Transl. 32, 12–20 (2022).

    Google Scholar 

  148. Zhou, M. et al. The cross-sectional and longitudinal effect of hyperlipidemia on knee osteoarthritis: results from the Dongfeng-Tongji cohort in China. Sci. Rep. 7, 9739 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cho, B. W. et al. Cross-sectional association between hypercholesterolemia and knee pain in the elderly with radiographic knee osteoarthritis: data from the Korean National Health and Nutritional Examination Survey. J. Clin. Med. 10, 933 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schwager, J. L. et al. Association of serum low-density lipoprotein, high-density lipoprotein, and total cholesterol with development of knee osteoarthritis. Arthritis Care Res. 74, 274–280 (2022).

    Article  CAS  Google Scholar 

  151. Dabke, K., Hendrick, G. & Devkota, S. The gut microbiome and metabolic syndrome. J. Clin. Invest. 129, 4050–4057 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M.-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kim, M.-H. et al. Gut microbiota and metabolic health among overweight and obese individuals. Sci. Rep. 10, 19417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wu, J. et al. Associations between serum ghrelin and knee symptoms, joint structures and cartilage or bone biomarkers in patients with knee osteoarthritis. Osteoarthr. Cartil. 25, 1428–1435 (2017).

    Article  CAS  Google Scholar 

  155. Guss, J. D. et al. The effects of metabolic syndrome, obesity, and the gut microbiome on load-induced osteoarthritis. Osteoarthr. Cartil. 27, 129–139 (2019).

    Article  CAS  Google Scholar 

  156. Chisari, E., Wouthuyzen-Bakker, M., Friedrich, A. W. & Parvizi, J. The relation between the gut microbiome and osteoarthritis: a systematic review of literature. PLoS ONE 16, e0261353 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Collins, K. H., Schwartz, D. J., Lenz, K. L., Harris, C. A. & Guilak, F. Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury. Sci. Rep. 11, 14560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Loeser, R. F. et al. Association of increased serum lipopolysaccharide, but not microbial dysbiosis, with obesity-related osteoarthritis. Arthritis Rheumatol. 74, 227–236 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Griffin, T. M. et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res. Ther. 12, R130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Song, Z. et al. High-fat diet increases pain behaviors in rats with or without obesity. Sci. Rep. 7, 10350 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Huang, Z. Y., Stabler, T., Pei, F. X. & Kraus, V. B. Both systemic and local lipopolysaccharide (LPS) burden are associated with knee OA severity and inflammation. Osteoarthr. Cartil. 24, 1769–1775 (2016).

    Article  CAS  Google Scholar 

  162. Binvignat, M. et al. Serum tryptophan metabolites are associated with erosive hand osteoarthritis and pain: results from the DIGICOD cohort. Osteoarthr. Cartil. 31, 1132–1143 (2023).

    Article  CAS  Google Scholar 

  163. Tilg, H. & Moschen, A. R. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat. Rev. Immunol. 6, 772–783 (2006).

    Article  CAS  PubMed  Google Scholar 

  164. Lönnqvist, F. et al. Leptin secretion from adipose tissue in women. Relationship to plasma levels and gene expression. J. Clin. Invest. 99, 2398–2404 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Pan, W. W. & Myers, M. G. Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 19, 95–105 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Straub, L. G. & Scherer, P. E. Metabolic messengers: adiponectin. Nat. Metab. 1, 334–339 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ghadge, A. A. & Khaire, A. A. Leptin as a predictive marker for metabolic syndrome. Cytokine 121, 154735 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Ahl, S. et al. Adiponectin levels differentiate metabolically healthy vs unhealthy among obese and nonobese white individuals. J. Clin. Endocrinol. Metab. 100, 4172–4180 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Gariballa, S., Alkaabi, J., Yasin, J. & Al Essa, A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr. Disord. 19, 55 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Li, S., Shin, H. J., Ding, E. L. & Van Dam, R. M. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 302, 179–188 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Korac, A. et al. Adipokine signatures of subcutaneous and visceral abdominal fat in normal-weight and obese women with different metabolic profiles. Arch. Med. Sci. 17, 323–336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Van Harmelen, V. et al. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes 47, 913–917 (1998).

    Article  PubMed  Google Scholar 

  173. Frühbeck, G., Catalán, V., Rodríguez, A. & Gómez-Ambrosi, J. Adiponectin-leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 7, 57–62 (2018).

    Article  PubMed  Google Scholar 

  174. Frühbeck, G. et al. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients 11, 454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Hu, Z.-J. et al. Peripheral leptin signaling mediates formalin-induced nociception. Neurosci. Bull. 34, 321–329 (2018).

    Article  CAS  PubMed  Google Scholar 

  176. Sun, L., Li, H., Tai, L. W., Gu, P. & Cheung, C. W. Adiponectin regulates thermal nociception in a mouse model of neuropathic pain. Br. J. Anaesth. 120, 1356–1367 (2018).

    Article  CAS  PubMed  Google Scholar 

  177. De Boer, T. N. et al. Serum adipokines in osteoarthritis; comparison with controls and relationship with local parameters of synovial inflammation and cartilage damage. Osteoarthr. Cartil. 20, 846–853 (2012).

    Article  Google Scholar 

  178. Hülser, M.-L. et al. Systemic versus local adipokine expression differs in a combined obesity and osteoarthritis mouse model. Sci. Rep. 11, 17001 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Azamar-Llamas, D., Hernández-Molina, G., Ramos-Ávalos, B. & Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm. 2017, 5468023 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Martel-Pelletier, J., Raynauld, J.-P., Dorais, M., Abram, F. & Pelletier, J.-P. The levels of the adipokines adipsin and leptin are associated with knee osteoarthritis progression as assessed by MRI and incidence of total knee replacement in symptomatic osteoarthritis patients: a post hoc analysis. Rheumatology 55, 680–688 (2016).

    Article  CAS  PubMed  Google Scholar 

  181. Zhu, J. et al. Association of serum levels of inflammatory markers and adipokines with joint symptoms and structures in participants with knee osteoarthritis. Rheumatology 61, 1044–1052 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Conde, J. et al. Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Ann. Rheum. Dis. 73, 631–633 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Kroon, F. P. B. et al. The role of leptin and adiponectin as mediators in the relationship between adiposity and hand and knee osteoarthritis. Osteoarthr. Cartil. 27, 1761–1767 (2019).

    Article  CAS  Google Scholar 

  184. Yusuf, E. et al. Association between leptin, adiponectin and resistin and long-term progression of hand osteoarthritis. Ann. Rheum. Dis. 70, 1282–1284 (2011).

    Article  CAS  PubMed  Google Scholar 

  185. Stannus, O. P. et al. Cross-sectional and longitudinal associations between circulating leptin and knee cartilage thickness in older adults. Ann. Rheum. Dis. 74, 82–88 (2015).

    Article  PubMed  Google Scholar 

  186. Stannus, O. P. et al. The association between leptin, interleukin-6, and hip radiographic osteoarthritis in older people: a cross-sectional study. Arthritis Res. Ther. 12, R95 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Orellana, C. et al. Synovial adiponectin was more associated with clinical severity than synovial leptin in women with knee osteoarthritis. Cartilage 13, 1675S–1683S (2021).

    Article  CAS  PubMed  Google Scholar 

  188. Sellam, J. et al. Pain in women with knee and/or hip osteoarthritis is related to systemic inflammation and to adipose tissue dysfunction: cross-sectional results of the KHOALA cohort. Semin. Arthritis Rheum. 51, 129–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Askari, A. et al. The role of adipose tissue secretion in the creation and pain level in osteoarthritis. Endocr. Regul. 54, 6–13 (2020).

    Article  PubMed  Google Scholar 

  190. Bas, S. et al. Adipokines correlate with pain in lower limb osteoarthritis: different associations in hip and knee. Int. Orthop. 38, 2577–2583 (2014).

    Article  PubMed  Google Scholar 

  191. Perruccio, A. V., Mahomed, N. N., Chandran, V. & Gandhi, R. Plasma adipokine levels and their association with overall burden of painful joints among individuals with hip and knee osteoarthritis. J. Rheumatol. 41, 334–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Calvet, J. et al. Synovial fluid adipokines are associated with clinical severity in knee osteoarthritis: a cross-sectional study in female patients with joint effusion. Arthritis Res. Ther. 18, 207 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Calvet, J. et al. Differential involvement of synovial adipokines in pain and physical function in female patients with knee osteoarthritis. A cross-sectional study. Osteoarthr. Cartil. 26, 276–284 (2018).

    Article  CAS  Google Scholar 

  194. Gandhi, R. et al. Obesity-related adipokines predict patient-reported shoulder pain. Obes. Facts 6, 536–541 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Massengale, M., Lu, B., Pan, J. J., Katz, J. N. & Solomon, D. H. Adipokine hormones and hand osteoarthritis: radiographic severity and pain. PLoS ONE 7, e47860 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Lübbeke, A. et al. Do synovial leptin levels correlate with pain in end stage arthritis? Int. Orthop. 37, 2071–2079 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Gundogdu, G., Gundogdu, K., Miloglu, F. D. & Tascı, S. Y. A new perspective on the relation between obesity and knee osteoarthritis: omentin. Curr. Rheumatol. Rev. 16, 324–331 (2020).

    Article  CAS  PubMed  Google Scholar 

  198. van Andel, M., Heijboer, A. C. & Drent, M. L. Adiponectin and its isoforms in pathophysiology. Adv. Clin. Chem. 85, 115–147 (2018).

    Article  PubMed  Google Scholar 

  199. Hensellek, S., Brell, P., Schaible, H.-G., Bräuer, R. & Segond Von Banchet, G. The cytokine TNFα increases the proportion of DRG neurones expressing the TRPV1 receptor via the TNFR1 receptor and ERK activation. Mol. Cell. Neurosci. 36, 381–391 (2007).

    Article  CAS  PubMed  Google Scholar 

  200. Ebbinghaus, M. et al. The role of interleukin-1β in arthritic pain: main involvement in thermal, but not mechanical, hyperalgesia in rat antigen-induced arthritis. Arthritis Rheum. 64, 3897–3907 (2012).

    Article  CAS  PubMed  Google Scholar 

  201. Abdalla, M. M. I. Role of visfatin in obesity-induced insulin resistance. World J. Clin. Cases 10, 10840–10851 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Benomar, Y. et al. Central resistin/TLR4 impairs adiponectin signaling, contributing to insulin and FGF21 resistance. Diabetes 65, 913–926 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Song, Y. et al. Possible involvement of serum and synovial fluid resistin in knee osteoarthritis: cartilage damage, clinical, and radiological links: possible involvement links. J. Clin. Lab. Anal. 30, 437–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  204. Franco-Trepat, E. et al. Visfatin connection: present and future in osteoarthritis and osteoporosis. J. Clin. Med. 8, 1178 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Martel-Pelletier, J. et al. The ratio adipsin/MCP-1 is strongly associated with structural changes and CRP/MCP-1 with symptoms in obese knee osteoarthritis subjects: data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 27, 1163–1173 (2019).

    Article  CAS  Google Scholar 

  206. Lambova, S. N. et al. Serum leptin and resistin levels in knee osteoarthritis – clinical and radiologic links: towards precise definition of metabolic type knee osteoarthritis. Biomedicines 9, 1019 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Trim, W. V. & Lynch, L. Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev. Immunol. 22, 371–386 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. Guzik, T. J., Skiba, D. S., Touyz, R. M. & Harrison, D. G. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc. Res. 113, 1009–1023 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kane, H. & Lynch, L. Innate immune control of adipose tissue homeostasis. Trends Immunol. 40, 857–872 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Harasymowicz, N. S. et al. Regional differences between perisynovial and infrapatellar adipose tissue depots and their response to class II and class III obesity in patients with osteoarthritis: response of OA knee adipose tissue deposits to obesity. Arthritis Rheumatol. 69, 1396–1406 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Daghestani, H. N., Pieper, C. F. & Kraus, V. B. Soluble macrophage biomarkers indicate inflammatory phenotypes in patients with knee osteoarthritis: macrophage markers in OA. Arthritis Rheumatol. 67, 956–965 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Kraus, V. B. et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr. Cartil. 24, 1613–1621 (2016).

    Article  CAS  Google Scholar 

  213. Sakurai, Y. et al. Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain 160, 895–907 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Li, L. et al. Profiling of inflammatory mediators in the synovial fluid related to pain in knee osteoarthritis. BMC Musculoskelet. Disord. 21, 99 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Attur, M. et al. Increased interleukin-1β gene expression in peripheral blood leukocytes is associated with increased pain and predicts risk for progression of symptomatic knee osteoarthritis. Arthritis Rheum. 63, 1908–1917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Richette, P. et al. A high interleukin 1 receptor antagonist/IL-1β ratio occurs naturally in knee osteoarthritis. J. Rheumatol. 35, 1650–1654 (2008).

    CAS  PubMed  Google Scholar 

  217. Pan, F., Tian, J., Cicuttini, F. & Jones, G. Prospective association between inflammatory markers and knee cartilage volume loss and pain trajectory. Pain. Ther. 11, 107–119 (2022).

    Article  PubMed  Google Scholar 

  218. Stannus, O. P., Jones, G., Blizzard, L., Cicuttini, F. M. & Ding, C. Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann. Rheum. Dis. 72, 535–540 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Jin, X. et al. Circulating C reactive protein in osteoarthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 703–710 (2015).

    Article  CAS  PubMed  Google Scholar 

  220. Garnero, P. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann. Rheum. Dis. 60, 619–626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Garnero, P. et al. Cross-sectional association of 10 molecular markers of bone, cartilage, and synovium with disease activity and radiological joint damage in patients with hip osteoarthritis: the ECHODIAH cohort. J. Rheumatol. 32, 697–703 (2005).

    CAS  PubMed  Google Scholar 

  222. Keenan, R. T., Swearingen, C. J. & Yazici, Y. Erythrocyte sedimentation rate and C-reactive protein levels are poorly correlated with clinical measures of disease activity in rheumatoid arthritis, systemic lupus erythematosus and osteoarthritis patients. Clin. Exp. Rheumatol. 26, 814–819 (2008).

    CAS  PubMed  Google Scholar 

  223. Wolfe, F. The C-reactive protein but not erythrocyte sedimentation rate is associated with clinical severity in patients with osteoarthritis of the knee or hip. J. Rheumatol. 24, 1486–1488 (1997).

    CAS  PubMed  Google Scholar 

  224. Sturmer, T. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann. Rheum. Dis. 63, 200–205 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Kolb, H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med. 20, 494 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Li, D. & Wu, M. Pattern recognition receptors in health and diseases. Signal. Transduct. Target. Ther. 6, 291 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Nefla, M., Holzinger, D., Berenbaum, F. & Jacques, C. The danger from within: alarmins in arthritis. Nat. Rev. Rheumatol. 12, 669–683 (2016).

    Article  CAS  PubMed  Google Scholar 

  228. Miller, R. E., Tran, P. B., Ishihara, S., Miller, R. J. & Malfait, A.-M. DAMPs provide a link between joint tissue damage and pain through direct activation of TLR4 expressed by sensory neurons. Osteoarthr. Cartil. 22, S416–S417 abstr. 750 (2014).

    Article  Google Scholar 

  229. Blom, A. B. et al. The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis. Arthritis Res. Ther. 22, 199 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Ruan, G. et al. Associations between serum S100A8/S100A9 and knee symptoms, joint structures and cartilage enzymes in patients with knee osteoarthritis. Osteoarthr. Cartil. 27, 99–105 (2019).

    Article  CAS  Google Scholar 

  231. Alvarez-Curto, E. & Milligan, G. Metabolism meets immunity: the role of free fatty acid receptors in the immune system. Biochem. Pharmacol. 114, 3–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  232. Calder, P. C. n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83, 1505S–1519S (2006).

    Article  CAS  PubMed  Google Scholar 

  233. Frommer, K. W. et al. Free fatty acids: potential proinflammatory mediators in rheumatic diseases. Ann. Rheum. Dis. 74, 303–310 (2015).

    Article  CAS  PubMed  Google Scholar 

  234. Frommer, K. W. et al. Free fatty acids in bone pathophysiology of rheumatic diseases. Front. Immunol. 10, 2757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Alvarez-Garcia, O., Rogers, N. H., Smith, R. G. & Lotz, M. K. Palmitate has proapoptotic and proinflammatory effects on articular cartilage and synergizes with interleukin-1: effects of palmitate on articular cartilage. Arthritis Rheumatol. 66, 1779–1788 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Pousinis, P. et al. Lipidomic identification of plasma lipids associated with pain behaviour and pathology in a mouse model of osteoarthritis. Metabolomics 16, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Loef, M. et al. The association of the lipid profile with knee and hand osteoarthritis severity: the IMI-APPROACH cohort. Osteoarthr. Cartil. 30, 1062–1069 (2022).

    Article  CAS  Google Scholar 

  238. Loef, M. et al. The association of plasma fatty acids with hand and knee osteoarthritis: the NEO study. Osteoarthr. Cartil. 28, 223–230 (2020).

    Article  CAS  Google Scholar 

  239. Felson, D. T. et al. Fatty acids and osteoarthritis: the MOST study. Osteoarthr. Cartil. 29, 973–978 (2021).

    Article  CAS  Google Scholar 

  240. Eymard, F. et al. Induction of an inflammatory and prodegradative phenotype in autologous fibroblast-like synoviocytes by the infrapatellar fat pad from patients with knee osteoarthritis. Arthritis Rheumatol. 66, 2165–2174 (2014).

    Article  CAS  PubMed  Google Scholar 

  241. Wang, K. et al. Quantitative signal intensity alteration in infrapatellar fat pad predicts incident radiographic osteoarthritis: the osteoarthritis initiative. Arthritis Care Res. 71, 30–38 (2019).

    Article  Google Scholar 

  242. Iwata, M. et al. Initial responses of articular tissues in a murine high-fat diet-induced osteoarthritis model: pivotal role of the IPFP as a cytokine fountain. PLoS ONE 8, e60706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Warmink, K. et al. High-fat feeding primes the mouse knee joint to develop osteoarthritis and pathologic infrapatellar fat pad changes after surgically induced injury. Osteoarthr. Cartil. 28, 593–602 (2020).

    Article  CAS  Google Scholar 

  244. Masaki, T. et al. Volume change in infrapatellar fat pad is associated not with obesity but with cartilage degeneration. J. Orthop. Res. 37, 593–600 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. De Jong, A. J. et al. Lack of high BMI-related features in adipocytes and inflammatory cells in the infrapatellar fat pad (IFP). Arthritis Res. Ther. 19, 186 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Cowan, S. M., Hart, H. F., Warden, S. J. & Crossley, K. M. Infrapatellar fat pad volume is greater in individuals with patellofemoral joint osteoarthritis and associated with pain. Rheumatol. Int. 35, 1439–1442 (2015).

    Article  PubMed  Google Scholar 

  247. Ye, C. et al. Influence of the infrapatellar fat pad resection during total knee arthroplasty: a systematic review and meta-analysis. PLoS ONE 11, e0163515 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  248. Teichtahl, A. J. et al. A large infrapatellar fat pad protects against knee pain and lateral tibial cartilage volume loss. Arthritis Res. Ther. 17, 318 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Clements, K. M. et al. Cellular and histopathological changes in the infrapatellar fat pad in the monoiodoacetate model of osteoarthritis pain. Osteoarthr. Cartil. 17, 805–812 (2009).

    Article  CAS  Google Scholar 

  250. Inomata, K. et al. Time course analyses of structural changes in the infrapatellar fat pad and synovial membrane during inflammation-induced persistent pain development in rat knee joint. BMC Musculoskelet. Disord. 20, 8 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Ballegaard, C. et al. Knee pain and inflammation in the infrapatellar fat pad estimated by conventional and dynamic contrast-enhanced magnetic resonance imaging in obese patients with osteoarthritis: a cross-sectional study. Osteoarthr. Cartil. 22, 933–940 (2014).

    Article  CAS  Google Scholar 

  252. Tolpadi, A. A., Lee, J. J., Pedoia, V. & Majumdar, S. Deep learning predicts total knee replacement from magnetic resonance images. Sci. Rep. 10, 6371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Han, W. et al. Signal intensity alteration in the infrapatellar fat pad at baseline for the prediction of knee symptoms and structure in older adults: a cohort study. Ann. Rheum. Dis. 75, 1783–1788 (2016).

    Article  PubMed  Google Scholar 

  254. Bohnsack, M. et al. Distribution of substance-P nerves inside the infrapatellar fat pad and the adjacent synovial tissue: a neurohistological approach to anterior knee pain syndrome. Arch. Orthop. Trauma. Surg. 125, 592–597 (2005).

    Article  PubMed  Google Scholar 

  255. Kouroupis, D. et al. Infrapatellar fat pad-derived MSC response to inflammation and fibrosis induces an immunomodulatory phenotype involving CD10-mediated substance P degradation. Sci. Rep. 9, 10864 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Distel, E. et al. The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum. 60, 3374–3377 (2009).

    Article  CAS  PubMed  Google Scholar 

  257. Eymard, F. et al. Contribution of adipocyte precursors in the phenotypic specificity of intra-articular adipose tissues in knee osteoarthritis patients. Arthritis Res. Ther. 21, 252 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Cen, H. et al. Quantitative infrapatellar fat pad signal intensity alteration as an imaging biomarker of knee osteoarthritis progression. RMD Open. 9, e002565 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Malfait, A.-M., Miller, R. E. & Block, J. A. Targeting neurotrophic factors: novel approaches to musculoskeletal pain. Pharmacol. Ther. 211, 107553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Alves, C. J. et al. Nociceptive mechanisms driving pain in a post-traumatic osteoarthritis mouse model. Sci. Rep. 10, 15271 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Marshall, K. W., Chiu, B. & Inman, R. D. Substance P and arthritis: analysis of plasma and synovial fluid levels. Arthritis Rheum. 33, 87–90 (1990).

    Article  CAS  PubMed  Google Scholar 

  262. Pritchett, J. W. Substance P level in synovial fluid may predict pain relief after knee replacement. J. Bone Jt. Surg. Br. 79-B, 114–116 (1997).

    Article  Google Scholar 

  263. Karagiannides, I. & Pothoulakis, C. Substance P, obesity, and gut inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 16, 47–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Karagiannides, I. et al. Substance P as a novel anti-obesity target. Gastroenterology 134, 747–755.e1 (2008).

    Article  CAS  PubMed  Google Scholar 

  265. Zhang, W., Cline, M. A. & Gilbert, E. R. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism. Nutr. Metab. 11, 27 (2014).

    Article  CAS  Google Scholar 

  266. Wang, L. et al. Levels of neuropeptide Y in synovial fluid relate to pain in patients with knee osteoarthritis. BMC Musculoskelet. Disord. 15, 319 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Bulló, M., Peeraully, M. R., Trayhurn, P., Folch, J. & Salas-Salvadó, J. Circulating nerve growth factor levels in relation to obesity and the metabolic syndrome in women. Eur. J. Endocrinol. 157, 303–310 (2007).

    Article  PubMed  Google Scholar 

  268. Baldini, M. et al. Synovial and serum levels of NGF in osteoarthritis and rheumatic diseases: a systematic review. J. Biol. Regul. Homeost. Agents 34 (5 Suppl. 1), 25–32 (2020).

    CAS  PubMed  Google Scholar 

  269. Shang, X., Wang, Z. & Tao, H. Mechanism and therapeutic effectiveness of nerve growth factor in osteoarthritis pain. Ther. Clin. Risk Manag. 13, 951–956 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Levinger, I. et al. BDNF, metabolic risk factors, and resistance training in middle-aged individuals. Med. Sci. Sports Exerc. 40, 535–541 (2008).

    Article  PubMed  Google Scholar 

  271. Boyuk, B. et al. Relationship between levels of brain-derived neurotrophic factor and metabolic parameters in patients with type 2 diabetes mellitus. J. Diabetes Res. 2014, 978143 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Gowler, P. R. W. et al. Peripheral brain-derived neurotrophic factor contributes to chronic osteoarthritis joint pain. Pain 161, 61–73 (2020).

    Article  CAS  PubMed  Google Scholar 

  273. Tashani, O. A., Astita, R., Sharp, D. & Johnson, M. I. Body mass index and distribution of body fat can influence sensory detection and pain sensitivity. Eur. J. Pain. 21, 1186–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  274. Arendt-Nielsen, L. et al. Sensitization in patients with painful knee osteoarthritis. Pain 149, 573–581 (2010).

    Article  PubMed  Google Scholar 

  275. Suokas, A. K. et al. Quantitative sensory testing in painful osteoarthritis: a systematic review and meta-analysis. Osteoarthr. Cartil. 20, 1075–1085 (2012).

    Article  CAS  Google Scholar 

  276. Lluch, E., Torres, R., Nijs, J. & Van Oosterwijck, J. Evidence for central sensitization in patients with osteoarthritis pain: a systematic literature review: central sensitization in osteoarthritis pain. Eur. J. Pain. 18, 1367–1375 (2014).

    Article  CAS  PubMed  Google Scholar 

  277. Steen Pettersen, P. et al. Associations between joint pathologies and central sensitization in persons with hand osteoarthritis: results from the Nor-Hand study. Rheumatol. 61, 2316–2324 (2021).

    Article  Google Scholar 

  278. Neogi, T. et al. Association of joint inflammation with pain sensitization in knee osteoarthritis: the Multicenter Osteoarthritis Study. Arthritis Rheumatol. 68, 654–661 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Lee, Y. C. et al. Pain sensitivity and pain reactivity in osteoarthritis. Arthritis Care Res. 63, 320–327 (2010).

    Article  Google Scholar 

  280. Jafarzadeh, S. R. et al. Mediating role of bone marrow lesion, synovitis, pain sensitization, and depressive symptoms on knee pain improvement following substantial weight loss. Arthritis Rheumatol. 72, 420–427 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Stefanik, J. J. et al. Changes in pain sensitization after bariatric surgery. Arthritis Care Res. 70, 1525–1528 (2018).

    Article  Google Scholar 

  282. Jinks, C., Jordan, K. & Croft, P. Disabling knee pain – another consequence of obesity: results from a prospective cohort study. BMC Public Health 6, 258 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Gudbergsen, H. et al. Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthr. Cartil. 20, 495–502 (2012).

    Article  CAS  Google Scholar 

  284. Felson, D. T., Zhang, Y., Anthony, J. M., Naimark, A. & Anderson, J. J. Weight loss reduces the risk for symptomatic knee osteoarthritis in women: the Framingham Study. Ann. Intern. Med. 116, 535–539 (1992).

    Article  CAS  PubMed  Google Scholar 

  285. Messier, S. P. et al. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the arthritis, diet, and activity promotion trial. Arthritis Rheum. 50, 1501–1510 (2004).

    Article  PubMed  Google Scholar 

  286. Messier, S. P. et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310, 1263–1273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Christensen, R., Bartels, E. M., Astrup, A. & Bliddal, H. Effect of weight reduction in obese patients diagnosed with knee osteoarthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 66, 433–439 (2006).

    Article  Google Scholar 

  288. Jurado-Castro, J. M., Muñoz-López, M., Ledesma, A. S.-T. & Ranchal-Sanchez, A. Effectiveness of exercise in patients with overweight or obesity suffering from knee osteoarthritis: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19, 10510 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Huebner, J. L. et al. Exploratory secondary analyses of a cognitive-behavioral intervention for knee osteoarthritis demonstrate reduction in biomarkers of adipocyte inflammation. Osteoarthr. Cartil. 24, 1528–1534 (2016).

    Article  CAS  Google Scholar 

  290. Somers, T. J. et al. Pain coping skills training and lifestyle behavioral weight management in patients with knee osteoarthritis: a randomized controlled study. Pain 153, 1199–1209 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Messier, S. P. et al. Intentional weight loss in overweight and obese patients with knee osteoarthritis: is more better? Arthritis Care Res. 70, 1569–1575 (2018).

    Article  Google Scholar 

  292. Hall, M. et al. Effects of adding a diet intervention to exercise on hip osteoarthritis pain: protocol for the ECHO randomized controlled trial. BMC Musculoskelet. Disord. 23, 215 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Peltonen, M., Lindroos, A. K. & Torgerson, J. S. Musculoskeletal pain in the obese: a comparison with a general population and long-term changes after conventional and surgical obesity treatment. Pain 104, 549–557 (2003).

    Article  PubMed  Google Scholar 

  294. Richette, P. et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann. Rheum. Dis. 70, 139–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  295. Edwards, C. et al. The effects of bariatric surgery weight loss on knee pain in patients with osteoarthritis of the knee. Arthritis 2012, 504189 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Hooper, M. M., Stellato, T. A., Hallowell, P. T., Seitz, B. A. & Moskowitz, R. W. Musculoskeletal findings in obese subjects before and after weight loss following bariatric surgery. Int. J. Obes. 31, 114–120 (2007).

    Article  CAS  Google Scholar 

  297. Fonseca Mora, M. C. et al. Reduction of invasive interventions in severely obese with osteoarthritis after bariatric surgery. Surg. Endosc. 34, 3606–3613 (2020).

    Article  PubMed  Google Scholar 

  298. Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Rheumatol. 72, 220–233 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Lee, W. H., Kramer, W. G. & Granville, G. E. The effect of obesity on acetaminophen pharmacokinetics in man. J. Clin. Pharmacol. 21, 284–287 (1981).

    Article  CAS  PubMed  Google Scholar 

  300. Pelletier, J.-P., Martel-Pelletier, J., Rannou, F. & Cooper, C. Efficacy and safety of oral NSAIDs and analgesics in the management of osteoarthritis: evidence from real-life setting trials and surveys. Semin. Arthritis Rheum. 45, S22–S27 (2016).

    Article  CAS  PubMed  Google Scholar 

  301. Seefried, L. et al. Penetration of topical diclofenac into synovial tissue and fluid of osteoarthritic knees: a multicenter, randomized, placebo-controlled, pharmacokinetic study. Ther. Adv. Musculoskelet. Dis. 12, 1759720X20943088 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Stokes, A. et al. Association of obesity with prescription opioids for painful conditions in patients seeking primary care in the US. JAMA Netw. Open 3, e202012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Baghbani-Naghadehi, F., Armijo-Olivo, S., Prado, C. M., Gramlich, L. & Woodhouse, L. J. Does obesity affect patient-reported outcomes following total knee arthroplasty? BMC Musculoskelet. Disord. 23, 55 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Oo, W. M., Mobasheri, A. & Hunter, D. J. A narrative review of anti-obesity medications for obese patients with osteoarthritis. Expert. Opin. Pharmacother. 23, 1381–1395 (2022).

    Article  CAS  PubMed  Google Scholar 

  305. Lim, Y. Z. et al. Metformin as a potential disease-modifying drug in osteoarthritis: a systematic review of pre-clinical and human studies. Osteoarthr. Cartil. 30, 1434–1442 (2022).

    Article  CAS  Google Scholar 

  306. Li, H. et al. Exploration of metformin as novel therapy for osteoarthritis: preventing cartilage degeneration and reducing pain behavior. Arthritis Res. Ther. 22, 34 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Li, J. et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 79, 635–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  308. Na, H. S. et al. Metformin attenuates monosodium-iodoacetate-induced osteoarthritis via regulation of pain mediators and the autophagy–lysosomal pathway. Cells 10, 681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Nielen, J. T. H. et al. Use of thiazolidinediones and the risk of elective hip or knee replacement: a population based case–control study. Br. J. Clin. Pharmacol. 81, 370–378 (2016).

    Article  CAS  PubMed  Google Scholar 

  310. Sayiner, Z. DPP-4 inhibitors increase the incidence of arthritis/arthralgia but do not affect autoimmunity. Acta Endocrinol. Buchar. 14, 473–476 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Riddle, D. L., Moxley, G. & Dumenci, L. Associations between tatin use and changes in pain, function and structural progression: a longitudinal study of persons with knee osteoarthritis. Ann. Rheum. Dis. 72, 196–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  312. Veronese, N. et al. Statin use and knee osteoarthritis outcomes: a longitudinal cohort study. Arthritis Care Res. 71, 1052–1058 (2019).

    Article  CAS  Google Scholar 

  313. Zhang, Z. et al. The association between statin use and osteoarthritis-related outcomes: an updated systematic review and meta-analysis. Front. Pharmacol. 13, 1003370 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Nogueira-Recalde, U. et al. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 45, 588–605 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Alimoradi, N., Tahami, M., Firouzabadi, N., Haem, E. & Ramezani, A. Metformin attenuates symptoms of osteoarthritis: role of genetic diversity of Bcl2 and CXCL16 in OA. Arthritis Res. Ther. 25, 35 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Angeli, F., Trapasso, M., Signorotti, S., Verdecchia, P. & Reboldi, G. Amlodipine and celecoxib for treatment of hypertension and osteoarthritis pain. Expert. Rev. Clin. Pharmacol. 11, 1073–1084 (2018).

    Article  CAS  PubMed  Google Scholar 

  317. Shirinsky, I. & Shirinsky, V. Does renin-angiotensin-aldosterone system blockade influence pain, function and radiographic progression in knee osteoarthritis? An analysis of osteoarthritis initiative data. Ann. Rheum. Dis. 75, 835 abstr. SAT0453 (2016).

    Article  Google Scholar 

  318. Daniilidis, K., Georges, P., Tibesku, C. O. & Prehm, P. Positive side effects of Ca antagonists for osteoarthritic joints – results of an in vivo pilot study. J. Orthop. Surg. 10, 1 (2015).

    Article  Google Scholar 

  319. de Sá, G. A. et al. Angiotensin II triggers knee joint lesions in experimental osteoarthritis. Bone 145, 115842 (2021).

    Article  PubMed  Google Scholar 

  320. Wei, J. et al. Thiazide diuretics and risk of knee replacement surgery among patients with knee osteoarthritis: a general population-based cohort study. Osteoarthr. Cartil. 27, 1454–1461 (2019).

    Article  CAS  Google Scholar 

  321. Nakafero, G. et al. β-blocker prescription is associated with lower cumulative risk of knee osteoarthritis and knee pain consultations in primary care: a propensity score-matched cohort study. Rheumatology 60, 5686–5696 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Valdes, A. M. et al. Association of beta-blocker use with less prevalent joint pain and lower opioid requirement in people with osteoarthritis. Arthritis Care Res. 69, 1076–1081 (2017).

    Article  CAS  Google Scholar 

  323. Li, M. et al. The effects of different antihypertensive drugs on pain and joint space width of knee osteoarthritis – a comparative study with data from Osteoarthritis Initiative. J. Clin. Hypertens. 23, 2009–2015 (2021).

    Article  CAS  Google Scholar 

  324. Strebkova, E. & Alekseeva, L. Evaluation of the use of orlistat in the complex treatment of obesity in patients with knee osteoarthritis. Ann. Rheum. Dis. 78, 518 abstr. THU0456 (2019).

    Google Scholar 

  325. Meurot, C. et al. Liraglutide, a glucagon-like peptide 1 receptor agonist, exerts analgesic, anti-inflammatory and anti-degradative actions in osteoarthritis. Sci. Rep. 12, 1567 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Zhu, H. et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann. Rheum. Dis. 82, 1218–1226 (2023).

    CAS  PubMed  Google Scholar 

  327. Drucker, D. J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 27, 740–756 (2018).

    Article  CAS  PubMed  Google Scholar 

  328. Liu, F. et al. The effects of glucagon-like peptide-1 receptor agonists on adipose tissues in patients with type 2 diabetes: a meta-analysis of randomised controlled trials. PLoS ONE 17, e0270899 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Iepsen, E. W. et al. Treatment with a GLP-1 receptor agonist diminishes the decrease in free plasma leptin during maintenance of weight loss. Int. J. Obes. 39, 834–841 (2015).

    Article  CAS  Google Scholar 

  330. Lee, Y.-S. & Jun, H.-S. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm. 2016, 3094642 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  331. Iwasaki, Y. et al. GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose. Nat. Commun. 9, 113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Jolivalt, C. G., Fineman, M., Deacon, C. F., Carr, R. D. & Calcutt, N. A. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice. Diabetes Obes. Metab. 13, 990–1000 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Kitano, M. et al. Effects of low-intensity pulsed ultrasound on the infrapatellar fat pad in knee osteoarthritis: a randomized, double blind, placebo-controlled trial. J. Phys. Ther. Sci. 35, 163–169 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Pinsornsak, P., Naratrikun, K. & Chumchuen, S. The effect of infrapatellar fat pad excision on complications after minimally invasive TKA: a randomized controlled trial. Clin. Orthop. Relat. Res. 472, 695–701 (2014).

    Article  PubMed  Google Scholar 

  335. Wang, Y. et al. Association between metformin use and disease progression in obese people with knee osteoarthritis: data from the Osteoarthritis Initiative – a prospective cohort study. Arthritis Res. Ther. 21, 127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  336. Lai, F. T. T. et al. Metformin use and the risk of total knee replacement among diabetic patients: a propensity-score-matched retrospective cohort study. Sci. Rep. 12, 11571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Zhu, Z. et al. Metformin use and associated risk of total joint replacement in patients with type 2 diabetes: a population-based matched cohort study. Can. Med. Assoc. J. 194, E1672–E1684 (2022).

    Article  CAS  Google Scholar 

  338. Mohammed, M. M., Al-Shamma, K. J. & Jassim, N. A. Evaluation of the clinical use of metformin or pioglitazone in combination with meloxicam in patients with knee osteoarthritis; using Knee Injury and Osteoarthritis outcome Score. Iraqi J. Pharm. Sci. 23, 13–23 (2017).

    Google Scholar 

  339. Lu, C.-H. et al. Combination COX-2 inhibitor and metformin attenuate rate of joint replacement in osteoarthritis with diabetes: a nationwide, retrospective, matched-cohort study in Taiwan. PLoS ONE 13, e0191242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Ashwell, M. & Gibson, S. A proposal for a primary screening tool: ‘Keep your waist circumference to less than half your height’. BMC Med. 12, 207 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Ashwell, M., Gunn, P. & Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis: waist-to-height ratio as a screening tool. Obes. Rev. 13, 275–286 (2012).

    Article  CAS  PubMed  Google Scholar 

  342. NHLBI Obesity Education Initiative Expert Panel on the Identification, Evaluation, and Treatment of Obesity in Adults (US). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. Report No. 98-4083 (National Heart, Lung, and Blood Institute, 1998).

  343. Price, G. M., Uauy, R., Breeze, E., Bulpitt, C. J. & Fletcher, A. E. Weight, shape, and mortality risk in older persons: elevated waist-hip ratio, not high body mass index, is associated with a greater risk of death. Am. J. Clin. Nutr. 84, 449–460 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank C. Williams for editorial feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and J.S. contributed equally to researching data for the article and writing the article. All authors made a substantial contribution to discussion of the content and to review/editing the manuscript before submission.

Corresponding author

Correspondence to Jérémie Sellam.

Ethics declarations

Competing interests

M.B. declares that she has received grant support from the French Society of Rheumatology, the Osteoarthritis Foundation and Pfizer ADVANCE 2020 program, and a doctoral fellowship from Sorbonne University. J.S. declares that he has received personal fees from MSD, Pfizer, Abbvie, Fresenius Kabi, BMS, Roche, Chugai, Sandoz, Lilly, Novartis, Galapagos, AstraZeneca, UCB and Janssen, and research grants from Pfizer, MSD, Schwa Medico and BMS. F.B. declares that he has received institutional grants from TRB Chemedica and Pfizer; has received consulting fees from AstraZeneca, Boehringer Ingelheim, Bone Therapeutics, Cellprothera, Galapagos, Gilead, Grunenthal, GSK, Eli Lilly, MerckSerono, MSD, Nordic Bioscience, Novartis, Pfizer, Roche, Sandoz, Sanofi, Servier, UCB, Peptinov and 4P Pharma; has received honoraria for lectures from Expanscience, Pfizer, Viatris; has received payment for expert testimony from Pfizer and Eli Lilly; has received travel support from Nordic Pharma, Pfizer, Eli Lilly and Novartis; and owns stock in and is CEO of 4Moving Biotech, a company developing intraarticular liraglutide for knee osteoarthritis. D.T.F. declares no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Changhai Ding and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adipokines

Also known as adipocytokines. Cell-signalling proteins produced by adipose tissue and adipocytes with diverse effects on metabolism, energy storage and inflammation.

Central sensitization

Increased excitability of neurons within the central nervous system, causing normal sensory inputs to generate abnormal responses; can be triggered by persistent activity in nociceptors and results in an amplified perception of pain, often leading to a hypersensitive and exaggerated response to stimuli.

Lipokines

Fatty acids or lipid-controlling hormones that can modulate lipid metabolism.

Metainflammation

Also known as metaflammation. Low-grade inflammation associated with obesity, insulin resistance and metabolic diseases.

Mismatch disease

A health condition that develops when inherited traits are inadequately or imperfectly adapted to rapid changes in modern environmental conditions.

Neuropathic-like pain

Pain associated with nerve damage, injury or dysfunction of the peripheral or central nervous system.

Nociceptive pain

Pain resulting from tissue damage or inflammation that involves an excess of nociception, which refers to the perception of noxious stimuli.

Nociplastic pain

Pain related to a disturbance in the pain pathways, without clear evidence of tissue or nerve damage; involves peripheral sensitization, central sensitization and an impairment in the descending inhibitory controls.

Peripheral sensitization

Lowering of the pain threshold and an increased responsiveness of sensory nerve fibres at their peripheral endings and within dorsal root ganglia, leading to heightened sensitivity to pain.

Sarcopenic obesity

The combination of obesity and low muscle mass; its definition varies across studies, but commonly involves the association of the lowest two quintiles of skeletal muscular mass with the highest two quintiles of fat mass.

Subcutaneous adipose tissue

Adipose tissue localized beneath the skin; contributes to insulation, energy storage and endocrine functions.

Visceral adipose tissue

Adipose tissue localized within the abdominal cavity around internal organs; linked to metabolic syndrome and systemic inflammation.

White adipose tissue

The predominant subtype of adipose tissue, constituting approximately 80% of adipose tissue in adults; important for energy regulation and lipid storage through the production of triacylglycerol.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binvignat, M., Sellam, J., Berenbaum, F. et al. The role of obesity and adipose tissue dysfunction in osteoarthritis pain. Nat Rev Rheumatol 20, 565–584 (2024). https://doi.org/10.1038/s41584-024-01143-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-024-01143-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing